1
|
Anderson AN, Conley P, Klocke CD, Sengupta SK, Pang A, Farley HC, Gillingham AR, Dawson AD, Fan Y, Jones JA, Gibbs SL, Skalet AH, Wu G, Wong MH. Detection of neoplastic-immune hybrid cells with metastatic properties in uveal melanoma. Biomark Res 2024; 12:67. [PMID: 39030653 PMCID: PMC11264923 DOI: 10.1186/s40364-024-00609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/18/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Uveal melanoma is the most common non-cutaneous melanoma and is an intraocular malignancy affecting nearly 7,000 individuals per year worldwide. Of these, approximately 50% will progress to metastatic disease for which there are currently no effective curative therapies. Despite advances in molecular profiling and metastatic stratification of uveal melanoma tumors, little is known regarding their underlying biology of metastasis. Our group has identified a disseminated neoplastic cell population characterized by co-expression of immune and melanoma proteins, circulating hybrid cells (hybrids), in patients with uveal melanoma. Compared to circulating tumor cells, which lack expression of immune proteins, hybrids are detected at an increased prevalence in peripheral blood and can be used as a non-invasive biomarker to predict metastatic progression. METHODS To ascertain mechanisms underlying enhanced hybrid cell dissemination we identified hybrid cells within primary uveal melanoma tumors using single cell RNA sequencing (n = 8) and evaluated their gene expression and predicted ligand-receptor interactions in relation to other melanoma and immune cells within the primary tumor. We then verified expression of upregulated hybrid pathways within patient-matched tumor and peripheral blood hybrids (n = 4) using cyclic immunofluorescence and quantified their protein expression relative to other non-hybrid tumor and disseminated tumor cells. RESULTS Among the top upregulated genes and pathways in hybrid cells were those involved in enhanced cell motility and cytoskeletal rearrangement, immune evasion, and altered cellular metabolism. In patient-matched tumor and peripheral blood, we verified gene expression by examining concordant protein expression for each pathway category: TMSB10 (cell motility), CD74 (immune evasion) and GPX1 (metabolism). Both TMSB10 and GPX1 were expressed on significantly higher numbers of disseminated hybrid cells compared to circulating tumor cells, and CD74 and GPX1 were expressed on more disseminated hybrids than tumor-resident hybrids. Lastly, we identified that hybrid cells express ligand-receptor signaling pathways implicated in promoting metastasis including GAS6-AXL, CXCL12-CXCR4, LGALS9-P4HB and IGF1-IGFR1. CONCLUSION These findings highlight the importance of TMSB10, GPX1 and CD74 for successful hybrid cell dissemination and survival in circulation. Our results contribute to the understanding of uveal melanoma tumor progression and interactions between tumor cells and immune cells in the tumor microenvironment that may promote metastasis.
Collapse
Affiliation(s)
- Ashley N Anderson
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Patrick Conley
- Department of Medical Informatics and Clinical Epidemiology, OHSU, Portland, OR, USA
| | - Christopher D Klocke
- Department of Medical Informatics and Clinical Epidemiology, OHSU, Portland, OR, USA
| | - Sidharth K Sengupta
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Amara Pang
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Hannah C Farley
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
- Department of Biomedical Engineering, OHSU, Portland, OR, USA
| | - Abigail R Gillingham
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Aubrey D Dawson
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Yichen Fan
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Jocelyn A Jones
- Department of Biomedical Engineering, OHSU, Portland, OR, USA
| | - Summer L Gibbs
- Department of Biomedical Engineering, OHSU, Portland, OR, USA
- Knight Cancer Institute, OHSU, Portland, OR, USA
| | - Alison H Skalet
- Casey Eye Institute, OHSU, Portland, OR, USA
- Knight Cancer Institute, OHSU, Portland, OR, USA
| | - Guanming Wu
- Department of Medical Informatics and Clinical Epidemiology, OHSU, Portland, OR, USA
- Knight Cancer Institute, OHSU, Portland, OR, USA
| | - Melissa H Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA.
- Knight Cancer Institute, OHSU, Portland, OR, USA.
| |
Collapse
|
2
|
Kharouf N, Flanagan TW, Alamodi AA, Al Hmada Y, Hassan SY, Shalaby H, Santourlidis S, Hassan SL, Haikel Y, Megahed M, Brodell RT, Hassan M. CD133-Dependent Activation of Phosphoinositide 3-Kinase /AKT/Mammalian Target of Rapamycin Signaling in Melanoma Progression and Drug Resistance. Cells 2024; 13:240. [PMID: 38334632 PMCID: PMC10854812 DOI: 10.3390/cells13030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Melanoma frequently harbors genetic alterations in key molecules leading to the aberrant activation of PI3K and its downstream pathways. Although the role of PI3K/AKT/mTOR in melanoma progression and drug resistance is well documented, targeting the PI3K/AKT/mTOR pathway showed less efficiency in clinical trials than might have been expected, since the suppression of the PI3K/mTOR signaling pathway-induced feedback loops is mostly associated with the activation of compensatory pathways such as MAPK/MEK/ERK. Consequently, the development of intrinsic and acquired resistance can occur. As a solid tumor, melanoma is notorious for its heterogeneity. This can be expressed in the form of genetically divergent subpopulations including a small fraction of cancer stem-like cells (CSCs) and non-cancer stem cells (non-CSCs) that make the most of the tumor mass. Like other CSCs, melanoma stem-like cells (MSCs) are characterized by their unique cell surface proteins/stemness markers and aberrant signaling pathways. In addition to its function as a robust marker for stemness properties, CD133 is crucial for the maintenance of stemness properties and drug resistance. Herein, the role of CD133-dependent activation of PI3K/mTOR in the regulation of melanoma progression, drug resistance, and recurrence is reviewed.
Collapse
Affiliation(s)
- Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | | | - Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Anderson AN, Conley P, Klocke CD, Sengupta SK, Pang A, Farley HC, Gillingham AR, Dawson AD, Fan Y, Jones JA, Gibbs SL, Skalet AH, Wu G, Wong MH. Detection of neoplastic-immune hybrid cells with metastatic properties in uveal melanoma. RESEARCH SQUARE 2023:rs.3.rs-3694879. [PMID: 38106024 PMCID: PMC10723549 DOI: 10.21203/rs.3.rs-3694879/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background Uveal melanoma is the most common non-cutaneous melanoma and is an intraocular malignancy affecting nearly 7,000 individuals per year worldwide. Of these, approximately 50% will progress to metastatic disease for which there are currently no effective therapies. Despite advances in molecular profiling and metastatic stratification of uveal melanoma tumors, little is known regarding their underlying biology of metastasis. Our group has identified a disseminated neoplastic cell population characterized by co-expression of immune and melanoma proteins, circulating hybrid cells (hybrids), in patients with uveal melanoma. Compared to circulating tumor cells, which lack expression of immune proteins, hybrids are detected at an increased prevalence in peripheral blood and can be used as a non-invasive biomarker to predict metastatic progression. Methods To ascertain mechanisms underlying enhanced hybrid cell dissemination we identified hybrid cells within primary uveal melanoma tumors using single cell RNA sequencing and evaluated their gene expression and predicted ligand-receptor interactions in relation to other melanoma and immune cells within the primary tumor. We then verified expression of upregulated hybrid pathways within patient-matched tumor and peripheral blood hybrids using cyclic immunofluorescence and quantified their protein expression relative to other non-hybrid tumor and disseminated tumor cells. Results Among the top upregulated genes and pathways in hybrid cells were those involved in enhanced cell motility and cytoskeletal rearrangement, immune evasion, and altered cellular metabolism. In patient-matched tumor and peripheral blood, we verified gene expression by examining concordant protein expression for each pathway category: TMSB10 (cell motility), CD74 (immune evasion) and GPX1 (metabolism). Both TMSB10 and GPX1 were expressed on significantly higher numbers of disseminated hybrid cells compared to circulating tumor cells, and CD74 and GPX1 were expressed on more disseminated hybrids than tumor-resident hybrids. Lastly, we identified that hybrid cells express ligand-receptor signaling pathways implicated in promoting metastasis including GAS6-AXL, CXCL12-CXCR4, LGALS9-P4HB and IGF1-IGFR1. Conclusion These findings highlight the importance of TMSB10, GPX1 and CD74 for successful hybrid cell dissemination and survival in circulation. Our results contribute to the understanding of uveal melanoma tumor progression and interactions between tumor cells and immune cells in the tumor microenvironment that may promote metastasis.
Collapse
|
4
|
Anderson AN, Conley P, Klocke CD, Sengupta SK, Robinson TL, Fan Y, Jones JA, Gibbs SL, Skalet AH, Wu G, Wong MH. Analysis of uveal melanoma scRNA sequencing data identifies neoplastic-immune hybrid cells that exhibit metastatic potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563815. [PMID: 37961378 PMCID: PMC10634980 DOI: 10.1101/2023.10.24.563815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Uveal melanoma (UM) is the most common non-cutaneous melanoma and is an intraocular malignancy that affects nearly 7,000 individuals per year worldwide. Of these, nearly 50% will progress to metastatic disease for which there are currently no effective therapies. Despite advances in the molecular profiling and metastatic stratification of class 1 and 2 UM tumors, little is known regarding the underlying biology of UM metastasis. Our group has identified a disseminated tumor cell population characterized by co-expression of immune and melanoma proteins, (circulating hybrid cells (CHCs), in patients with UM. Compared to circulating tumor cells, CHCs are detected at an increased prevalence in peripheral blood and can be used as a non-invasive biomarker to predict metastatic progression. To identify mechanisms underlying enhanced hybrid cell dissemination we sought to identify hybrid cells within a primary UM single cell RNA-seq dataset. Using rigorous doublet discrimination approaches, we identified UM hybrids and evaluated their gene expression, predicted ligand-receptor status, and cell-cell communication state in relation to other melanoma and immune cells within the primary tumor. We identified several genes and pathways upregulated in hybrid cells, including those involved in enhancing cell motility and cytoskeleton rearrangement, evading immune detection, and altering cellular metabolism. In addition, we identified that hybrid cells express ligand-receptor signaling pathways implicated in promoting cancer metastasis including IGF1-IGFR1, GAS6-AXL, LGALS9-P4HB, APP-CD74 and CXCL12-CXCR4. These results contribute to our understanding of tumor progression and interactions between tumor cells and immune cells in the UM microenvironment that may promote metastasis.
Collapse
|
5
|
Richards JR, Shin D, Pryor R, Sorensen LK, Sun Z, So WM, Park G, Wolff R, Truong A, McMahon M, Grossmann AH, Harbour JW, Zhu W, Odelberg SJ, Yoo JH. Activation of NFAT by HGF and IGF-1 via ARF6 and its effector ASAP1 promotes uveal melanoma metastasis. Oncogene 2023; 42:2629-2640. [PMID: 37500798 PMCID: PMC11008337 DOI: 10.1038/s41388-023-02792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Preventing or effectively treating metastatic uveal melanoma (UM) is critical because it occurs in about half of patients and confers a very poor prognosis. There is emerging evidence that hepatocyte growth factor (HGF) and insulin-like growth factor 1 (IGF-1) promote metastasis and contribute to the striking metastatic hepatotropism observed in UM metastasis. However, the molecular mechanisms by which HGF and IGF-1 promote UM liver metastasis have not been elucidated. ASAP1, which acts as an effector for the small GTPase ARF6, is highly expressed in the subset of uveal melanomas most likely to metastasize. Here, we found that HGF and IGF-1 hyperactivate ARF6, leading to its interaction with ASAP1, which then acts as an effector to induce nuclear localization and transcriptional activity of NFAT1. Inhibition of any component of this pathway impairs cellular invasiveness. Additionally, knocking down ASAP1 or inhibiting NFAT signaling reduces metastasis in a xenograft mouse model of UM. The discovery of this signaling pathway represents not only an advancement in our understanding of the biology of uveal melanoma metastasis but also identifies a novel pathway that could be targeted to treat or prevent metastatic uveal melanoma.
Collapse
Affiliation(s)
- Jackson R Richards
- Department of Oncological Sciences, School of Medicine, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Donghan Shin
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA
| | - Rob Pryor
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA
| | - Lise K Sorensen
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA
| | - Zhonglou Sun
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA
| | - Won Mi So
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Garam Park
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Roger Wolff
- Department of Pathology, University of Utah, 15 North Medical Drive East, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Amanda Truong
- Department of Oncological Sciences, School of Medicine, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Martin McMahon
- Department of Oncological Sciences, School of Medicine, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
- Department of Dermatology, University of Utah, 30 N 1900 E, Salt Lake City, UT, 84132, USA
| | - Allie H Grossmann
- Department of Pathology, University of Utah, 15 North Medical Drive East, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
- ARUP Laboratories, University of Utah, 500 Chipeta Way, Salt Lake City, UT, 84112, USA
| | - J William Harbour
- Department of Ophthalmology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Weiquan Zhu
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah, 30 North 1900 East, Salt Lake City, UT, 84132, USA
| | - Shannon J Odelberg
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA.
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah, 30 North 1900 East, Salt Lake City, UT, 84132, USA.
- Department of Neurobiology, University of Utah, 20 South 2030 East, Salt Lake City, UT, 84112, USA.
| | - Jae Hyuk Yoo
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
6
|
Brănişteanu DE, Porumb-Andrese E, Porumb V, Stărică A, Moraru AD, Nicolescu AC, Zemba M, Brănişteanu CI, Brănişteanu G, Brănişteanu DC. New Treatment Horizons in Uveal and Cutaneous Melanoma. Life (Basel) 2023; 13:1666. [PMID: 37629523 PMCID: PMC10455832 DOI: 10.3390/life13081666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Melanoma is a complex and heterogeneous malignant tumor with distinct genetic characteristics and therapeutic challenges in both cutaneous melanoma (CM) and uveal melanoma (UM). This review explores the underlying molecular features and genetic alterations in these melanoma subtypes, highlighting the importance of employing specific model systems tailored to their unique profiles for the development of targeted therapies. Over the past decade, significant progress has been made in unraveling the molecular and genetic characteristics of CM and UM, leading to notable advancements in treatment options. Genetic mutations in the mitogen-activated protein kinase (MAPK) pathway drive CM, while UM is characterized by mutations in genes like GNAQ, GNA11, BAP1, EIF1AX, and SF3B1. Chromosomal aberrations, including monosomy 3 in UM and monosomy 10 in CM, play significant roles in tumorigenesis. Immune cell infiltration differs between CM and UM, impacting prognosis. Therapeutic advancements targeting these genetic alterations, including oncolytic viruses and immunotherapies, have shown promise in preclinical and clinical studies. Oncolytic viruses selectively infect malignant cells, inducing oncolysis and activating antitumor immune responses. Talimogene laherparepvec (T-VEC) is an FDA-approved oncolytic virus for CM treatment, and other oncolytic viruses, such as coxsackieviruses and HF-10, are being investigated. Furthermore, combining oncolytic viruses with immunotherapies, such as CAR-T cell therapy, holds great potential. Understanding the intrinsic molecular features of melanoma and their role in shaping novel therapeutic approaches provides insights into targeted interventions and paves the way for more effective treatments for CM and UM.
Collapse
Affiliation(s)
- Daciana Elena Brănişteanu
- Department of Medical Specialties (III)-Dermatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Railway Clinical Hospital, 700506 Iasi, Romania;
| | - Elena Porumb-Andrese
- Department of Medical Specialties (III)-Dermatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Railway Clinical Hospital, 700506 Iasi, Romania;
| | - Vlad Porumb
- Department of Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Military Emergency Clinical Hospital “Dr. Iacob Czihac”, 700506 Iasi, Romania
| | | | - Andreea Dana Moraru
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | | | - Mihail Zemba
- Department of Ophthalmology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | | | - George Brănişteanu
- “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.I.B.); (G.B.)
| | - Daniel Constantin Brănişteanu
- Railway Clinical Hospital, 700506 Iasi, Romania;
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
7
|
Ramos R, Cabré E, Vinyals A, Lorenzo D, Ferreres JR, Varela M, Gomá M, Paules MJ, Gutierrez C, Piulats JM, Fabra À, Caminal JM. Orthotopic murine xenograft model of uveal melanoma with spontaneous liver metastasis. Melanoma Res 2023; 33:1-11. [PMID: 36302215 DOI: 10.1097/cmr.0000000000000860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Uveal melanoma is the most common intraocular malignancy in adults. Despite the effective primary treatment, up to 50% of patients with uveal melanoma will develop metastatic lesions mainly in the liver, which are resistant to conventional chemotherapy and lead to patient's death. To date, no orthotopic murine models of uveal melanoma which can develop spontaneous metastasis are available for preclinical studies. Here, we describe a spontaneous metastatic model of uveal melanoma based on the orthotopic injection of human uveal melanoma cells into the suprachoroidal space of immunodeficient NSG mice. All mice injected with bioluminescent OMM2.5 ( n = 23) or MP41 ( n = 19) cells developed a primary tumor. After eye enucleation, additional bioluminescence signals were detected in the lungs and in the liver. At necropsy, histopathological studies confirmed the presence of lung metastases in 100% of the mice. Liver metastases were assessed in 87 and in 100% of the mice that received OMM2.5 or MP41 cells, respectively. All tumors and metastatic lesions expressed melanoma markers and the signaling molecules insulin-like growth factor type I receptor and myristoylated alanine-rich C-kinase substrate, commonly activated in uveal melanoma. The novelty of this orthotopic mouse xenograft model is the development of spontaneous metastases in the liver from the primary site, reproducing the organoespecificity of metastasis observed in uveal melanoma patients. The faster growth and the high metastatic incidence may be attributed at least in part, to the severe immunodeficiency of NSG mice. This model may be useful for preclinical testing of targeted therapies with potential uveal melanoma antimetastatic activity and to study the mechanisms involved in liver metastasis.
Collapse
Affiliation(s)
- Raquel Ramos
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)
| | - Eduard Cabré
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)
| | - Antònia Vinyals
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)
| | - Daniel Lorenzo
- Ophthalmology Department, Spanish Ocular Oncology National referal center (CSUR) and Ocular Translational Eye Research Unit, Hospital Universitari de Bellvitge (HUB)-IDIBELL
| | | | - Mar Varela
- Pathology Department, Hospital Universitari de Bellvitge
| | - Montse Gomá
- Pathology Department, Hospital Universitari de Bellvitge
| | | | - Cristina Gutierrez
- Radiotherapy Department, Institut Catalá d'Oncologia (ICO), Hospital Duran Reynals
| | - Josep M Piulats
- Medical Oncology, Institut Catalá d'Oncologia (ICO), Hospital Duran Reynals, Barcelona, Spain
| | - Àngels Fabra
- Ophthalmology Department, Spanish Ocular Oncology National referal center (CSUR) and Ocular Translational Eye Research Unit, Hospital Universitari de Bellvitge (HUB)-IDIBELL
| | - José M Caminal
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)
| |
Collapse
|
8
|
Lapadula D, Lam B, Terai M, Sugase T, Tanaka R, Farias E, Kadamb R, Lopez-Anton M, Heine CC, Modasia B, Aguirre-Ghiso JA, Aplin AE, Sato T, Benovic JL. IGF1R Inhibition Enhances the Therapeutic Effects of Gq/11 Inhibition in Metastatic Uveal Melanoma Progression. Mol Cancer Ther 2023; 22:63-74. [PMID: 36223548 PMCID: PMC9812929 DOI: 10.1158/1535-7163.mct-22-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/04/2022] [Accepted: 10/06/2022] [Indexed: 02/03/2023]
Abstract
Uveal melanoma (UM) is the most common intraocular tumor in adults, and up to 50% of patients develop metastatic disease, which remains uncurable. Because patients with metastatic UM have an average survival of less than 1 year after diagnosis, there is an urgent need to develop new treatment strategies. Although activating mutations in Gαq or Gα11 proteins are major drivers of pathogenesis, the therapeutic intervention of downstream Gαq/11 targets has been unsuccessful in treating UM, possibly due to alternative signaling pathways and/or resistance mechanisms. Activation of the insulin-like growth factor 1 (IGF1) signaling pathway promotes cell growth, metastasis, and drug resistance in many types of cancers, including UM, where expression of the IGF1 receptor (IGF1R) correlates with a poor prognosis. In this article, we show that direct inhibition of Gαq/11 by the cyclic depsipeptide YM-254890 in combination with inhibition of IGF1R by linsitinib cooperatively inhibits downstream signaling and proliferation of UM cells. We further demonstrate that a 2-week combination treatment of 0.3 to 0.4 mg/kg of YM-254890 administered by intraperitoneal injection and 25 to 40 mg/kg linsitinib administered by oral gavage effectively inhibits the growth of metastatic UM tumors in immunodeficient NOD scid gamma (NSG) mice and identifies the IGF1 pathway as a potential resistance mechanism in response to Gαq/11 inhibition in UM. These data suggest that the combination of Gαq/11 and IGF1R inhibition provides a promising therapeutic strategy to treat metastatic UM.
Collapse
Affiliation(s)
- Dominic Lapadula
- Sidney Kimmel Cancer Center at Jefferson, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Bao Lam
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Mizue Terai
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Takahito Sugase
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Ryota Tanaka
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Eduardo Farias
- Icahn School of Medicine at Mount, New York, NY, United States
| | - Rama Kadamb
- Albert Einstein College of Medicine, Bronx, NewYork, United States
| | | | - Christian C Heine
- Sidney Kimmel Cancer Center at Jefferson, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | | | | | - Andrew E Aplin
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Takami Sato
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Jeffrey L Benovic
- Sidney Kimmel Cancer Center at Jefferson, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
9
|
Lei X, Zhang Y, Mao L, Jiang P, Huang Y, Gu J, Tai N. Prognostic value of receptor tyrosine kinases in malignant melanoma patients: A systematic review and meta-analysis of immunohistochemistry. Front Oncol 2022; 12:819051. [PMID: 36212475 PMCID: PMC9538722 DOI: 10.3389/fonc.2022.819051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
Background Substantial evidence suggests that receptor tyrosine kinases (RTKs) are overexpressed in tumors; however, few studies have focused on the prognostic value of RTKs in melanoma. Objectives The objective of this study is to evaluate the association between overexpression of RTKs and survival in melanoma patients based on immunohistochemistry (IHC) analysis. Methods Our review is registered on PROSPERO (http://www.crd.york.ac.uk/PROSPERO), registration number CRD42021261460. Seven databases were searched, and data were extracted. We used IHC to measure the association between overexpression of RTKs and overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), and clinicopathology in melanoma patients. Pooled analysis was conducted to assess the differences between Hazard Ratios along with 95% confidence intervals. Results Of 5,508 publications examined following the database search, 23 publications were included in this study, which included data from a total of 2,072 patients. Vascular endothelial growth factor receptor 2 (VEGF-R2) overexpression was associated with worse OS and DFS in melanoma. Furthermore, there was an association between OS and the expression of several RTKs, including epidermal growth factor receptor (EGFR), mesenchymal-epithelial transition factor (MET), vascular endothelial growth factor receptor 1 (VEGF-R1), and insulin-like growth factor 1 receptor (IGF-1R). There were no significant correlations between EGFR overexpression and worse DFS or PFS. EGFR overexpression was associated with worse OS cutaneous and nasal melanoma, but not uveal melanoma. However, MET overexpression was related to worse OS in both cutaneous and uveal melanoma. Furthermore, EGFR overexpression was associated with a worse OS in Europe compared to other geographic areas. Moreover, EGFR and MET overexpression showed significant prognostic value in patients with the cut-off “≥10% staining”. Conclusions Our findings build concrete evidence that overexpression of RTKs is associated with poor prognosis and clinicopathology in melanoma, highlighting RTK expression has the potential to inform individualized combination therapies and accurate prognostic evaluation.
Collapse
Affiliation(s)
- Xuan Lei
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yiming Zhang
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lianghao Mao
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Pan Jiang
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yumeng Huang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jia Gu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ningzheng Tai
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Ningzheng Tai,
| |
Collapse
|
10
|
Gu L, Ma G, Li C, Lin J, Zhao G. New insights into the prognosis of intraocular malignancy: Interventions for association mechanisms between cancer and diabetes. Front Oncol 2022; 12:958170. [PMID: 36003786 PMCID: PMC9393514 DOI: 10.3389/fonc.2022.958170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022] Open
Abstract
The intraocular malignancies, which mostly originate from the retina and uvea, exhibit a high incidence of blindness and even death. Uveal melanoma (UM) and retinoblastoma (RB) are the most common intraocular malignancies in adults and children, respectively. The high risks of distant metastases lead to an extremely poor prognosis. Nowadays, various epidemiological studies have demonstrated that diabetes is associated with the high incidence and mortality of cancers, such as liver cancer, pancreatic cancer, and bladder cancer. However, the mechanisms and interventions associated with diabetes and intraocular malignancies have not been reviewed. In this review, we have summarized the associated mechanisms between diabetes and intraocular malignancy. Diabetes mellitus is a chronic metabolic disease characterized by prolonged periods of hyperglycemia. Recent studies have reported that the abnormal glucose metabolism, insulin resistance, and the activation of the IGF/insulin-like growth factor-1 receptor (IGF-1R) signaling axis in diabetes contribute to the genesis, growth, proliferation, and metastases of intraocular malignancy. In addition, diabetic patients are more prone to suffer severe complications and poor prognosis after radiotherapy for intraocular malignancy. Based on the common pathogenesis shared by diabetes and intraocular malignancy, they may be related to interventions and treatments. Therefore, interventions targeting the abnormal glucose metabolism, insulin resistance, and IGF-1/IGF-1R signaling axis show therapeutic potentials to treat intraocular malignancy.
Collapse
Affiliation(s)
- Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guofeng Ma
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Guiqiu Zhao,
| |
Collapse
|
11
|
Glinkina K, Groenewoud A, Teunisse AFAS, Snaar-Jagalska BE, Jochemsen AG. Novel Treatments of Uveal Melanoma Identified with a Synthetic Lethal CRISPR/Cas9 Screen. Cancers (Basel) 2022; 14:3186. [PMID: 35804957 PMCID: PMC9264875 DOI: 10.3390/cancers14133186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 01/30/2023] Open
Abstract
Currently, no systemic treatment is approved as the standard of care for metastatic uveal melanoma (UM). mTOR has been evaluated as a drug target in UM. However, one of the main limitations is dose reduction due to adverse effects. The combination of everolimus with another targeted agent would allow the reduction of the dose of a single drug, thus widening the therapeutic window. In our study, we aimed to identify a synergistic combination with everolimus in order to develop a novel treatment option for metastatic UM. We exploited CRISPR-Cas9 synthetic lethality screening technology to search for an efficient combination. IGF1R and PRKDC and several other genes were identified as hits in the screen. We investigated the effect of the combination of everolimus with the inhibitors targeting IGF1R and DNA-PKcs on the survival of UM cell lines. These combinations synergistically slowed down cell growth but did not induce apoptosis in UM cell lines. These combinations were tested on PDX UM in an in vivo model, but we could not detect tumor regression. However, we could find significant activity of the dual DNA-PKcs/mTOR inhibitor CC-115 on PDX UM in the in vivo model.
Collapse
Affiliation(s)
- Kseniya Glinkina
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (K.G.); (A.F.A.S.T.)
| | - Arwin Groenewoud
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, 2300 RC Leiden, The Netherlands; (A.G.); (B.E.S.-J.)
| | - Amina F. A. S. Teunisse
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (K.G.); (A.F.A.S.T.)
| | - B. Ewa Snaar-Jagalska
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, 2300 RC Leiden, The Netherlands; (A.G.); (B.E.S.-J.)
| | - Aart G. Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (K.G.); (A.F.A.S.T.)
| |
Collapse
|
12
|
Potential of miRNA-Based Nanotherapeutics for Uveal Melanoma. Cancers (Basel) 2021; 13:cancers13205192. [PMID: 34680340 PMCID: PMC8534265 DOI: 10.3390/cancers13205192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Human uveal melanoma (UM) is the most common primary intraocular tumor with high metastatic risk in adults. Currently, no effective treatment is available for metastatic UM; therefore, new therapeutic approaches are needed to improve overall survival. Given the increased understanding of microRNAs (miRNAs) and their roles in UM tumorigenesis and metastasis, miRNA-based therapy may offer the hope of improving therapeutic outcomes. This review summarizes the actions of select miRNAs examined in preclinical studies using miRNAs as therapeutic targets in UM. The focus of this review is the application of established nanotechnology-assisted delivery systems to overcome the limitations of therapeutic miRNAs. A blend of therapeutic miRNAs and nanodelivery systems may facilitate the translation of miRNA therapies to clinical settings. Abstract Uveal melanoma (UM) is the most common adult intraocular cancer, and metastatic UM remains deadly and incurable. UM is a complex disease associated with the deregulation of numerous genes and redundant intracellular signaling pathways. As understanding of epigenetic dysregulation in the oncogenesis of UM has increased, the abnormal expression of microRNAs (miRNAs) has been found to be an epigenetic mechanism underlying UM tumorigenesis. A growing number of miRNAs are being found to be associated with aberrant signaling pathways in UM, and some have been investigated and functionally characterized in preclinical settings. This review summarizes the miRNAs with promising therapeutic potential for UM treatment, paying special attention to the therapeutic miRNAs (miRNA mimics or inhibitors) used to restore dysregulated miRNAs to their normal levels. However, several physical and physiological limitations associated with therapeutic miRNAs have prevented their translation to cancer therapeutics. With the advent of nanotechnology delivery systems, the development of effective targeted therapies for patients with UM has received great attention. Therefore, this review provides an overview of the use of nanotechnology drug delivery systems, particularly nanocarriers that can be loaded with therapeutic miRNAs for effective delivery into target cells. The development of miRNA-based therapeutics with nanotechnology-based delivery systems may overcome the barriers of therapeutic miRNAs, thereby enabling their translation to therapeutics, enabling more effective targeting of UM cells and consequently improving therapeutic outcomes.
Collapse
|
13
|
Han A, Schug ZT, Aplin AE. Metabolic Alterations and Therapeutic Opportunities in Rare Forms of Melanoma. Trends Cancer 2021; 7:671-681. [PMID: 34127435 DOI: 10.1016/j.trecan.2021.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Melanoma is derived from melanocytes located in multiple regions of the body. Cutaneous melanoma (CM) represents the major subgroup, but less-common subtypes including uveal melanoma (UM), mucosal melanoma (MM), and acral melanoma (AM) arise that have distinct genetic profiles. Treatments effective for CM are ineffective in UM, AM, and MM, and patient survival remains poor. As reprogrammed cancer metabolism is associated with tumorigenesis, the underlying mechanisms are well studied and provide therapeutic opportunities in many cancers; however, metabolism is less well studied in rarer melanoma subtypes. We summarize current knowledge of the metabolic alterations in rare melanoma and potential applications of targeting cancer metabolism to improve the therapeutic options available to UM, AM, and MM patients.
Collapse
Affiliation(s)
- Anna Han
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Zachary T Schug
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA19104, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
14
|
Krishna Y, Acha-Sagredo A, Sabat-Pośpiech D, Kipling N, Clarke K, Figueiredo CR, Kalirai H, Coupland SE. Transcriptome Profiling Reveals New Insights into the Immune Microenvironment and Upregulation of Novel Biomarkers in Metastatic Uveal Melanoma. Cancers (Basel) 2020; 12:cancers12102832. [PMID: 33008022 PMCID: PMC7650807 DOI: 10.3390/cancers12102832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/17/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Uveal melanoma (UM) is a rare aggressive eye cancer. Although treatment of the eye tumour is successful, about 50% of UM patients develop a relapse of their cancer in the liver. At present, such advanced disease is not curable. A better understanding of the metastatic UM (mUM) in the liver is essential to improve patient survival. This study examines both the response of immune cells within the liver to the UM secondaries (metastases), as well as the expression of various proteins by the UM cells. Our study demonstrates that there is a limited immune response to the mUM, but reveals that a certain type of reactive immune cell: a protumourigenic subset of macrophage is dominant within the mUM. Our research also reveals novel proteins within the mUM, which are specific to these cells and therefore may be targetable in future therapies. Abstract Metastatic uveal melanoma (mUM) to the liver is incurable. Transcriptome profiling of 40 formalin-fixed paraffin-embedded mUM liver resections and 6 control liver specimens was undertaken. mUMs were assessed for morphology, nuclear BAP1 (nBAP1) expression, and their tumour microenvironments (TME) using an “immunoscore” (absent/altered/high) for tumour-infiltrating lymphocytes (TILs) and macrophages (TAMs). Transcriptomes were compared between mUM and control liver; intersegmental and intratumoural analyses were also undertaken. Most mUM were epithelioid cell-type (75%), amelanotic (55%), and nBAP1-ve (70%). They had intermediate (68%) or absent (15%) immunoscores for TILs and intermediate (53%) or high (45%) immunoscores for TAMs. M2-TAMs were dominant in the mUM-TME, with upregulated expression of ANXA1, CD74, CXCR4, MIF, STAT3, PLA2G6, and TGFB1. Compared to control liver, mUM showed significant (p < 0.01) upregulation of 10 genes: DUSP4, PRAME, CD44, IRF4/MUM1, BCL2, CD146/MCAM/MUC18, IGF1R, PNMA1, MFGE8/lactadherin, and LGALS3/Galectin-3. Protein expression of DUSP4, CD44, IRF4, BCL-2, CD146, and IGF1R was validated in all mUMs, whereas protein expression of PRAME was validated in 10% cases; LGALS3 stained TAMs, and MFGEF8 highlighted bile ducts only. Intersegmental mUMs show differing transcriptomes, whereas those within a single mUM were similar. Our results show that M2-TAMs dominate mUM-TME with upregulation of genes contributing to immunosuppression. mUM significantly overexpress genes with targetable signalling pathways, and yet these may differ between intersegmental lesions.
Collapse
Affiliation(s)
- Yamini Krishna
- Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Duncan Building, Daulby Street, Liverpool L69 3GA, UK;
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
| | - Amelia Acha-Sagredo
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
| | - Dorota Sabat-Pośpiech
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
| | - Natalie Kipling
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
| | - Kim Clarke
- Computational Biology Facility, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
| | - Carlos R. Figueiredo
- MediCity Research Laboratory and Institute of Biomedicine, University of Turku, Turun yliopisto, FI-20014 Turku, Finland;
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
| | - Sarah E. Coupland
- Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Duncan Building, Daulby Street, Liverpool L69 3GA, UK;
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
- Correspondence: ; Tel.: +44-151-794-9104
| |
Collapse
|
15
|
Wu MY, Lai TT, Liao WT, Li CJ. Clinicopathological and prognostic significance and molecular mechanisms governing uveal melanoma. Ther Adv Med Oncol 2020; 12:1758835920917566. [PMID: 32550863 PMCID: PMC7281640 DOI: 10.1177/1758835920917566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 03/11/2020] [Indexed: 12/15/2022] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy in
adults. Although UM and cutaneous melanoma are derived from
melanocytes, UM differs clinically and biologically from its more
common skin counterparts. More than half of primary UMs metastasize.
However, there is currently no effective treatment for metastatic UM.
Therefore, studying mutations related to the metastasis, growth,
proliferation, and survival of UM can help researchers understand its
pathogenesis and metastatic mechanism, thereby leading to a more
effective treatment. In addition, we provide an overview of the recent
basic and clinical studies to provide a strong foundation for
developing novel anti-carcinogenesis targets for future
interventions.
Collapse
Affiliation(s)
- Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien
| | - Tzu-Ting Lai
- Department of Ophthalmology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Wan-Ting Liao
- Institute of Medicine, Chung Shan Medical University, Taichung Chinese Medicine Department, Show Chwan Memorial Hospital, Changhua
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, No.386, Dazhong 1st Road, Zuoying District, Kaohsiung City 81362 Institute of BioPharmaceutical sciences, National Sun Yat-sen University, Kaohsiung
| |
Collapse
|
16
|
Bustamante P, Piquet L, Landreville S, Burnier JV. Uveal melanoma pathobiology: Metastasis to the liver. Semin Cancer Biol 2020; 71:65-85. [PMID: 32450140 DOI: 10.1016/j.semcancer.2020.05.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
Uveal melanoma (UM) is a type of intraocular tumor with a propensity to disseminate to the liver. Despite the identification of the early driver mutations during the development of the pathology, the process of UM metastasis is still not fully comprehended. A better understanding of the genetic, molecular, and environmental factors participating to its spread and metastatic outgrowth could provide additional approaches for UM treatment. In this review, we will discuss the advances made towards the understanding of the pathogenesis of metastatic UM, summarize the current and prospective treatments, and introduce some of the ongoing research in this field.
Collapse
Affiliation(s)
- Prisca Bustamante
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Canada; Experimental Pathology Unit, Department of Pathology, McGill University, Montréal, Canada
| | - Léo Piquet
- Département d'ophtalmologie et d'ORL-CCF, Faculté de médecine, Université Laval, Quebec City, Canada; CUO-Recherche and Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Quebec City, Canada; Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, Canada
| | - Solange Landreville
- Département d'ophtalmologie et d'ORL-CCF, Faculté de médecine, Université Laval, Quebec City, Canada; CUO-Recherche and Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Quebec City, Canada; Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, Canada
| | - Julia V Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Canada; Experimental Pathology Unit, Department of Pathology, McGill University, Montréal, Canada; Gerald Bronfman Department Of Oncology, McGill University, Montréal, Canada.
| |
Collapse
|
17
|
Sugase T, Lam BQ, Danielson M, Terai M, Aplin AE, Gutkind JS, Sato T. Development and optimization of orthotopic liver metastasis xenograft mouse models in uveal melanoma. J Transl Med 2020; 18:208. [PMID: 32434572 PMCID: PMC7240939 DOI: 10.1186/s12967-020-02377-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Patients with metastatic uveal melanoma (MUM) in the liver usually die within 1 year. The development of new treatments for MUM has been limited by the lack of diverse MUM cell lines and appropriate animal models. We previously reported that orthotopic xenograft mouse models established by direct injection of MUM cells into the liver were useful for the analysis associated with tumor microenvironment in the liver. However, considering that patients with UM metastasize to the liver hematogenously, direct liver injection model might not be suitable for investigation on various mechanisms of liver metastasis. Here, we aim to establish new orthotopic xenograft models via hematogenous dissemination of tumor cells to the liver, and to compare their characteristics with the hepatic injection model. We also determine if hepatic tumors could be effectively monitored with non-invasive live imaging. METHODS tdtTomate-labeled, patient-derived MUM cells were injected into the liver, spleen or tail vein of immunodeficient NSG mice. Tumor growth was serially assessed with In Vivo Imaging System (IVIS) images once every week. Established hepatic tumors were evaluated with CT scan and then analyzed histologically. RESULTS We found that splenic injection could consistently establish hepatic tumors. Non-invasive imaging showed that the splenic injection model had more consistent and stronger fluorescent intensity compared to the hepatic injection model. There were no significant differences in tumor growth between splenic injection with splenectomy and without splenectomy. The splenic injection established hepatic tumors diffusely throughout the liver, while the hepatic injection of tumor cells established a single localized tumor. Long-term monitoring of tumor development showed that tumor growth, tumor distribution in the liver, and overall survival depended on the number of tumor cells injected to the spleen. CONCLUSION We established a new orthotopic hepatic metastatic xenograft mouse model by splenic injection of MUM cells. The growth of orthotopic hepatic tumors could be monitored with non-invasive IVIS imaging. Moreover, we evaluated the therapeutic effect of a MEK inhibitor by using this model. Our findings suggest that our new orthotopic liver metastatic mouse model may be useful for preclinical drug screening experiments and for the analysis of liver metastasis mechanisms.
Collapse
Affiliation(s)
- Takahito Sugase
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, USA
| | - Bao Q Lam
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, USA
| | - Meggie Danielson
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, USA
| | - Mizue Terai
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Silvio Gutkind
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Takami Sato
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Teh JLF, Purwin TJ, Han A, Chua V, Patel P, Baqai U, Liao C, Bechtel N, Sato T, Davies MA, Aguirre-Ghiso J, Aplin AE. Metabolic Adaptations to MEK and CDK4/6 Cotargeting in Uveal Melanoma. Mol Cancer Ther 2020; 19:1719-1726. [PMID: 32430489 DOI: 10.1158/1535-7163.mct-19-1016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/19/2020] [Accepted: 05/15/2020] [Indexed: 12/25/2022]
Abstract
Frequent GNAQ and GNA11 mutations in uveal melanoma hyperactivate the MEK-ERK signaling pathway, leading to aberrant regulation of cyclin-dependent kinases (CDK) and cell-cycle progression. MEK inhibitors (MEKi) alone show poor efficacy in uveal melanoma, raising the question of whether downstream targets can be vertically inhibited to provide long-term benefit. CDK4/6 selective inhibitors are FDA-approved in patients with estrogen receptor (ER)-positive breast cancer in combination with ER antagonists/aromatase inhibitors. We determined the effects of MEKi plus CDK4/6 inhibitors (CDK4/6i) in uveal melanoma. In vitro, palbociclib, a CDK4/6i, enhanced the effects of MEKi via downregulation of cell-cycle proteins. In contrast, in vivo CDK4/6 inhibition alone led to cytostasis and was as effective as MEKi plus CDK4/6i treatment at delaying tumor growth. RNA sequencing revealed upregulation of the oxidative phosphorylation (OxPhos) pathway in both MEKi-resistant tumors and CDK4/6i-tolerant tumors. Furthermore, oxygen consumption rate was increased following MEKi + CDK4/6i treatment. IACS-010759, an OxPhos inhibitor, decreased uveal melanoma cell survival in combination with MEKi + CDK4/6i. These data highlight adaptive upregulation of OxPhos in response to MEKi + CDK4/6i treatment in uveal melanoma and suggest that suppression of this metabolic state may improve the efficacy of MEKi plus CDK4/6i combinations.
Collapse
Affiliation(s)
| | | | - Anna Han
- Department of Cancer Biology, Philadelphia, Pennsylvania
| | - Vivian Chua
- Department of Cancer Biology, Philadelphia, Pennsylvania
| | - Prem Patel
- Department of Cancer Biology, Philadelphia, Pennsylvania
| | - Usman Baqai
- Department of Cancer Biology, Philadelphia, Pennsylvania
| | - Connie Liao
- Department of Cancer Biology, Philadelphia, Pennsylvania
| | - Nelisa Bechtel
- Department of Cancer Biology, Philadelphia, Pennsylvania
| | - Takami Sato
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Julio Aguirre-Ghiso
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrew E Aplin
- Department of Cancer Biology, Philadelphia, Pennsylvania. .,Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Richards JR, Yoo JH, Shin D, Odelberg SJ. Mouse models of uveal melanoma: Strengths, weaknesses, and future directions. Pigment Cell Melanoma Res 2020; 33:264-278. [PMID: 31880399 PMCID: PMC7065156 DOI: 10.1111/pcmr.12853] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/21/2019] [Indexed: 12/14/2022]
Abstract
Uveal melanoma is the most common primary malignancy of the eye, and a number of discoveries in the last decade have led to a more thorough molecular characterization of this cancer. However, the prognosis remains dismal for patients with metastases, and there is an urgent need to identify treatments that are effective for this stage of disease. Animal models are important tools for preclinical studies of uveal melanoma. A variety of models exist, and they have specific advantages, disadvantages, and applications. In this review article, these differences are explored in detail, and ideas for new models that might overcome current challenges are proposed.
Collapse
Affiliation(s)
- Jackson R. Richards
- Department of Oncological SciencesUniversity of UtahSalt Lake CityUTUSA
- Program in Molecular MedicineUniversity of UtahSalt Lake CityUTUSA
| | - Jae Hyuk Yoo
- Program in Molecular MedicineUniversity of UtahSalt Lake CityUTUSA
| | - Donghan Shin
- Program in Molecular MedicineUniversity of UtahSalt Lake CityUTUSA
| | - Shannon J. Odelberg
- Program in Molecular MedicineUniversity of UtahSalt Lake CityUTUSA
- Department of Internal MedicineDivision of Cardiovascular MedicineUniversity of UtahSalt Lake CityUTUSA
- Department of Neurobiology and AnatomyUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
20
|
Xie X, Xie S, Xie C, Fang Y, Li Z, Wang R, Jiang W. Pristimerin attenuates cell proliferation of uveal melanoma cells by inhibiting insulin-like growth factor-1 receptor and its downstream pathways. J Cell Mol Med 2019; 23:7545-7553. [PMID: 31508890 PMCID: PMC6815816 DOI: 10.1111/jcmm.14623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022] Open
Abstract
Uveal melanoma (UM) has a high mortality rate due to liver metastasis. The insulin‐like growth factor‐1 receptor (IGF‐1R) is highly expressed in UM and has been shown to be associated with hepatic metastases. Targeting IGF signalling may be considered as a promising approach to inhibit the process of metastatic UM cells. Pristimerin (PRI) has been demonstrated to inhibit the growth of several cancer cells, but its role and underlying mechanisms in the IGF‐1‐induced UM cell proliferation are largely unknown. The present study examined the anti‐proliferative effect of PRI on UM cells and its possible role in IGF‐1R signalling transduction. MTT and clonogenic assays were used to determine the role of PRI in the proliferation of UM cells. Flow cytometry was performed to detect the effect of PRI on the cell cycle distribution of UM cells. Western blotting was carried out to assess the effects of PRI and IGF‐1 on the IGF‐1R phosphorylation and its downstream targets. The results indicated that IGF‐1 promoted the UM cell proliferation and improved the level of IGF‐1R phosphorylation, whereas PRI attenuated the effect of IGF‐1. Interestingly, PRI could not only induce the G1 phase accumulation and reduce the G2 phase induced by IGF‐1, but also could stimulate the expression of p21 and inhibit the expression of cyclin D1. Besides, PRI could attenuate the phosphorylations of Akt, mTOR and ERK1/2 induced by IGF‐1. Furthermore, the molecular docking study also demonstrated that PRI had potential inhibitory effects on IGF‐1R. Taken together, these results indicated that PRI could inhibit the proliferation of UM cells through down‐regulation of phosphorylated IGF‐1R and its downstream signalling.
Collapse
Affiliation(s)
- Xinshu Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Saisai Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Changying Xie
- Affiliated Hosptial of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yuanying Fang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zhifeng Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Rikang Wang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Wei Jiang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| |
Collapse
|
21
|
Chua V, Orloff M, Teh JL, Sugase T, Liao C, Purwin TJ, Lam BQ, Terai M, Ambrosini G, Carvajal RD, Schwartz G, Sato T, Aplin AE. Stromal fibroblast growth factor 2 reduces the efficacy of bromodomain inhibitors in uveal melanoma. EMBO Mol Med 2019; 11:emmm.201809081. [PMID: 30610113 PMCID: PMC6365926 DOI: 10.15252/emmm.201809081] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alterations in transcriptional programs promote tumor development and progression and are targetable by bromodomain and extraterminal (BET) protein inhibitors. However, in a multi‐site clinical trial testing the novel BET inhibitor, PLX51107, in solid cancer patients, liver metastases of uveal melanoma (UM) patients progressed rapidly following treatment. Mechanisms of resistance to BET inhibitors in UM are unknown. We show that fibroblast growth factor 2 (FGF2) rescued UM cells from growth inhibition by BET inhibitors, and FGF2 effects were reversible by FGF receptor (FGFR) inhibitors. BET inhibitors also increased FGFR protein expression in UM cell lines and in patient tumor samples. Hepatic stellate cells (HSCs) secrete FGF2, and HSC‐conditioned medium provided resistance of UM cells to BET inhibitors. PLX51107 was ineffective in vivo, but the combination of a FGFR inhibitor, AZD4547, and PLX51107 significantly suppressed the growth of xenograft UM tumors formed from subcutaneous inoculation of UM cells with HSCs and orthotopically in the liver. These results suggest that co‐targeting of FGFR signaling is required to increase the responses of metastatic UM to BET inhibitors.
Collapse
Affiliation(s)
- Vivian Chua
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Marlana Orloff
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jessica Lf Teh
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Takahito Sugase
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Connie Liao
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Timothy J Purwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bao Q Lam
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mizue Terai
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Grazia Ambrosini
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Richard D Carvajal
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA.,Division of Hematology/Oncology, Columbia University Medical Center, New York, NY, USA
| | - Gary Schwartz
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA.,Division of Hematology/Oncology, Columbia University Medical Center, New York, NY, USA
| | - Takami Sato
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA .,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
22
|
Piquet L, Dewit L, Schoonjans N, Millet M, Bérubé J, Gerges PRA, Bordeleau F, Landreville S. Synergic Interactions Between Hepatic Stellate Cells and Uveal Melanoma in Metastatic Growth. Cancers (Basel) 2019; 11:cancers11081043. [PMID: 31344830 PMCID: PMC6721369 DOI: 10.3390/cancers11081043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/15/2022] Open
Abstract
Uveal melanoma (UM) is a malignant intraocular tumor that spreads to the liver in half of the cases. Since hepatic cells could play a role in the therapeutic resistance of metastatic UM, the purpose of our study was to investigate the pro-invasive role of hepatic stellate cells (HSteCs) in metastatic UM at the micro- and macro-metastatic stages. We first performed an immunostaining with the alpha-smooth muscle actin (αSMA) to localize activated HSteCs in UM liver macro-metastases from four patients. Their accumulation of collagen was assessed with Masson’s Trichrome stain. Next, we inoculated metastatic UM cells alone or with human HSteCs in triple-immunodeficient mice, in order to determine if HSteCs are recruited as early as the micro-metastatic stage. The growth of metastatic foci was imaged in the liver by ex vivo fluorescence imaging. Histological analyses were performed with Masson’s Trichrome and Picrosirius Red stains, and antibodies against Melan-A and αSMA. The collagen content was measured in xenografts by quantitative polarization microscopy. In patient hepatectomy samples, activated HSteCs and their pathological matrix were localized surrounding the malignant lesions. In the mouse xenograft model, the number of hepatic metastases was increased when human HSteCs were co-inoculated. Histological analyses revealed a significant recruitment of HSteCs near the micro/macrolesions, and an increase in fibrillar collagen production. Our results show that HSteCs can provide a permissive microenvironment and might increase the therapeutic resistance of metastatic UM.
Collapse
Affiliation(s)
- Léo Piquet
- Faculté de médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada
- Centre de recherche sur le cancer de l'Université Laval, Quebec City, QC G1R 3S3, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
| | - Louise Dewit
- Centre de recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada
- Centre de recherche sur le cancer de l'Université Laval, Quebec City, QC G1R 3S3, Canada
| | - Nathan Schoonjans
- Centre de recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada
- Centre de recherche sur le cancer de l'Université Laval, Quebec City, QC G1R 3S3, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
| | - Martial Millet
- Centre de recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada
- Centre de recherche sur le cancer de l'Université Laval, Quebec City, QC G1R 3S3, Canada
| | - Julie Bérubé
- Centre de recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
| | - Peter R A Gerges
- Centre de recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada
| | - François Bordeleau
- Faculté de médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada
- Centre de recherche sur le cancer de l'Université Laval, Quebec City, QC G1R 3S3, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
| | - Solange Landreville
- Faculté de médecine, Université Laval, Quebec City, QC G1V 0A6, Canada.
- Centre de recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada.
- Centre de recherche sur le cancer de l'Université Laval, Quebec City, QC G1R 3S3, Canada.
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada.
| |
Collapse
|
23
|
van der Kooij MK, Speetjens FM, van der Burg SH, Kapiteijn E. Uveal Versus Cutaneous Melanoma; Same Origin, Very Distinct Tumor Types. Cancers (Basel) 2019; 11:E845. [PMID: 31248118 PMCID: PMC6627906 DOI: 10.3390/cancers11060845] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023] Open
Abstract
Here, we critically evaluated the knowledge on cutaneous melanoma (CM) and uveal melanoma (UM). Both cancer types derive from melanocytes that share the same embryonic origin and display the same cellular function. Despite their common origin, both CM and UM display extreme differences in their genetic alterations and biological behavior. We discuss the differences in genetic alterations, metastatic routes, tumor biology, and tumor-host interactions in the context of their clinical responses to targeted- and immunotherapy.
Collapse
Affiliation(s)
- Monique K van der Kooij
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Frank M Speetjens
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Ellen Kapiteijn
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
24
|
Croce M, Ferrini S, Pfeffer U, Gangemi R. Targeted Therapy of Uveal Melanoma: Recent Failures and New Perspectives. Cancers (Basel) 2019; 11:E846. [PMID: 31216772 PMCID: PMC6628160 DOI: 10.3390/cancers11060846] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/23/2022] Open
Abstract
Among Uveal Melanoma (UM) driver mutations, those involving GNAQ or GNA11 genes are the most frequent, while a minor fraction of tumors bears mutations in the PLCB4 or CYSLTR2 genes. Direct inhibition of constitutively active oncoproteins deriving from these mutations is still in its infancy in UM, whereas BRAFV600E-targeted therapy has obtained relevant results in cutaneous melanoma. However, UM driver mutations converge on common downstream signaling pathways such as PKC/MAPK, PI3K/AKT, and YAP/TAZ, which are presently considered as actionable targets. In addition, BAP1 loss, which characterizes UM metastatic progression, affects chromatin structure via histone H2A deubiquitylation that may be counteracted by histone deacetylase inhibitors. Encouraging results of preclinical studies targeting signaling molecules such as MAPK and PKC were unfortunately not confirmed in early clinical studies. Indeed, a general survey of all clinical trials applying new targeted and immune therapy to UM displayed disappointing results. This paper summarizes the most recent studies of UM-targeted therapies, analyzing the possible origins of failures. We also focus on hyperexpressed molecules involved in UM aggressiveness as potential new targets for therapy.
Collapse
Affiliation(s)
- Michela Croce
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | | | - Ulrich Pfeffer
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | | |
Collapse
|
25
|
Palladium based nanoparticles for the treatment of advanced melanoma. Sci Rep 2019; 9:3255. [PMID: 30824801 PMCID: PMC6397149 DOI: 10.1038/s41598-019-40258-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/16/2019] [Indexed: 12/19/2022] Open
Abstract
IGF1R and CD44 are overexpressed in most advanced melanomas so we designed chemotherapeutic nanoparticles to target those receptors. Tris(dibenzylideneacetone)dipalladium (Tris DBA-Pd) is a novel inhibitor of N-myristoyltransferase 1 (NMT-1) and has proven in vivo activity against melanoma. However, poor solubility impairs its effectiveness. To improve its therapeutic efficacy and overcome drug resistance in advanced melanomas, we synthesized Tris DBA-Pd hyaluronic acid nanoparticles (Tris DBA-Pd HANP) and evaluated them against in vivo xenografts of LM36R, an aggressive BRAF mutant human melanoma resistant to BRAF inhibitors. We treated xenografted mice in four arms: empty HANPs, free Tris DBA-Pd, Tris DBA-Pd HANPs, and Tris DBA-Pd HANPs with IGF1R antibody. The Tris DBA-Pd HANP group was the most responsive to treatment and showed the greatest depletion of CD44-positive cells on IHC. Surprisingly, the HANP containing IGF1R antibody was less effective than particles without antibody, possibly due to steric hindrance of IGF1R and CD44 binding. Tris DBA-Pd nanoparticles are an effective therapy for CD44-positive tumors like melanoma, and further development of these nanoparticles should be pursued.
Collapse
|
26
|
Falzone L, Romano GL, Salemi R, Bucolo C, Tomasello B, Lupo G, Anfuso CD, Spandidos DA, Libra M, Candido S. Prognostic significance of deregulated microRNAs in uveal melanomas. Mol Med Rep 2019; 19:2599-2610. [PMID: 30816460 PMCID: PMC6423615 DOI: 10.3892/mmr.2019.9949] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/05/2019] [Indexed: 02/07/2023] Open
Abstract
Uveal melanoma (UM) represents the most frequent primary tumor of the eye. Despite the development of new drugs and screening programs, the prognosis of patients with UM remains poor and no effective prognostic biomarkers are yet able to identify high-risk patients. Therefore, in the present study, microRNA (miRNA or miR) expression data, contained in the TCGA UM (UVM) database, were analyzed in order to identify a set of miRNAs with prognostic significance to be used as biomarkers in clinical practice. Patients were stratified into 2 groups, including tumor stage (high-grade vs. low-grade) and status (deceased vs. alive); differential analyses of miRNA expression among these groups were performed. A total of 20 deregulated miRNAs for each group were identified. In total 7 miRNAs were common between the groups. The majority of common miRNAs belonged to the miR-506-514 cluster, known to be involved in UM development. The prognostic value of the 20 selected miRNAs related to tumor stage was assessed. The deregulation of 12 miRNAs (6 upregulated and 6 downregulated) was associated with a worse prognosis of patients with UM. Subsequently, miRCancerdb and microRNA Data Integration Portal bioinformatics tools were used to identify a set of genes associated with the 20 miRNAs and to establish their interaction levels. By this approach, 53 different negatively and positively associated genes were identified. Finally, DIANA-mirPath prediction pathway and Gene Ontology enrichment analyses were performed on the lists of genes previously generated to establish their functional involvement in biological processes and molecular pathways. All the miRNAs and genes were involved in molecular pathways usually altered in cancer, including the mitogen-activated protein kinase (MAPK) pathway. Overall, the findings of the presents study demonstrated that the miRNAs of the miR-506-514 cluster, hsa-miR-592 and hsa-miR-199a-5p were the most deregulated miRNAs in patients with high-grade disease compared to those with low-grade disease and were strictly related to the overall survival (OS) of the patients. However, further in vitro and translational approaches are required to validate these preliminary findings.
Collapse
Affiliation(s)
- Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giovanni L Romano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rossella Salemi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Barbara Tomasello
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Carmelina D Anfuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|
27
|
Jo DH, Kim JH, Kim JH. Targeting tyrosine kinases for treatment of ocular tumors. Arch Pharm Res 2018; 42:305-318. [PMID: 30470974 DOI: 10.1007/s12272-018-1094-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 11/19/2018] [Indexed: 01/09/2023]
Abstract
Uveal melanoma is the most common intraocular primary malignant tumor in adults, and retinoblastoma is the one in children. Current mainstay treatment options include chemotherapy using conventional drugs and enucleation, the total removal of the eyeball. Targeted therapies based on profound understanding of molecular mechanisms of ocular tumors may increase the possibility of preserving the eyeball and the vision. Tyrosine kinases, which modulate signaling pathways regarding various cellular functions including proliferation, differentiation, and attachment, are one of the attractive targets for targeted therapies against uveal melanoma and retinoblastoma. In this review, the roles of both types of tyrosine kinases, receptor tyrosine kinases and non-receptor tyrosine kinases, were summarized in relation with ocular tumors. Although the conventional treatment options for uveal melanoma and retinoblastoma are radiotherapy and chemotherapy, respectively, specific tyrosine kinase inhibitors will enhance our armamentarium against them by controlling cancer-associated signaling pathways related to tyrosine kinases. This review can be a stepping stone for widening treatment options and realizing targeted therapies against uveal melanoma and retinoblastoma.
Collapse
Affiliation(s)
- Dong Hyun Jo
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.,Tumor Microenvironment Research Center, Global Core Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin Hyoung Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.,Tumor Microenvironment Research Center, Global Core Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea. .,Tumor Microenvironment Research Center, Global Core Research Center, Seoul National University, Seoul, 08826, Republic of Korea. .,Department of Ophthalmology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
28
|
Park JJ, Diefenbach RJ, Joshua AM, Kefford RF, Carlino MS, Rizos H. Oncogenic signaling in uveal melanoma. Pigment Cell Melanoma Res 2018; 31:661-672. [DOI: 10.1111/pcmr.12708] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 12/14/2022]
Affiliation(s)
- John J. Park
- Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Macquarie University; Sydney New South Wales Australia
- Melanoma Institute Australia; Sydney New South Wales Australia
| | - Russell J. Diefenbach
- Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Macquarie University; Sydney New South Wales Australia
- Melanoma Institute Australia; Sydney New South Wales Australia
| | - Anthony M. Joshua
- Melanoma Institute Australia; Sydney New South Wales Australia
- Kinghorn Cancer Centre; St Vincent’s Hospital; Sydney New South Wales Australia
| | - Richard F. Kefford
- Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Macquarie University; Sydney New South Wales Australia
- Melanoma Institute Australia; Sydney New South Wales Australia
- Department of Medical Oncology; Crown Princess Mary Cancer Centre; Westmead and Blacktown Hospitals; Sydney New South Wales Australia
| | - Matteo S. Carlino
- Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Macquarie University; Sydney New South Wales Australia
- Melanoma Institute Australia; Sydney New South Wales Australia
- Department of Medical Oncology; Crown Princess Mary Cancer Centre; Westmead and Blacktown Hospitals; Sydney New South Wales Australia
| | - Helen Rizos
- Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Macquarie University; Sydney New South Wales Australia
- Melanoma Institute Australia; Sydney New South Wales Australia
| |
Collapse
|
29
|
Adjuvant Sunitinib in High-Risk Patients with Uveal Melanoma. Ophthalmology 2018; 125:210-217. [DOI: 10.1016/j.ophtha.2017.08.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 12/12/2022] Open
|
30
|
The transcription factor RUNX2 regulates receptor tyrosine kinase expression in melanoma. Oncotarget 2018; 7:29689-707. [PMID: 27102439 PMCID: PMC5045426 DOI: 10.18632/oncotarget.8822] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
Receptor tyrosine kinases-based autocrine loops largely contribute to activate the MAPK and PI3K/AKT pathways in melanoma. However, the molecular mechanisms involved in generating these autocrine loops are still largely unknown. In the present study, we examine the role of the transcription factor RUNX2 in the regulation of receptor tyrosine kinase (RTK) expression in melanoma. We have demonstrated that RUNX2-deficient melanoma cells display a significant decrease in three receptor tyrosine kinases, EGFR, IGF-1R and PDGFRβ. In addition, we found co-expression of RUNX2 and another RTK, AXL, in both melanoma cells and melanoma patient samples. We observed a decrease in phosphoAKT2 (S474) and phosphoAKT (T308) levels when RUNX2 knock down resulted in significant RTK down regulation. Finally, we showed a dramatic up regulation of RUNX2 expression with concomitant up-regulation of EGFR, IGF-1R and AXL in melanoma cells resistant to the BRAF V600E inhibitor PLX4720. Taken together, our results strongly suggest that RUNX2 might be a key player in RTK-based autocrine loops and a mediator of resistance to BRAF V600E inhibitors involving RTK up regulation in melanoma.
Collapse
|
31
|
Kageyama K, Ohara M, Saito K, Ozaki S, Terai M, Mastrangelo MJ, Fortina P, Aplin AE, Sato T. Establishment of an orthotopic patient-derived xenograft mouse model using uveal melanoma hepatic metastasis. J Transl Med 2017. [PMID: 28645290 PMCID: PMC5481921 DOI: 10.1186/s12967-017-1247-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background Metastatic uveal melanoma is a highly fatal disease; most patients die from their hepatic metastasis within 1 year. A major drawback in the development of new treatments for metastatic uveal melanoma is the difficulty in obtaining appropriate cell lines and the lack of appropriate animal models. Patient-derived xenograft (PDX) tumor models, bearing ectopically implanted tumors at a subcutaneous site, have been developed. However, these ectopically implanted PDX models have obstacles to translational research, including a low engraftment rate, slow tumor growth, and biological changes after multiple passages due to the different microenvironment. To overcome these limitations, we developed a new method to directly transplant biopsy specimens to the liver of immunocompromised mice. Results By using two metastatic uveal melanoma cell lines, we demonstrated that the liver provides a more suitable microenvironment for tumor growth compared to subcutaneous sites and that surgical orthotopic implantation (SOI) of tumor pieces allows the creation of a liver tumor in immunocompromised mice. Subsequently, 10 of 12 hepatic metastasis specimens from patients were successfully xenografted into the immunocompromised mice (83.3% success rate) using SOI, including 8 of 10 needle biopsy specimens (80%). Additionally, four cryopreserved PDX tumors were re-implanted to new mice and re-establishment of PDX tumors was confirmed in all four mice. The serially passaged xenograft tumors as well as the re-implanted tumors after cryopreservation were similar to the original patient tumors in histologic, genomic, and proteomic expression profiles. CT imaging was effective for detecting and monitoring PDX tumors in the liver of living mice. The expression of Ki67 in original patient tumors was a predictive factor for implanted tumor growth and the success of serial passages in PDX mice. Conclusions Surgical orthotopic implantation of hepatic metastasis from uveal melanoma is highly successful in the establishment of orthotopic PDX models, enhancing their practical utility for research applications. By using CT scan, tumor growth can be monitored, which is beneficial to evaluate treatment effects in interventional studies. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1247-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ken Kageyama
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, 19107, USA.,Department of Radiology, Osaka City University, 1-4-3 Asahimachi Abenoku, Osaka, Osaka, 545-8585, Japan
| | - Masahiro Ohara
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, 19107, USA
| | - Kengo Saito
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, 19107, USA
| | - Shinji Ozaki
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, 19107, USA.,Department of Surgery, National Hospital Organization, Kure Medical Center/Chugoku Cancer Center, 3-1 Aoyamacho Kure, Hiroshima, 737-0023, Japan
| | - Mizue Terai
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, 19107, USA
| | - Michael J Mastrangelo
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, 19107, USA
| | - Paolo Fortina
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, 19107, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, 19107, USA
| | - Takami Sato
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, 19107, USA.
| |
Collapse
|
32
|
Basu R, Wu S, Kopchick JJ. Targeting growth hormone receptor in human melanoma cells attenuates tumor progression and epithelial mesenchymal transition via suppression of multiple oncogenic pathways. Oncotarget 2017; 8:21579-21598. [PMID: 28223541 PMCID: PMC5400608 DOI: 10.18632/oncotarget.15375] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/24/2017] [Indexed: 12/12/2022] Open
Abstract
Recent reports have confirmed highest levels of growth hormone (GH) receptor (GHR) transcripts in melanoma, one of the most aggressive forms of human cancer. Yet the mechanism of GH action in melanoma remains mostly unknown. Here, using human malignant melanoma cells, we examined the effects of GH excess or siRNA mediated GHR knock-down (GHRKD) on tumor proliferation, migration and invasion. GH promoted melanoma progression while GHRKD attenuated the same. Western blot analysis revealed drastic modulation of multiple oncogenic signaling pathways (JAK2, STAT1, STAT3, STAT5, AKT, mTOR, SRC and ERK1/2) following addition of GH or GHRKD. Further, we show that GH excess upregulates expression of markers of epithelial mesenchymal transition in human melanoma, while the effects were reversed by GHRKD. Interestingly, we observed consistent expression of GH transcript in the melanoma cells as well as marked modulation of the IGF receptors and binding proteins (IGF1R, IGF2R, IR, IGFBP2, IGFBP3) and the oncogenic HGF-MET mRNA, in response to excess GH or GHRKD. Our study thus identifies the mechanistic model of GH-GHR action in human melanoma and validates it as an important pharmacological target of intervention.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
- Molecular and Cell Biology Program, Ohio University, Athens, Ohio, USA
| | - Shiyong Wu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
- Molecular and Cell Biology Program, Ohio University, Athens, Ohio, USA
| | - John J. Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
- Molecular and Cell Biology Program, Ohio University, Athens, Ohio, USA
- Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio, USA
| |
Collapse
|
33
|
Cheng H, Chua V, Liao C, Purwin TJ, Terai M, Kageyama K, Davies MA, Sato T, Aplin AE. Co-targeting HGF/cMET Signaling with MEK Inhibitors in Metastatic Uveal Melanoma. Mol Cancer Ther 2017; 16:516-528. [PMID: 28138035 PMCID: PMC5337170 DOI: 10.1158/1535-7163.mct-16-0552] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 12/28/2022]
Abstract
Patients with metastatic uveal melanoma usually die within 1 year of diagnosis, emphasizing an urgent need to develop new treatment strategies. The liver is the most common site of metastasis. Mitogen-activated protein kinase kinase (MEK) inhibitors improve survival in V600 BRAF-mutated cutaneous melanoma patients but have limited efficacy in patients with uveal melanoma. Our previous work showed that hepatocyte growth factor (HGF) signaling elicits resistance to MEK inhibitors in metastatic uveal melanoma. In this study, we demonstrate that expression of two BH3-only family proteins, Bim-EL and Bmf, contributes to HGF-mediated resistance to MEK inhibitors. Targeting HGF/cMET signaling with LY2875358, a neutralizing and internalizing anti-cMET bivalent antibody, and LY2801653, a dual cMET/RON inhibitor, overcomes resistance to trametinib provided by exogenous HGF and by conditioned medium from primary hepatic stellate cells. We further determined that activation of PI3Kα/γ/δ isoforms mediates the resistance to MEK inhibitors by HGF. Combination of LY2801653 with trametinib decreases AKT phosphorylation and promotes proapoptotic PARP cleavage in metastatic uveal melanoma explants. Together, our data support the notion that selectively blocking cMET signaling or PI3K isoforms in metastatic uveal melanoma may break the intrinsic resistance to MEK inhibitors provided by factors from stromal cells in the liver. Mol Cancer Ther; 16(3); 516-28. ©2017 AACR.
Collapse
Affiliation(s)
- Hanyin Cheng
- Department of Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Vivian Chua
- Department of Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Connie Liao
- Department of Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Timothy J Purwin
- Department of Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mizue Terai
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ken Kageyama
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Takami Sato
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrew E Aplin
- Department of Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
34
|
Serum adiponectin, insulin resistance, and uveal melanoma: clinicopathological correlations. Melanoma Res 2017; 26:164-72. [PMID: 26630661 DOI: 10.1097/cmr.0000000000000226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To investigate the status of insulin resistance, metabolic syndrome, dyslipidemia, and serum adiponectin levels in patients with uveal melanoma and choroidal nevus were investigated. Our study included 86 patients with uveal melanoma, 38 patients with choroidal nevus, and 86 controls. Uveal melanomas were classified as small, medium, and large on the basis of Collaborative Ocular Melanoma Study (COMS) criteria. Patients with uveal melanoma had significantly higher homeostatic model assessment scores compared with patients with choroidal nevus (P<0.001). Patients with uveal melanoma and choroidal nevus had significantly lower levels of serum adiponectin compared with controls (P<0.001). Patients with uveal melanoma who developed systemic metastases had significantly lower levels of serum adiponectin levels compared with patients with nonmetastases during follow-up (P=0.018). When the largest tumors (COMS III) were compared, ciliary body melanomas were associated with significantly lower levels of serum adiponectin than choroidal melanomas. In patients who were treated with enucleation, epitheloid predominant and mixed cell-type tumors were associated with lower levels of serum adiponectin compared with tumors with spindle cell type, but this did not reach statistical significance. By providing an antiapoptotic and proangiogenic environment, low serum adiponectin levels and insulin resistance may play a role in promoting the growth of uveal melanocytic tumors and may contribute toward a more aggressive clinical course, adversely affecting the prognosis.
Collapse
|
35
|
Elucidating the role of the FoxO3a transcription factor in the IGF-1-induced migration and invasion of uveal melanoma cancer cells. Biomed Pharmacother 2016; 84:1538-1550. [DOI: 10.1016/j.biopha.2016.11.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/27/2016] [Accepted: 11/08/2016] [Indexed: 01/20/2023] Open
|
36
|
Saakyan SV, Khoroshilova-Maslova IP, Tsygankov АY, Amiryan АG, Isaeva RТ. [Pathological and molecular genetic characteristics in patients with extrabulbar growth of uveal melanoma]. Arkh Patol 2016; 78:20-26. [PMID: 27600778 DOI: 10.17116/patol201678420-26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM to analyze the association of extrabulbar tumor growth with pathological and molecular genetic changes in patients with uveal melanoma (UM). SUBJECTS AND METHODS A total of 134 UM patients aged 22 to 84 years were examined and treated. The mean height of the tumor was 9.2±2.9 mm; the diameter of its base was 15.3±3.5 mm. Enucleation of the affected eye was performed in 97.8% of cases. Spindle-cell (n=61 (45.6%)), mixed cell (n=46 (34.3%)), and epithelioid cell (n=27 (20.1%)) tumors were identified according to their histological structure. Polymerase chain reaction-restriction fragment length polymorphism analysis was used to determine full and partial monosomy of chromosome 3, deletion of the short arm of chromosome 1, and RASSF1A gene methylation (n=134). The patients were divided into two groups: 1) those with extrabulbar growth (EG) (n=12) and 2) those without EG (n=122). RESULTS There was a topographic association between the tumor invasion zone and the largest area of exit of the scleral vessels, along which the tumor invaded: the anterior and posterior segments of the eyeball. The specific features of the invasion pattern of UM were shown: there was its broader invasion in the posterior segment and thinner growing tissue interlayers in the anterior segment. Two UM types stopping the process of UM invasion through the scleral fibrous tunic of the eye were established: 1) that with nodule formation and 2) that with tumor cell dissemination within the episclera. The cellular composition of growing tumor tissue in the episclera was ascertained to differ from the main UM focus in the choroid towards its more atypization. The rate was shown to be significantly lower (20% versus 47.9% for the relatively favorable spindle cell type of UM) in the EG group. The frequency of full or partial chromosome 3 monosomy was significantly higher in the extrabulbar tumor growth group (80% versus 50.4%). CONCLUSION The morphological features of the EG of UM were defined. The use of a statistically significant sample of patients with UM confirmed the favorable course of the tumor in its spindle cell type and the negative role of chromosome 3 monosomy, as well as the relationship to extrabulbar tumor growth.
Collapse
Affiliation(s)
- S V Saakyan
- Helmholz Moscow Research Institute of Eye Diseases, Ministry of Health of Russia, Moscow,A.I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of Russia, Moscow
| | | | - А Yu Tsygankov
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of Russia, Moscow
| | - А G Amiryan
- Helmholz Moscow Research Institute of Eye Diseases, Ministry of Health of Russia, Moscow
| | - R Т Isaeva
- Helmholz Moscow Research Institute of Eye Diseases, Ministry of Health of Russia, Moscow
| |
Collapse
|
37
|
Li WQ, Cho E, Han J, Weinstock MA, Qureshi AA. Male pattern baldness and risk of incident skin cancer in a cohort of men. Int J Cancer 2016; 139:2671-2678. [PMID: 27542665 DOI: 10.1002/ijc.30395] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/25/2016] [Accepted: 08/15/2016] [Indexed: 01/26/2023]
Abstract
We examined the association between male-pattern baldness and risk of incident skin cancer, including invasive melanoma, invasive squamous cell carcinoma (SCC), and basal cell carcinoma (BCC) in a prospective analysis, based on 36,032 participants from the Health Professionals' Follow-up Study. In 1992, participants reported their status of male-pattern baldness at age 45 years by choosing from five crown-view pictograms based on Norwood's classification. Diagnosis of skin cancers was reported biennially and information on melanoma and SCC was pathologically confirmed. We identified 327 melanoma cases, 1324 SCC cases, and 8438 BCC cases during the follow-up. Male-pattern baldness was not significantly associated with risk of incident melanoma, but was significantly associated with increased risk of SCC and BCC. The multivariate-adjusted hazard ratio (HR) (95% confidence interval, CI) for the highest category of baldness (frontal plus severe vertex baldness) was 1.33 (1.06-1.68) for SCC (ptrend = 0.001) and 1.23 (1.12-1.35) for BCC (ptrend < 0.0001), compared with no baldness. Analyses by body sites found significant associations between frontal plus moderate to severe vertex baldness and risk of melanoma (HR = 1.83, 95% CI: 1.01-3.34) and SCC (HR = 1.30, 95% CI: 1.02-1.66) at head and neck. The associations were particularly stronger for scalp melanoma (HR = 7.15, 95% CI: 1.29-39.42) and scalp SCC (HR = 7.09, 95% CI: 3.84-13.08), but not for non-scalp head and neck sites. Information on body sites was not available for BCC. In conclusion, male pattern baldness may be associated with increased risk of skin cancer, but the associations may only exist for those occurring at head and neck, particularly at scalp.
Collapse
Affiliation(s)
- Wen-Qing Li
- Department of Dermatology, Brown University, Warren Alpert Medical School, Providence, RI. .,Department of Epidemiology, School of Public Health, Brown University, Providence, RI.
| | - Eunyoung Cho
- Department of Dermatology, Brown University, Warren Alpert Medical School, Providence, RI.,Department of Epidemiology, School of Public Health, Brown University, Providence, RI.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jiali Han
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN.,Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN
| | - Martin A Weinstock
- Department of Dermatology, Brown University, Warren Alpert Medical School, Providence, RI.,Department of Epidemiology, School of Public Health, Brown University, Providence, RI.,Center for Dermatoepidemiology, VA Medical Center, Providence, RI.,Department of Dermatology, Rhode Island Hospital, Providence, RI
| | - Abrar A Qureshi
- Department of Dermatology, Brown University, Warren Alpert Medical School, Providence, RI.,Department of Epidemiology, School of Public Health, Brown University, Providence, RI.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Department of Dermatology, Rhode Island Hospital, Providence, RI
| |
Collapse
|
38
|
Ozaki S, Vuyyuru R, Kageyama K, Terai M, Ohara M, Cheng H, Manser T, Mastrangelo MJ, Aplin AE, Sato T. Establishment and Characterization of Orthotopic Mouse Models for Human Uveal Melanoma Hepatic Colonization. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:43-56. [PMID: 26613897 DOI: 10.1016/j.ajpath.2015.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/07/2015] [Accepted: 09/17/2015] [Indexed: 01/25/2023]
Abstract
Uveal melanoma (UM) is a rare type of melanoma, although it is the most common primary ocular malignant tumor in adults. Nearly one-half the patients with primary UM subsequently develop systemic metastasis, preferentially to the liver. Currently, no treatment is effective for UM hepatic metastasis, and the prognosis is universally poor. The main challenge in designing a treatment strategy for UM hepatic metastasis is the lack of suitable animal models. We developed two orthotopic mouse models for human UM hepatic metastases: direct hepatic implantation model (intrahepatic dissemination model) and splenic-implantation model (hematogenous dissemination model) and investigated the tumorgenesis in the liver. A human UM cell line, established from a hepatic metastasis and nonobese diabetic severe combined immunodeficient γ mice, were used for development of in vivo tumor models. In the direct hepatic implantation model, a localized tumor developed in the liver in all cases and intrahepatic dissemination was subsequently seen in about one-half of cases. However, in the splenic implantation model, multiple hepatic metastases were observed after splenic implantation. Hepatic tumors subsequently seeded intra-abdominal metastasis; however, lung metastases were not seen. These findings are consistent with those observed in human UM hepatic metastases. These orthotopic mouse models offer useful tools to investigate the biological behavior of human UM cells in the liver.
Collapse
Affiliation(s)
- Shinji Ozaki
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Breast Surgery, National Hospital Organization, Kure Medical Center/Chugoku Cancer Center, Kure-shi, Japan
| | - Raja Vuyyuru
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ken Kageyama
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mizue Terai
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Masahiro Ohara
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hanyin Cheng
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Tim Manser
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Michael J Mastrangelo
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrew E Aplin
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Takami Sato
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
39
|
Arterial Blood, Rather Than Venous Blood, is a Better Source for Circulating Melanoma Cells. EBioMedicine 2015; 2:1821-6. [PMID: 26870807 PMCID: PMC4740300 DOI: 10.1016/j.ebiom.2015.09.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/07/2015] [Accepted: 09/11/2015] [Indexed: 12/21/2022] Open
Abstract
Background CTCs provide prognostic information and their application is under investigation in multiple tumor types. Of the multiple variables inherent in any such process, none is more important to outcome than the appropriateness of the sample source. To address this question, we investigated CTCs in paired peripheral venous and arterial blood specimens obtained from stage IV uveal melanoma patients. Methods Blood specimens were obtained from both common femoral arteries and antecubital veins in 17 uveal melanoma patients with multiple hepatic metastases for CTC measurements. Finding CTCs were detectable with greater frequency (100%) and in larger numbers (median 5, range 1 to 168) in all arterial blood specimens than in venous samples (52.9%; median 1, range 0 to 8). Patients with hepatic as well as extra-hepatic metastasis showed higher number of arterial CTCs, compared to patients with liver-only metastasis (p = 0.003). There was no significant association between the number of arterial CTCs and the tumor burden within the liver in patients who had liver-only metastases. Interpretation Our data indicate that arterial blood specimens might be a better source of circulating uveal melanoma cells. Although less conveniently processed, perhaps arterial blood should be evaluated as sample source for measurement of CTCs. CTCs were detectable in 100% of arterial blood obtained from metastatic uveal melanoma patients, while only 53% of venous blood was positive for CTCs.
CTCs have been investigated to provide prognostic information in multiple tumor types. Of the multiple variables, none is more important than the appropriateness of the sample source. Blood specimens were obtained from both femoral arteries and antecubital veins in 17 uveal melanoma patients with multiple hepatic metastases. CTCs were detectable with greater frequency (100%) and in larger numbers in all arterial blood specimens than in venous samples (52.9%). Our data indicate that arterial blood specimens might be a better source of circulating uveal melanoma cells. Although less convenient, arterial blood should be evaluated as sample source for measurement of CTCs.
Collapse
Key Words
- AKTi, AKT inhibitor
- Ab, antibody
- Arterial venous
- BCNU, bischlorethylnitrosourea
- CTC count
- Circulating tumor cells
- DEBDOX, drug-eluting beads with doxorubicin
- EDTA, ethylenediaminetetraacetic acid
- HMW-MAA, high molecular weight melanoma associated antigen
- Hepatic metastasis
- Ipi, ipilimumab
- LN, lymph node
- MEKi, MEK inhibitor
- METi, MET inhibitor;
- Peripheral venous
- TACE, transarterial chemoembolization
- Uveal melanoma
- VPA, valproic acid
- XRT, radiation therapy
Collapse
|
40
|
Cheng H, Terai M, Kageyama K, Ozaki S, McCue PA, Sato T, Aplin AE. Paracrine Effect of NRG1 and HGF Drives Resistance to MEK Inhibitors in Metastatic Uveal Melanoma. Cancer Res 2015; 75:2737-48. [PMID: 25952648 DOI: 10.1158/0008-5472.can-15-0370] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/24/2015] [Indexed: 12/18/2022]
Abstract
Uveal melanoma patients with metastatic disease usually die within one year, emphasizing an urgent need to develop new treatment strategies for this cancer. MEK inhibitors improve survival in cutaneous melanoma patients but show only modest efficacy in metastatic uveal melanoma patients. In this study, we screened for growth factors that elicited resistance in newly characterized metastatic uveal melanoma cell lines to clinical-grade MEK inhibitors, trametinib and selumetinib. We show that neuregulin 1 (NRG1) and hepatocyte growth factor (HGF) provide resistance to MEK inhibition. Mechanistically, trametinib enhances the responsiveness to NRG1 and sustained HGF-mediated activation of AKT. Individually targeting ERBB3 and cMET, the receptors for NRG1 and HGF, respectively, overcome resistance to trametinib provided by these growth factors and by conditioned medium from fibroblasts that produce NRG1 and HGF. Inhibition of AKT also effectively reverses the protective effect of NRG1 and HGF in trametinib-treated cells. Uveal melanoma xenografts growing in the liver in vivo and a subset of liver metastases of uveal melanoma patients express activated forms of ERBB2 (the coreceptor for ERBB3) and cMET. Together, these results provide preclinical evidence for the use of MEK inhibitors in combination with clinical-grade anti-ERBB3 or anti-cMET monoclonal antibodies in metastatic uveal melanoma.
Collapse
Affiliation(s)
- Hanyin Cheng
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mizue Terai
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ken Kageyama
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shinji Ozaki
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Peter A McCue
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Takami Sato
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrew E Aplin
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
41
|
Francis JH, Abramson DH. Update on Ophthalmic Oncology 2013: Retinoblastoma and Uveal Melanoma. Asia Pac J Ophthalmol (Phila) 2014; 3:241-56. [PMID: 26107765 DOI: 10.1097/apo.0000000000000079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The aim of this study was to discuss the clinical and translational content of the literature as well as advancement in our knowledge pertaining to retinoblastoma and uveal melanoma that were published from January to December 2013. DESIGN This study is a literature review. METHODS The search terms retinoblastoma and uveal melanoma were used in a MEDLINE literature search. Abstracts were studied, and the most relevant articles were selected for inclusion and further in-depth review. RESULTS In retinoblastoma, fewer eyes are lost because of the expanded use of ophthalmic artery chemosurgery and intravitreal melphalan, and the past year marks a deepening in our understanding of these modalities. Knowledge on the genetic underpinnings of uveal melanoma has broadened to include genes associated with a favorable prognosis. This is accompanied by promising results in the treatment of metastatic uveal melanoma. CONCLUSIONS This past year, there were important advancements in our knowledge of retinoblastoma and uveal melanoma.
Collapse
Affiliation(s)
- Jasmine H Francis
- From the Ophthalmic Oncology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | | |
Collapse
|