1
|
Yamaguchi HL, Yamaguchi Y, Peeva E. Hair regrowth in alopecia areata and re-pigmentation in vitiligo in response to treatment: Commonalities and differences. J Eur Acad Dermatol Venereol 2025; 39:498-511. [PMID: 39258892 PMCID: PMC11851261 DOI: 10.1111/jdv.20311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/02/2024] [Indexed: 09/12/2024]
Abstract
Both alopecia areata (AA) and vitiligo share common pathogenesis involving, interferon-γ (IFN-γ) and interleukin-15 (IL-15) signalling pathways that activate cytotoxic CD8+ T lymphocytes. These shared mechanisms may explain why both diseases respond to currently available treatments (e.g. topical/systemic corticosteroid) and emerging treatment modalities. As compared with the speed of re-pigmentation in vitiligo lesions, the regeneration of pigmented terminal hair follicles in AA lesions appears fast in response to treatments targeting the inhibition of the Janus kinases (JAKs) and other kinases. We summarize the commonalities and differences between AA and vitiligo focusing on the treatment modalities, followed by recent findings associated with hair follicle stem cells (HFSC) in hair bulge (HBg) and melanocyte stem cells (McSC) in HBg and hair germ (HGm). We then discuss how HFSC and HGm-McSC are involved in the initiation of anagen phase, followed by pigmented terminal hair regrowth in the recovering AA lesions in association with immunology. We also discuss how HBg-McSC contribute to the migration of fully dendritic mature melanocytes into interfollicular epidermis and the equal distribution of melanin in recovering vitiligo lesions. Finally, we present four hypotheses to elucidate the delayed distribution of melanin by mature melanocytes in depigmented vitiligo lesions from the aspects of stem cell biology, as compared with quick hair recovery in AA: (1) McSC are less abundant than HFSC. (2) McSC require a long travel, whereas HFSC reside close to hair regeneration trigger point. (3) Keratinocyte scaffold to accept melanin is not well preserved, whereas scaffold for hair regrowth is well preserved. (4) Inhibitors targeting JAKs and other kinases have less direct effects on melanocyte proliferation and differentiation in vitiligo than hair regrowth in AA. Our review provides an overview of treatment modalities and bridges the gap between scientific advancement and clinical practice in AA and vitiligo management.
Collapse
Affiliation(s)
| | - Yuji Yamaguchi
- Inflammation & Immunology Research UnitPfizerCollegevillePennsylvaniaUSA
| | - Elena Peeva
- Inflammation & Immunology Research UnitPfizerCambridgeMassachusettsUSA
| |
Collapse
|
2
|
Brombin A, Patton EE. Melanocyte lineage dynamics in development, growth and disease. Development 2024; 151:dev201266. [PMID: 39092608 DOI: 10.1242/dev.201266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Melanocytes evolved to produce the melanin that gives colour to our hair, eyes and skin. The melanocyte lineage also gives rise to melanoma, the most lethal form of skin cancer. The melanocyte lineage differentiates from neural crest cells during development, and most melanocytes reside in the skin and hair, where they are replenished by melanocyte stem cells. Because the molecular mechanisms necessary for melanocyte specification, migration, proliferation and differentiation are co-opted during melanoma initiation and progression, studying melanocyte development is directly relevant to human disease. Here, through the lens of advances in cellular omic and genomic technologies, we review the latest findings in melanocyte development and differentiation, and how these developmental pathways become dysregulated in disease.
Collapse
Affiliation(s)
- Alessandro Brombin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - E Elizabeth Patton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
3
|
Abstract
Over the past decade, melanoma has led the field in new cancer treatments, with impressive gains in on-treatment survival but more modest improvements in overall survival. Melanoma presents heterogeneity and transcriptional plasticity that recapitulates distinct melanocyte developmental states and phenotypes, allowing it to adapt to and eventually escape even the most advanced treatments. Despite remarkable advances in our understanding of melanoma biology and genetics, the melanoma cell of origin is still fiercely debated because both melanocyte stem cells and mature melanocytes can be transformed. Animal models and high-throughput single-cell sequencing approaches have opened new opportunities to address this question. Here, we discuss the melanocytic journey from the neural crest, where they emerge as melanoblasts, to the fully mature pigmented melanocytes resident in several tissues. We describe a new understanding of melanocyte biology and the different melanocyte subpopulations and microenvironments they inhabit, and how this provides unique insights into melanoma initiation and progression. We highlight recent findings on melanoma heterogeneity and transcriptional plasticity and their implications for exciting new research areas and treatment opportunities. The lessons from melanocyte biology reveal how cells that are present to protect us from the damaging effects of ultraviolet radiation reach back to their origins to become a potentially deadly cancer.
Collapse
Affiliation(s)
- Patricia P Centeno
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Valeria Pavet
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Richard Marais
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK.
- Oncodrug Ltd, Alderly Park, Macclesfield, UK.
| |
Collapse
|
4
|
Fessé P, Nyman J, Hermansson I, Book ML, Ahlgren J, Turesson I. Human cutaneous interfollicular melanocytes differentiate temporarily under genotoxic stress. iScience 2022; 25:105238. [PMID: 36274944 PMCID: PMC9579029 DOI: 10.1016/j.isci.2022.105238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 12/05/2022] Open
Abstract
DNA-damage response of cutaneous interfollicular melanocytes to fractionated radiotherapy was investigated by immunostaining of tissue sections from punch biopsies collected before, during, and after the treatment of patients for breast cancer. Our clinical assay with sterilized hair follicles, excluded the migration of immature melanocytes from the bulge, and highlighted interfollicular melanocytes as an autonomous self-renewing population. About thirty percent are immature. Surrounding keratinocytes induced and maintained melanocyte differentiation as long as treatment was ongoing. Concomitant with differentiation, melanocytes were protected from apoptosis by transient upregulation of Bcl-2 and CXCR2. CXCR2 upregulation also indicated the instigation of premature senescence, preventing proliferation. The stem cell factor BMI1 was constitutively expressed exclusively in interfollicular melanocytes and further upregulated upon irradiation. BMI1 prevents apoptosis, terminal differentiation, and premature senescence, allowing dedifferentiation post-treatment, by suppressing the p53/p21-and p16-mediated response and upregulating CXCR2 to genotoxic damage. The pre-treatment immature subset of interfollicular melanocytes was restored after the exposure ended.
Collapse
Affiliation(s)
- Per Fessé
- Centre for Research and Development, Uppsala University/Region Gävleborg, Gävle, Sweden
- Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology, Uppsala University, Uppsala, Sweden
| | - Jan Nyman
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingegerd Hermansson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maj-Lis Book
- Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology, Uppsala University, Uppsala, Sweden
| | - Johan Ahlgren
- Department of Oncology, Faculty of Medicine and Health, Örebro University, Örebro Sweden
| | - Ingela Turesson
- Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Understanding Mammalian Hair Follicle Ecosystems by Single-Cell RNA Sequencing. Animals (Basel) 2022; 12:ani12182409. [PMID: 36139270 PMCID: PMC9495062 DOI: 10.3390/ani12182409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/28/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Single-cell sequencing technology can reflect cell population heterogeneity at the single-cell level, leading to a better understanding of the role of individual cells in the microenvironment. Over the past few years, single-cell sequencing technology has not only made more new discoveries in the study of cellular heterogeneity of other rare cells such as stem cells, but has also become the most powerful research method for embryonic development, organ differentiation, cancer occurrence, and cell mapping. In this review, we outline the use of scRNA-seq in hair follicles. In particular, by focusing on landmark studies and the recent discovery of novel subpopulations of hair follicles, we summarize the phenotypic diversity of hair follicle cells and their links to hair follicle morphogenesis. Enhancing our understanding of the progress of hair follicle research will help to elucidate the regulatory mechanisms that determine the fate of different types of cells in the hair follicle, thereby guiding hair loss treatment and hair-producing economic animal breeding research. Abstract Single-cell sequencing technology can fully reflect the heterogeneity of cell populations at the single cell level, making it possible for us to re-recognize various tissues and organs. At present, the sequencing study of hair follicles is transiting from the traditional ordinary transcriptome level to the single cell level, which will provide diverse insights into the function of hair follicle cells. This review focuses on research advances in the hair follicle microenvironment obtained from scRNA-seq studies of major cell types in hair follicle development, with a special emphasis on the discovery of new subpopulations of hair follicles by single-cell techniques. We also discuss the problems and current solutions in scRNA-seq observation and look forward to its prospects.
Collapse
|
6
|
Baess SC, Burkhart AK, Cappello S, Graband A, Seré K, Zenke M, Niemann C, Iden S. Lrig1- and Wnt-dependent niches dictate segregation of resident immune cells and melanocytes in murine tail epidermis. Development 2022; 149:275959. [PMID: 35815643 PMCID: PMC9382897 DOI: 10.1242/dev.200154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 06/13/2022] [Indexed: 11/20/2022]
Abstract
The barrier-forming, self-renewing mammalian epidermis comprises keratinocytes, pigment-producing melanocytes and resident immune cells as first-line host defense. In murine tail skin, interfollicular epidermis patterns into pigmented ‘scale’ and hypopigmented ‘interscale’ epidermis. Why and how mature melanocytes accumulate in scale epidermis is unresolved. Here, we delineate a cellular hierarchy among epidermal cell types that determines skin patterning. Already during postnatal development, melanocytes co-segregate with newly forming scale compartments. Intriguingly, this process coincides with partitioning of both Langerhans cells and dendritic epidermal T cells to interscale epidermis, suggesting functional segregation of pigmentation and immune surveillance. Analysis of non-pigmented mice and of mice lacking melanocytes or resident immune cells revealed that immunocyte patterning is melanocyte and melanin independent and, vice versa, immune cells do not control melanocyte localization. Instead, genetically enforced progressive scale fusion upon Lrig1 deletion showed that melanocytes and immune cells dynamically follow epithelial scale:interscale patterns. Importantly, disrupting Wnt-Lef1 function in keratinocytes caused melanocyte mislocalization to interscale epidermis, implicating canonical Wnt signaling in organizing the pigmentation pattern. Together, this work uncovers cellular and molecular principles underlying the compartmentalization of tissue functions in skin. Summary: Pigmentation and immune surveillance functions in murine tail skin are spatially segregated by Lrig1- and Wnt-Lef1-dependent keratinocyte lineages that control the partitioning of melanocytes and tissue-resident immune cells into distinct epidermal niches.
Collapse
Affiliation(s)
- Susanne C. Baess
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne 1 , 50931 Cologne , Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne 2 , 50931 Cologne , Germany
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University 3 , Faculty of Medicine, 66421 Homburg/Saar , Germany
| | - Ann-Kathrin Burkhart
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University 3 , Faculty of Medicine, 66421 Homburg/Saar , Germany
| | - Sabrina Cappello
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University 3 , Faculty of Medicine, 66421 Homburg/Saar , Germany
| | - Annika Graband
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne 1 , 50931 Cologne , Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne 2 , 50931 Cologne , Germany
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University 3 , Faculty of Medicine, 66421 Homburg/Saar , Germany
| | - Kristin Seré
- Institute for Biomedical Engineering 4 , Department of Cell Biology , , 52074 Aachen , Germany
- RWTH Aachen University Medical School 4 , Department of Cell Biology , , 52074 Aachen , Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University 5 , 52074 Aachen , Germany
| | - Martin Zenke
- Institute for Biomedical Engineering 4 , Department of Cell Biology , , 52074 Aachen , Germany
- RWTH Aachen University Medical School 4 , Department of Cell Biology , , 52074 Aachen , Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University 5 , 52074 Aachen , Germany
| | - Catherin Niemann
- Center for Molecular Medicine Cologne (CMMC), University of Cologne 2 , 50931 Cologne , Germany
- Center of Biochemistry 6 , Faculty of Medicine , , 50931 Cologne , Germany
- University Hospital Cologne 6 , Faculty of Medicine , , 50931 Cologne , Germany
| | - Sandra Iden
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne 1 , 50931 Cologne , Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne 2 , 50931 Cologne , Germany
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University 3 , Faculty of Medicine, 66421 Homburg/Saar , Germany
| |
Collapse
|
7
|
Casalou C, Moreiras H, Mayatra JM, Fabre A, Tobin DJ. Loss of 'Epidermal Melanin Unit' Integrity in Human Skin During Melanoma-Genesis. Front Oncol 2022; 12:878336. [PMID: 35574390 PMCID: PMC9097079 DOI: 10.3389/fonc.2022.878336] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Cutaneous melanoma can be a most challenging neoplasm of high lethality, in part due to its extreme heterogeneity and characteristic aggressive and invasive nature. Indeed, its moniker 'the great masquerader' reflects that not all melanomas are created equal in terms of their originating cellular contexts, but also that melanoma cells in the malignant tumor can adopt a wide range of different cell states and variable organotropism. In this review, we focus on the early phases of melanomagenesis by discussing how the originating pigment cell of the melanocyte lineage can be influenced to embark on a wide range of tumor fates with distinctive microanatomical pathways. In particular, we assess how cells of the melanocyte lineage can differ by maturation status (stem cell; melanoblast; transiently amplifying cell; differentiated; post-mitotic; terminally-differentiated) as well as by micro-environmental niche (in the stratum basale of the epidermis; within skin appendages like hair follicle, eccrine gland, etc). We discuss how the above variable contexts may influence the susceptibility of the epidermal-melanin unit (EMU) to become unstable, which may presage cutaneous melanoma development. We also assess how unique features of follicular-melanin unit(s) (FMUs) can, by contrast, protect melanocytes from melanomagenesis. Lastly, we postulate how variable melanocyte fates in vitiligo, albinism, psoriasis, and alopecia areata may provide new insights into immune-/non immune-mediated outcomes for melanocytes in cutaneous melanin units.
Collapse
Affiliation(s)
- Cristina Casalou
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Hugo Moreiras
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jay M Mayatra
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Aurelie Fabre
- Department of Histopathology, St Vincent's University Hospital, Dublin, Ireland.,UCD School of Medicine, University College Dublin, Dublin, Ireland.,The Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| | - Desmond J Tobin
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland.,The Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Pop S, Urtatiz O, Van Raamsdonk CD. Isolation of tdTomato Expressing Inter-follicular Epidermal Melanocytes or Keratinocytes from Mouse Tail Skin. Bio Protoc 2022; 12:e4398. [PMID: 35800096 PMCID: PMC9081482 DOI: 10.21769/bioprotoc.4398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 12/22/2021] [Accepted: 03/01/2022] [Indexed: 12/29/2022] Open
Abstract
The epidermis is the outermost layer of the skin. It is made up of mostly keratinocytes along with a small number of melanocytes and Langerhans cells. Melanocytes produce a pigment called melanin, which is transferred to the keratinocytes, and protects these cells from damage from UV radiation, as well as generating hair and skin colours. In this important relationship, keratinocytes exert control over melanocytes. Many questions regarding keratinocyte-melanocyte interactions have yet to be answered, and would benefit from study in model systems, to address diseases such as vitiligo and cutaneous melanoma. Most of the mouse is covered in fur and these areas lack the skin pigmenting inter-follicular epidermal (IFE) melanocytes. However, the mouse tail is pigmented analogously to human skin. Here, we present a method for isolating IFE melanocytes or keratinocytes expressing the tdTomato marker from the mouse tail, using fluorescence-activated cell sorting (FACS). The method involves firstly separating the tail skin epidermis from the dermis, and then digesting the epidermis to produce dissociated cells, which can then be sorted. These isolated cell populations can be studied using RNAseq or cultured in vitro. This protocol isolates IFE melanocytes or keratinocytes and immediately provides reasonable yields of cells, without the need to stain the cells for cell specific markers.
Collapse
Affiliation(s)
- Samuel Pop
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver B.C., V6T 1Z3, Canada
| | - Oscar Urtatiz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver B.C., V6T 1Z3, Canada
| | - Catherine D. Van Raamsdonk
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver B.C., V6T 1Z3, Canada,
*For correspondence:
| |
Collapse
|
9
|
Characterization of a melanocyte progenitor population in human interfollicular epidermis. Cell Rep 2022; 38:110419. [PMID: 35235792 DOI: 10.1016/j.celrep.2022.110419] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/23/2021] [Accepted: 02/01/2022] [Indexed: 11/22/2022] Open
Abstract
It is still unknown whether the human interfollicular epidermis harbors a reservoir of melanocyte precursor cells. Here, we clearly distinguish between three distinct types of melanocytes in human interfollicular epidermis: (1) cKit+CD90-, (2) cKit+CD90+, and (3) cKit-CD90+. Importantly, we identify the Kit tyrosine kinase receptor (cKit) as a marker expressed specifically in mature, melanin-producing melanocytes. Thus, both cKit+CD90- and cKit+CD90+ cells represent polydendritic, pigmented mature melanocytes, whereas cKit-CD90+ cells display bipolar, non-dendritic morphology with reduced melanin content. Additionally, using tissue-engineered pigmented dermo-epidermal skin substitutes (melDESSs), we reveal that the cKit expression also plays an important role during melanogenesis in melDESS in vivo. Interestingly, cKit-CD90+ cells lack the expression of markers such as HMB45, TYR, and TRP1 in vitro and in vivo. However, they co-express neural-crest progenitor markers and demonstrate multilineage differentiation potential in vitro. Hence, we propose that cKit-CD90+ cells constitute the precursor melanocyte reservoir in human interfollicular epidermis.
Collapse
|
10
|
Urtatiz O, Haage A, Tanentzapf G, Van Raamsdonk CD. Crosstalk with keratinocytes causes GNAQ oncogene specificity in melanoma. eLife 2021; 10:71825. [PMID: 34939927 PMCID: PMC8747508 DOI: 10.7554/elife.71825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Different melanoma subtypes exhibit specific and non-overlapping sets of oncogene and tumor suppressor mutations, despite a common cell of origin in melanocytes. For example, activation of the Gαq/11 signaling pathway is a characteristic initiating event in primary melanomas that arise in the dermis, uveal tract, or central nervous system. It is rare in melanomas arising in the epidermis. The mechanism for this specificity is unknown. Here, we present evidence that in the mouse, crosstalk with the epidermal microenvironment actively impairs the survival of melanocytes expressing the GNAQQ209L oncogene. We found that GNAQQ209L, in combination with signaling from the interfollicular epidermis (IFE), stimulates dendrite extension, leads to actin cytoskeleton disorganization, inhibits proliferation, and promotes apoptosis in melanocytes. The effect was reversible and paracrine. In contrast, the epidermal environment increased the survival of wildtype and BrafV600E expressing melanocytes. Hence, our studies reveal the flip side of Gαq/11 signaling, which was hitherto unsuspected. In the future, the identification of the epidermal signals that restrain the GNAQQ209L oncogene could suggest novel therapies for GNAQ and GNA11 mutant melanomas.
Collapse
Affiliation(s)
- Oscar Urtatiz
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Amanda Haage
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
11
|
Jiang S, Liao ZK, Jia HY, Liu XM, Wan J, Lei TC. The regional distribution of melanosomes in the epidermis affords a localized intensive photoprotection for basal keratinocyte stem cells. J Dermatol Sci 2021; 103:130-134. [PMID: 34238637 DOI: 10.1016/j.jdermsci.2021.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/10/2021] [Accepted: 06/27/2021] [Indexed: 01/06/2023]
Abstract
Human skin is a highly efficient self-renewing barrier that is critical to withstanding environmental insults. Undifferentiated keratinocyte stem cells reside in the basal layer of the epidermis and in hair follicles that continuously give rise to progenies ensuring epidermal turnover and renewal. Ultraviolet (UV) radiation is a proven cause of skin keratinocyte cancers, which preferentially occur at sun-exposed areas of the skin. Fortunately, melanocytes produce melanin that is packaged in specific organelles (termed melanosomes) that are then delivered to nearby keratinocytes, endowing the recipient cells with photoprotection. It has long been thought that melanosome transfer takes place stochastically from melanocytes to keratinocytes via an as-yet-unrecognized manner. However, recent studies have indicated that melanosomes are distributed regionally in the basal layer of the skin, affording localized intensive photoprotection for progenitor keratinocytes and stem cells that reside in the microenvironment of the basal epidermis. In this review, we summarize current knowledge about molecular and cellular mechanisms that are responsible for the selective transfer and exclusive degradation of melanosomes in the epidermis, emphasizing implications for skin carcinogenesis.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Kai Liao
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hai-Yan Jia
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao-Ming Liu
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Wan
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tie-Chi Lei
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Abreu CM, Reis RL, Marques AP. Dermal papilla cells and melanocytes response to physiological oxygen levels depends on their interactions. Cell Prolif 2021; 54:e13013. [PMID: 34101928 PMCID: PMC8249782 DOI: 10.1111/cpr.13013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/15/2021] [Accepted: 02/07/2021] [Indexed: 12/19/2022] Open
Abstract
Background Human dermal papilla (DP) cells and melanocytes (hMel) are central players in hair growth and pigmentation, respectively. In hair follicles (HFs), oxygen (O2) levels average 5%, being coupled with the production of reactive oxygen species (ROS), necessary to promote hair growth. Materials and Methods DP cell and hMel proliferation and phenotype were studied under physiological (5%O2, physoxia) or atmospheric (21%O2, normoxia) oxygen levels. hMel‐DP cells interactions were studied in indirect co‐culture or by directly co‐culturing hMel with DP spheroids, to test whether their interaction affected the response to physoxia. Results Physoxia decreased DP cell senescence and improved their secretome and phenotype, as well as hMel proliferation, migration, and tyrosinase activity. In indirect co‐cultures, physoxia affected DP cells’ alkaline phosphatase (ALP) activity but their signalling did not influence hMel proliferation or tyrosinase activity. Additionally, ROS production was higher than in monocultures but a direct correlation between ROS generation and ALP activity in DP cells was not observed. In the 3D aggregates, where hMel are organized around the DP, both hMel tyrosinase and DP cells ALP activities, their main functional indicators, plus ROS production were higher in physoxia than normoxia. Conclusions Overall, we showed that the response to physoxia differs according to hMel‐DP cells interactions and that the microenvironment recreated when in direct contact favours their functions, which can be relevant for hair regeneration purposes.
Collapse
Affiliation(s)
- Carla M Abreu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
13
|
Patton EE, Mueller KL, Adams DJ, Anandasabapathy N, Aplin AE, Bertolotto C, Bosenberg M, Ceol CJ, Burd CE, Chi P, Herlyn M, Holmen SL, Karreth FA, Kaufman CK, Khan S, Kobold S, Leucci E, Levy C, Lombard DB, Lund AW, Marie KL, Marine JC, Marais R, McMahon M, Robles-Espinoza CD, Ronai ZA, Samuels Y, Soengas MS, Villanueva J, Weeraratna AT, White RM, Yeh I, Zhu J, Zon LI, Hurlbert MS, Merlino G. Melanoma models for the next generation of therapies. Cancer Cell 2021; 39:610-631. [PMID: 33545064 PMCID: PMC8378471 DOI: 10.1016/j.ccell.2021.01.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
There is a lack of appropriate melanoma models that can be used to evaluate the efficacy of novel therapeutic modalities. Here, we discuss the current state of the art of melanoma models including genetically engineered mouse, patient-derived xenograft, zebrafish, and ex vivo and in vitro models. We also identify five major challenges that can be addressed using such models, including metastasis and tumor dormancy, drug resistance, the melanoma immune response, and the impact of aging and environmental exposures on melanoma progression and drug resistance. Additionally, we discuss the opportunity for building models for rare subtypes of melanomas, which represent an unmet critical need. Finally, we identify key recommendations for melanoma models that may improve accuracy of preclinical testing and predict efficacy in clinical trials, to help usher in the next generation of melanoma therapies.
Collapse
Affiliation(s)
- E Elizabeth Patton
- MRC Human Genetics Unit and Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| | - Kristen L Mueller
- Melanoma Research Alliance, 730 15th Street NW, Washington, DC 20005, USA.
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Niroshana Anandasabapathy
- Department of Dermatology, Meyer Cancer Center, Program in Immunology and Microbial Pathogenesis, Weill Cornell Medicine, New York, NY 10026, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Corine Bertolotto
- Université Côte d'Azur, Nice, France; INSERM, Biology and Pathologies of Melanocytes, Team 1, Equipe Labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Marcus Bosenberg
- Departments of Dermatology, Pathology, and Immunobiology, Yale University, New Haven, CT, USA
| | - Craig J Ceol
- Program in Molecular Medicine and Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Christin E Burd
- Departments of Molecular Genetics, Cancer Biology, and Genetics, The Ohio State University, Biomedical Research Tower, Room 918, 460 W. 12th Avenue, Columbus, OH 43210, USA
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Sheri L Holmen
- Department of Surgery, University of Utah Health Sciences Center, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Florian A Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Charles K Kaufman
- Washington University School of Medicine, Department of Medicine, Division of Oncology, Department of Developmental Biology, McDonnell Science Building, 4518 McKinley Avenue, St. Louis, MO 63110, USA
| | - Shaheen Khan
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany; Member of the German Center for Lung Research (DZL), German Center for Translational Cancer Research (DKTK), partner site Munich, Munich, Germany
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, LKI, KU Leuven, 3000 Leuven, Belgium; Trace, Department of Oncology, LKI, KU Leuven, 3000 Leuven, Belgium
| | - Carmit Levy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - David B Lombard
- Department of Pathology, Institute of Gerontology, and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology and Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Kerrie L Marie
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Richard Marais
- CRUK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| | - Martin McMahon
- Department of Dermatology & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Mexico; Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Ze'ev A Ronai
- Cancer Center, Sanford Burnham Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Maria S Soengas
- Spanish National Cancer Research Centre, 28029 Madrid, Spain
| | - Jessie Villanueva
- The Wistar Institute, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, and Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Richard M White
- Department of Cancer Biology & Genetics and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Iwei Yeh
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, USA
| | - Jiyue Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Marc S Hurlbert
- Melanoma Research Alliance, 730 15th Street NW, Washington, DC 20005, USA
| | - Glenn Merlino
- Center for Cancer Research, NCI, NIH, 37 Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Villavicencio KM, Ahmed N, Harris ML, Singh KK. Mitochondrial DNA-depleter mouse as a model to study human pigmentary skin disorders. Pigment Cell Melanoma Res 2021; 34:179-187. [PMID: 33448673 DOI: 10.1111/pcmr.12921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 01/31/2023]
Abstract
Pigmentation abnormalities are reported in the spectrum of phenotypes associated with aging and in patients with mitochondrial DNA depletion syndrome (MDS). Yet, a relevant animal model that mimics these effects and would allow us to evaluate the detrimental aspects of mtDNA depletion on melanocyte function has not been described. Here, we characterize the pigmentary changes observed in the ears of a mtDNA-depleter mouse, which phenotypically includes accentuation of the peri-adnexal pseudonetwork, patchy hyper- and hypopigmentation, and reticular pigmentation. Histologically, these mice show increased epidermal pigmentation with patchy distribution, along with increased and highly dendritic melanocytes. These mtDNA-depleter mice mimic aspects of the cutaneous, pigmentary changes observed in humans with age-related senile lentigines as well as MDS. We suggest that this mouse model can serve as a novel resource for future interrogations of how mitochondrial dysfunction contributes to pigmentary skin disorders. The mtDNA-depleter mouse model also serves as a useful tool to identify novel agents capable of treating pigmentary changes associated with age-related mitochondrial dysfunction in humans.
Collapse
Affiliation(s)
| | - Noha Ahmed
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Dermatology, Zagazig University, Zagazig, Egypt
| | - Melissa L Harris
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Keshav K Singh
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
15
|
Basurto‐Lozada P, Molina‐Aguilar C, Castaneda‐Garcia C, Vázquez‐Cruz ME, Garcia‐Salinas OI, Álvarez‐Cano A, Martínez‐Said H, Roldán‐Marín R, Adams DJ, Possik PA, Robles‐Espinoza CD. Acral lentiginous melanoma: Basic facts, biological characteristics and research perspectives of an understudied disease. Pigment Cell Melanoma Res 2021; 34:59-71. [PMID: 32330367 PMCID: PMC7818404 DOI: 10.1111/pcmr.12885] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/10/2020] [Accepted: 04/19/2020] [Indexed: 12/14/2022]
Abstract
Acral lentiginous melanoma is a histological subtype of cutaneous melanoma that occurs in the glabrous skin of the palms, soles and the nail unit. Although in some countries, particularly in Latin America, Africa and Asia, it represents the most frequently diagnosed subtype of the disease, it only represents a small proportion of melanoma cases in European-descent populations, which is partially why it has not been studied to the same extent as other forms of melanoma. As a result, its unique genomic drivers remain comparatively poorly explored, as well as its causes, with current evidence supporting a UV-independent path to tumorigenesis. In this review, we discuss current knowledge of the aetiology and diagnostic criteria of acral lentiginous melanoma, as well as its epidemiological and histopathological characteristics. We also describe what is known about the genomic landscape of this disease and review the available biological models to explore potential therapeutic targets.
Collapse
Affiliation(s)
- Patricia Basurto‐Lozada
- Laboratorio Internacional de Investigación Sobre el Genoma HumanoUniversidad Nacional Autónoma de MéxicoSantiago de QuerétaroMexico
| | - Christian Molina‐Aguilar
- Laboratorio Internacional de Investigación Sobre el Genoma HumanoUniversidad Nacional Autónoma de MéxicoSantiago de QuerétaroMexico
- Tecnologico de MonterreySchool of Engineering and SciencesCentre of BioengineeringQuerétaroMexico
| | - Carolina Castaneda‐Garcia
- Laboratorio Internacional de Investigación Sobre el Genoma HumanoUniversidad Nacional Autónoma de MéxicoSantiago de QuerétaroMexico
| | - Martha Estefania Vázquez‐Cruz
- Laboratorio Internacional de Investigación Sobre el Genoma HumanoUniversidad Nacional Autónoma de MéxicoSantiago de QuerétaroMexico
| | - Omar Isaac Garcia‐Salinas
- Laboratorio Internacional de Investigación Sobre el Genoma HumanoUniversidad Nacional Autónoma de MéxicoSantiago de QuerétaroMexico
- Wellcome Sanger InstituteHinxtonCambridgeshireCB101SAUK
| | | | | | - Rodrigo Roldán‐Marín
- Dermato‐Oncology ClinicUnidad de Medicina ExperimentalFacultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | | | - Patricia A. Possik
- Program of Immunology and Tumor BiologyBrazilian National Cancer Institute (INCA)Rio de JaneiroBrazil
| | - Carla Daniela Robles‐Espinoza
- Laboratorio Internacional de Investigación Sobre el Genoma HumanoUniversidad Nacional Autónoma de MéxicoSantiago de QuerétaroMexico
- Wellcome Sanger InstituteHinxtonCambridgeshireCB101SAUK
| |
Collapse
|
16
|
Darp R, Ceol C. Making a melanoma: Molecular and cellular changes underlying melanoma initiation. Pigment Cell Melanoma Res 2020; 34:280-287. [PMID: 33283422 DOI: 10.1111/pcmr.12950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 11/29/2022]
Abstract
Melanoma arises from the melanocyte lineage and is the most aggressive and lethal form of skin cancer. There are several genetic, genomic, and cellular changes associated with melanoma initiation. Here, we discuss these alterations and the melanoma cells of origin in which they are proposed to promote melanomagenesis.
Collapse
Affiliation(s)
- Revati Darp
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular, Cellular and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Craig Ceol
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular, Cellular and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
17
|
Gauthier Y, Almasi-Nasrabadi M, Cario-André M, Pain C, Rakhshan A, Ghalamkarpour F. Tacrolimus (FK506) ointment combined with Nb-UVB could activate both hair follicle (HF) and dermal melanocyte precursors in vitiligo: the first histopathological and clinical study. Arch Dermatol Res 2020; 313:383-388. [PMID: 32303824 DOI: 10.1007/s00403-020-02068-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/07/2020] [Accepted: 03/28/2020] [Indexed: 11/26/2022]
Abstract
Topical Tacrolimus, especially when combined with Nb-UVB, has been proven clinically to be effective in the treatment of vitiligo. However, no histological study has evaluated the repigmentation mechanism of tacrolimus ointment in combination therapy with Nb-UVB. In this study, the histological findings in patients receiving Nb-UVB were compared with those receiving topical tacrolimus combined with Nb-UVB. Twenty patients were recruited and received Nb-UVB treatment. The first ten patients were selected for the combination therapy and instructed to apply tacrolimus 0.1% ointment twice daily on the specified lesion of interest. The remaining ten patients did not receive any other topical treatments. Skin biopsy was performed at baseline from the depigmented area and 2-3 months post-treatment from the repigmented area. Biopsy specimens were stained with haematoxylin-eosin-safran (HES), Fontana Masson, HMB45, Melan A, MITF, SOX10 and Nestin. Clinically, in the combination therapy group, interfollicular repigmentation in addition to the perifollicular and marginal pattern was observed. Histologically, in the combination therapy group, besides the migration of melanocytes from the bulge of the hair follicle seen in the monotherapy group, for the first time, we observed dermal melanocyte precursors located in mid- and superficial dermis.
Collapse
Affiliation(s)
- Yvon Gauthier
- Vitiligo and Melasma Research Association, Bordeaux, France
| | - Mina Almasi-Nasrabadi
- Skin Research Center, Shohada-E Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Shahrdari St, 1989934148, Tehran, Iran
| | | | | | - Azadeh Rakhshan
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Ghalamkarpour
- Skin Research Center, Shohada-E Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Shahrdari St, 1989934148, Tehran, Iran.
| |
Collapse
|
18
|
Bellei B, Picardo M. Premature cell senescence in human skin: Dual face in chronic acquired pigmentary disorders. Ageing Res Rev 2020; 57:100981. [PMID: 31733332 DOI: 10.1016/j.arr.2019.100981] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/16/2019] [Accepted: 11/07/2019] [Indexed: 01/10/2023]
Abstract
Although senescence was originally described as an in vitro acquired cellular characteristic, it was recently recognized that senescence is physiologically and pathologically involved in aging and age-related diseases in vivo. The definition of cellular senescence has expanded to include the growth arrest caused by various cellular stresses, including DNA damage, inadequate mitochondria function, activated oncogene or tumor suppressor genes and oxidative stress. While senescence in normal aging involves various tissues over time and contributes to a decline in tissue function even with healthy aging, disease-induced premature senescence may be restricted to one or a few organs triggering a prolonged and more intense rate of accumulation of senescent cells than in normal aging. Organ-specific high senescence rate could lead to chronic diseases, especially in post-mitotic rich tissue. Recently, two opposite acquired pathological conditions related to skin pigmentation were described to be associated with premature senescence: vitiligo and melasma. In both cases, it was demonstrated that pathological dysfunctions are not restricted to melanocytes, the cell type responsible for melanin production and transport to surrounding keratinocytes. Similar to physiological melanogenesis, dermal and epidermal cells contribute directly and indirectly to deregulate skin pigmentation as a result of complex intercellular communication. Thus, despite senescence usually being reported as a uniform phenotype sharing the expression of characteristic markers, skin senescence involving mainly the dermal compartment and its paracrine function could be associated with the disappearance of melanocytes in vitiligo lesions and with the exacerbated activity of melanocytes in the hyperpigmentation spots of melasma. This suggests that the difference may arise in melanocyte intrinsic differences and/or in highly defined microenvironment peculiarities poorly explored at the current state of the art. A similar dualistic phenotype has been attributed to intratumoral stromal cells as cancer-associated fibroblasts presenting a senescent-like phenotype which influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. Here, we present a framework dissecting senescent-related molecular alterations shared by vitiligo and melasma patients and we also discuss disease-specific differences representing new challenges for treatment.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy.
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
19
|
Škalamera D, Stevenson AJ, Ehmann A, Ainger SA, Lanagan C, Sturm RA, Gabrielli B. Melanoma mutations modify melanocyte dynamics in co-culture with keratinocytes or fibroblasts. J Cell Sci 2019; 132:jcs.234716. [PMID: 31767623 DOI: 10.1242/jcs.234716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/21/2019] [Indexed: 12/25/2022] Open
Abstract
Melanocytic cell interactions are integral to skin homeostasis, and affect the outcome of multiple diseases, including cutaneous pigmentation disorders and melanoma. By using automated-microscopy and machine-learning-assisted morphology analysis of primary human melanocytes in co-culture, we performed combinatorial interrogation of melanocyte genotypic variants and functional assessment of lentivirus-introduced mutations. Keratinocyte-induced melanocyte dendricity, an indicator of melanocyte differentiation, was reduced in the melanocortin 1 receptor (MC1R) R/R variant strain and by NRAS.Q61K and BRAF.V600E expression, while expression of CDK4.R24C and RAC1.P29S had no detectable effect. Time-lapse tracking of melanocytes in co-culture revealed dynamic interaction phenotypes and hyper-motile cell states that indicated that, in addition to the known role in activating mitogenic signalling, MEK-pathway-activating mutations may also allow melanocytes to escape keratinocyte control and increase their invasive potential. Expanding this combinatorial platform will identify other therapeutic target mutations and melanocyte genetic variants, as well as increase understanding of skin cell interactions.
Collapse
Affiliation(s)
- Dubravka Škalamera
- Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, 4102 QLD, Australia
| | - Alexander J Stevenson
- Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, 4102 QLD, Australia
| | - Anna Ehmann
- Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, 4102 QLD, Australia
| | - Stephen A Ainger
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, 4102 QLD, Australia
| | - Catherine Lanagan
- Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, 4102 QLD, Australia
| | - Richard A Sturm
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, 4102 QLD, Australia
| | - Brian Gabrielli
- Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, 4102 QLD, Australia
| |
Collapse
|
20
|
Abstract
In this article, we provide a method to isolate primary epidermal melanocytes from reporter mice, which also allow targeted gene inactivation. The mice from which these cells are isolated are bred into a Rosa26mT/mG reporter background, which results in GFP expression in the targeted melanocytic cell population. These cells are isolated and cultured to >95% purity. The cells can be used for gene expression studies, clonogenic experiments, and biological assays, such as capacity for migration. Melanocytes are slow moving cells, and we also provide a method to measure motility using individual cell tracking and data analysis.
Collapse
|
21
|
Vandamme N, Berx G. From neural crest cells to melanocytes: cellular plasticity during development and beyond. Cell Mol Life Sci 2019; 76:1919-1934. [PMID: 30830237 PMCID: PMC11105195 DOI: 10.1007/s00018-019-03049-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/25/2019] [Accepted: 02/18/2019] [Indexed: 01/07/2023]
Abstract
Here, we review melanocyte development and how the embryonic melanoblast, although specified to become a melanocyte, is prone to cellular plasticity and is not fully committed to the melanocyte lineage. Even fully differentiated and pigment-producing melanocytes do not always have a stable phenotype. The gradual lineage restriction of neural crest cells toward the melanocyte lineage is determined by both cell-intrinsic and extracellular signals in which differentiation and pathfinding ability reciprocally influence each other. These signals are leveraged by subtle differences in timing and axial positioning. The most extensively studied migration route is the dorsolateral path between the dermomyotome and the prospective epidermis, restricted to melanoblasts. In addition, the embryonic origin of the skin dermis through which neural crest derivatives migrate may also affect the segregation between melanogenic and neurogenic cells in embryos. It is widely accepted that, irrespective of the model organism studied, the immediate precursor of both melanoblast and neurogenic populations is a glial-melanogenic bipotent progenitor. Upon exposure to different conditions, melanoblasts may differentiate into other neural crest-derived lineages such as neuronal cells and vice versa. Key factors that regulate melanoblast migration and patterning will regulate melanocyte homeostasis during different stages of hair cycling in postnatal hair follicles.
Collapse
Affiliation(s)
- Niels Vandamme
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- DAMBI, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
22
|
Kundu RV, Mhlaba JM, Rangel SM, Le Poole IC. The convergence theory for vitiligo: A reappraisal. Exp Dermatol 2018; 28:647-655. [PMID: 29704874 DOI: 10.1111/exd.13677] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2018] [Indexed: 12/15/2022]
Abstract
Vitiligo is characterized by progressive loss of skin pigmentation. The search for aetiologic factors has led to the biochemical, the neurologic and the autoimmune theory. The convergence theory was then proposed several years ago to incorporate existing theories of vitiligo development into a single overview of vitiligo aetiology. The viewpoint that vitiligo is not caused only by predisposing mutations, or only by melanocytes responding to chemical/radiation exposure, or only by hyperreactive T cells, but rather results from a combination of aetiologic factors that impact melanocyte viability, has certainly stood the test of time. New findings have since informed the description of progressive depigmentation. Understanding the relative importance of such aetiologic factors combined with a careful selection of the most targetable pathways will continue to drive the next phase in vitiligo research: the development of effective therapeutics. In that arena, it is likewise important to acknowledge that pathways affected in some patients may not be altered in others. Taken together, the convergence theory continues to provide a comprehensive viewpoint of vitiligo aetiology. The theory serves to intertwine aetiologic pathways and will help to define pathways amenable to disease intervention in individual patients.
Collapse
Affiliation(s)
- Roopal V Kundu
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Julia M Mhlaba
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | | | - I Caroline Le Poole
- Department of Dermatology, Northwestern University, Chicago, IL, USA.,Department of Microbiology and Immunology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
23
|
Spatiotemporal Labeling of Melanocytes in Mice. Int J Mol Sci 2018; 19:ijms19051469. [PMID: 29762513 PMCID: PMC5983676 DOI: 10.3390/ijms19051469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 01/23/2023] Open
Abstract
Melanocytes are pigment producing cells in the skin that give rise to cutaneous malignant melanoma, which is a highly aggressive and the deadliest form of skin cancer. Studying melanocytes in vivo is often difficult due to their small proportion in the skin and the lack of specific cell surface markers. Several genetically-engineered mouse models (GEMMs) have been created to specifically label the melanocyte compartment. These models give both spatial and temporal control over the expression of a cellular ‘beacon’ that has an added benefit of inducible expression that can be activated on demand. Two powerful models that are discussed in this review include the melanocyte-specific, tetracycline-inducible green fluorescent protein expression system (iDct-GFP), and the fluorescent ubiquitination-based cell cycle indicator (FUCCI) model that allows for the monitoring of the cell-cycle. These two systems are powerful tools in studying melanocyte and melanoma biology. We discuss their current uses and how they could be employed to help answer unresolved questions in the fields of melanocyte and melanoma biology.
Collapse
|
24
|
Li H, Hou L. Regulation of melanocyte stem cell behavior by the niche microenvironment. Pigment Cell Melanoma Res 2018; 31:556-569. [PMID: 29582573 DOI: 10.1111/pcmr.12701] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/05/2018] [Indexed: 12/17/2022]
Abstract
Somatic stem cells are regulated by their niches to maintain tissue homeostasis and repair throughout the lifetime of an organism. An excellent example to study stem cell/niche interactions is provided by the regeneration of melanocytes during the hair cycle and in response to various types of injury. These processes are regulated by neighboring stem cells and multiple signaling pathways, including WNT/β-catenin, KITL/KIT, EDNs/EDNRB, TGF-β/TGF-βR, α-MSH/MC1R, and Notch signaling. In this review, we highlight recent studies that have advanced our understanding of the molecular crosstalk between melanocyte stem cells and their neighboring cells, which collectively form the niche microenvironment, and we focus on the question of how McSCs/niche interactions shape the responses to genotoxic damages and mechanical injury.
Collapse
Affiliation(s)
- Huirong Li
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
25
|
Testa U, Castelli G, Pelosi E. Melanoma: Genetic Abnormalities, Tumor Progression, Clonal Evolution and Tumor Initiating Cells. Med Sci (Basel) 2017; 5:E28. [PMID: 29156643 PMCID: PMC5753657 DOI: 10.3390/medsci5040028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/31/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022] Open
Abstract
Melanoma is an aggressive neoplasia issued from the malignant transformation of melanocytes, the pigment-generating cells of the skin. It is responsible for about 75% of deaths due to skin cancers. Melanoma is a phenotypically and molecularly heterogeneous disease: cutaneous, uveal, acral, and mucosal melanomas have different clinical courses, are associated with different mutational profiles, and possess distinct risk factors. The discovery of the molecular abnormalities underlying melanomas has led to the promising improvement of therapy, and further progress is expected in the near future. The study of melanoma precursor lesions has led to the suggestion that the pathway of tumor evolution implies the progression from benign naevi, to dysplastic naevi, to melanoma in situ and then to invasive and metastatic melanoma. The gene alterations characterizing melanomas tend to accumulate in these precursor lesions in a sequential order. Studies carried out in recent years have, in part, elucidated the great tumorigenic potential of melanoma tumor cells. These findings have led to speculation that the cancer stem cell model cannot be applied to melanoma because, in this malignancy, tumor cells possess an intrinsic plasticity, conferring the capacity to initiate and maintain the neoplastic process to phenotypically different tumor cells.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
26
|
Gan EY, Eleftheriadou V, Esmat S, Hamzavi I, Passeron T, Böhm M, Anbar T, Goh BK, Lan CCE, Lui H, Ramam M, Raboobee N, Katayama I, Suzuki T, Parsad D, Seth V, Lim HW, van Geel N, Mulekar S, Harris J, Wittal R, Benzekri L, Gauthier Y, Kumarasinghe P, Thng STG, Silva de Castro CC, Abdallah M, Vrijman C, Bekkenk M, Seneschal J, Pandya AG, Ezzedine K, Picardo M, Taïeb A. Repigmentation in vitiligo: position paper of the Vitiligo Global Issues Consensus Conference. Pigment Cell Melanoma Res 2017; 30:28-40. [PMID: 27864868 DOI: 10.1111/pcmr.12561] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/10/2016] [Indexed: 02/01/2023]
Abstract
The Vitiligo Global Issues Consensus Conference (VGICC), through an international e-Delphi consensus, concluded that 'repigmentation' and 'maintenance of gained repigmentation' are essential core outcome measures in future vitiligo trials. This VGICC position paper addresses these core topics in two sections and includes an atlas depicting vitiligo repigmentation patterns and color match. The first section delineates mechanisms and characteristics of vitiligo repigmentation, and the second section summarizes the outcomes of international meeting discussions and two e-surveys on vitiligo repigmentation, which had been carried out over 3 yr. Treatment is defined as successful if repigmentation exceeds 80% and at least 80% of the gained repigmentation is maintained for over 6 months. No agreement was found on the best outcome measure for assessing target or global repigmentation, therefore highlighting the limitations of e-surveys in addressing clinical measurements. Until there is a clear consensus, existing tools should be selected according to the specific needs of each study. A workshop will be conducted to address the remaining issues so as to achieve a consensus.
Collapse
Affiliation(s)
- Emily Y Gan
- National Skin Centre, Singapore City, Singapore
| | | | - Samia Esmat
- Dermatology Department, Cairo University, Cairo, Egypt
| | - Iltefat Hamzavi
- Multicultural Dermatology Center, Department of Dermatology, Henry Ford Hospital, Detroit, MI, USA
| | - Thierry Passeron
- Department of Dermatology, University Hospital of Nice, Nice, France.,INSERM U1065, Team 12, C3M, Nice, France
| | - Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| | - Tag Anbar
- Dermatology Department, Minia University, Minia, Egypt
| | - Boon Kee Goh
- Skin Physicians, Mount Elizabeth Medical Center, Singapore City, Singapore
| | - Cheng-Che E Lan
- Department of Dermatology, Kaohsiung Medical University Hospital and College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Harvey Lui
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada.,Photomedicine Institute, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - M Ramam
- Department of Dermatology & Venereology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Ichiro Katayama
- Department of Dermatology Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tamio Suzuki
- Department of Dermatology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Davinder Parsad
- Department of Dermatology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Vaneeta Seth
- Department of Dermatology, Newton Wellesley Hospital, Newton, MA, USA
| | - Henry W Lim
- Multicultural Dermatology Center, Department of Dermatology, Henry Ford Hospital, Detroit, MI, USA
| | - Nanja van Geel
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - Sanjeev Mulekar
- National Center for Vitiligo and Psoriasis, Riyadh, Saudi Arabia.,Mulekar Clinic, Mumbai, India
| | - John Harris
- Division of Dermatology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Richard Wittal
- Department of Dermatology, University of New South Wales, Sydney, NSW, Australia.,Skin and Cancer Foundation, Darlinghurst, NSW, Australia.,Beecroft Dermatology, Beecroft, Sydney, NSW, Australia
| | - Laila Benzekri
- Mohammed V University in Rabat, Department of Dermatology, Ibn Sina University Hospital, Rabat, Morocco
| | - Yvon Gauthier
- Pigmentary Disorders Outpatient Clinic, Bordeaux, France
| | - Prasad Kumarasinghe
- Department of Dermatology, Fiona Stanley Hospital and University of Western Australia, Perth, WA, Australia
| | | | | | - Marwa Abdallah
- Dermatology, Andrology & Venereology Department, Ain Shams University, Cairo, Egypt
| | - Charlotte Vrijman
- Department of Dermatology, Academic Medical Centre, Netherlands Institute for Pigment Disorders, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcel Bekkenk
- Department of Dermatology, Academic Medical Centre, Netherlands Institute for Pigment Disorders, University of Amsterdam, Amsterdam, The Netherlands
| | - Julien Seneschal
- Department of Dermatology and Pediatric Dermatology, Bordeaux University Hospitals, Bordeaux, France.,INSERM U 1035, University of Bordeaux, Bordeaux, France
| | - Amit G Pandya
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Khaled Ezzedine
- Department of Dermatology, Hôpital Henri Mondor, Créteil, France.,EA EpiDermE (Epidémiologie en Dermatologie et Evaluation des Thérapeutiques), Université Paris-Est Créteil, Créteil, France
| | - Mauro Picardo
- Cutaneous pathophysiology, San Gallicano Dermatologic Institute IRCCS, Rome, Italy
| | - Alain Taïeb
- Department of Dermatology and Pediatric Dermatology, Bordeaux University Hospitals, Bordeaux, France.,INSERM U 1035, University of Bordeaux, Bordeaux, France
| | | |
Collapse
|
27
|
Köhler C, Nittner D, Rambow F, Radaelli E, Stanchi F, Vandamme N, Baggiolini A, Sommer L, Berx G, van den Oord JJ, Gerhardt H, Blanpain C, Marine JC. Mouse Cutaneous Melanoma Induced by Mutant BRaf Arises from Expansion and Dedifferentiation of Mature Pigmented Melanocytes. Cell Stem Cell 2017; 21:679-693.e6. [PMID: 29033351 DOI: 10.1016/j.stem.2017.08.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/28/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022]
Abstract
To identify the cells at the origin of melanoma, we combined single-cell lineage-tracing and transcriptomics approaches with time-lapse imaging. A mouse model that recapitulates key histopathological features of human melanomagenesis was created by inducing a BRafV600E-driven melanomagenic program in tail interfollicular melanocytes. Most targeted mature, melanin-producing melanocytes expanded clonally within the epidermis before losing their differentiated features through transcriptional reprogramming and eventually invading the dermis. Tumors did not form within interscales, which contain both mature and dormant amelanotic melanocytes. The hair follicle bulge, which contains melanocyte stem cells, was also refractory to melanomagenesis. These studies identify varying tumor susceptibilities within the melanocytic lineage, highlighting pigment-producing cells as the melanoma cell of origin, and indicate that regional variation in tumor predisposition is dictated by microenvironmental cues rather than intrinsic differences in cellular origin. Critically, this work provides in vivo evidence that differentiated somatic cells can be reprogrammed into cancer initiating cells.
Collapse
Affiliation(s)
- Corinna Köhler
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, 3000 Leuven, Belgium
| | - David Nittner
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, 3000 Leuven, Belgium
| | - Florian Rambow
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, 3000 Leuven, Belgium
| | - Enrico Radaelli
- Mouse Histopathology Core Facility, VIB Center for Brain Disease, VIB, 3000 Leuven, Belgium; Comparative Pathology Core, Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6051, USA
| | - Fabio Stanchi
- Vascular Patterning Laboratory, VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Niels Vandamme
- Molecular and Cellular Oncology Laboratory, Cancer Research Institute Ghent (CRIG), 9052 Ghent University, Ghent, Belgium
| | - Arianna Baggiolini
- Stem Cell Biology, Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Lukas Sommer
- Stem Cell Biology, Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Cancer Research Institute Ghent (CRIG), 9052 Ghent University, Ghent, Belgium
| | - Joost J van den Oord
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KULeuven and UZ Leuven, 3000 Leuven, Belgium
| | - Holger Gerhardt
- Vascular Patterning Laboratory, VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Cedric Blanpain
- Laboratory of Stem Cells and Cancer, Welbio, Université Libre de Bruxelles, 1070 Bruxelles, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, 3000 Leuven, Belgium.
| |
Collapse
|
28
|
Kinsler VA, Larue L. The patterns of birthmarks suggest a novel population of melanocyte precursors arising around the time of gastrulation. Pigment Cell Melanoma Res 2017; 31:95-109. [PMID: 28940934 PMCID: PMC5765478 DOI: 10.1111/pcmr.12645] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 09/18/2017] [Indexed: 12/17/2022]
Abstract
Systematic work in the mouse and chicken has mapped out two neural crest-derived pathways of melanocyte precursor migration. With these in mind, this study reappraises the patterns of congenital pigmentary disorders in humans and identifies three recurrent patterns consistent across genetically different diseases. Only two of these are seen in diseases known to be melanocyte cell-autonomous. The segmental pattern correlates well with the classical dorsolateral population from animal studies, demonstrating respect of the midline, cranio-caudal axial mixing, unilateral migration and involvement of key epidermally derived structures. Importantly however, the melanocyte precursors responsible for the non-segmental pattern, which demonstrates circular, bilateral migration centred on the midline, and not involving key epidermally derived structures, have not been identified previously. We propose that this population originates around the time of gastrulation, most likely within the mesoderm, and ultimately resides within the dermis. Whether it contributes to mature melanocytes in non-disease states is not known; however, parallels with the patterns of acquired vitiligo would suggest that it does. The third pattern, hypo- or hyperpigmented fine and whorled Blaschko's lines, is proposed to be non-cell-autonomous.
Collapse
Affiliation(s)
- Veronica A Kinsler
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK.,Paediatric Dermatology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Lionel Larue
- Institut Curie, INSERM U1021, Normal and Pathological Development of Melanocytes, PSL Research University, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipe Labellisée Ligue Contre le Cancer, Orsay, France
| |
Collapse
|
29
|
Bishnoi A, Parsad D. Repigmentation patterns in vitiligo: where do we stand? Br J Dermatol 2017; 175:460-1. [PMID: 27632965 DOI: 10.1111/bjd.14890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A Bishnoi
- Department of Dermatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - D Parsad
- Department of Dermatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
30
|
Pérez-Guijarro E, Day CP, Merlino G, Zaidi MR. Genetically engineered mouse models of melanoma. Cancer 2017; 123:2089-2103. [PMID: 28543694 DOI: 10.1002/cncr.30684] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 01/04/2023]
Abstract
Melanoma is a complex disease that exhibits highly heterogeneous etiological, histopathological, and genetic features, as well as therapeutic responses. Genetically engineered mouse (GEM) models provide powerful tools to unravel the molecular mechanisms critical for melanoma development and drug resistance. Here, we expound briefly the basis of the mouse modeling design, the available technology for genetic engineering, and the aspects influencing the use of GEMs to model melanoma. Furthermore, we describe in detail the currently available GEM models of melanoma. Cancer 2017;123:2089-103. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Eva Pérez-Guijarro
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - M Raza Zaidi
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
31
|
Gan EY, Gahat T, Cario-André M, Seneschal J, Ezzedine K, Taïeb A. Clinical repigmentation patterns in paediatric vitiligo. Br J Dermatol 2016; 175:555-60. [PMID: 27037527 DOI: 10.1111/bjd.14635] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Repigmentation is an essential outcome measure in vitiligo. However, clinical studies describing vitiligo repigmentation patterns are lacking. OBJECTIVES To assess and clearly define the repigmentation patterns in a series of patients with vitiligo, correlating these with clinicoepidemiological characteristics. METHODS Patients with vitiligo seen at least at twice (initial consultation and follow-up visit) in the Department of Paediatric Dermatology, Hôpital Pellegrin des Enfants, Bordeaux University Hospital from 2006 to 2014 were included. Clinical photographs and case records were reviewed. RESULTS There were 109 patients (64 female, 45 male) mostly with Fitzpatrick skin type III (n = 67, 61%). The majority had nonsegmental (n = 71, 65%) or segmental vitiligo (n = 29, 27%). In total 172 representative vitiligo lesions were analysed. Overall, a combined pattern of repigmentation was most commonly seen (n = 106, 62%). The combined pattern occurred more frequently in patients with segmental vs. nonsegmental vitiligo (P = 0·009), whereas the diffuse pattern was more frequent in the latter (P = 0·007). Diffuse repigmentation was the predominant pattern on the eyelids (P < 0·001). We observed a new pattern in sites with few to absent hair follicles, which we propose to call 'medium spotted repigmentation'. This begins as circular macules of repigmentation, wider than 5 mm in diameter, which, from the outset, are larger than the initial macules of perifollicular repigmentation. This study is limited by its retrospective nature and small sample size for subgroup assessment. CONCLUSIONS The combined pattern of repigmentation was most frequently observed. Medium spotted repigmentation is a new pattern, which will benefit from larger studies for a better understanding.
Collapse
Affiliation(s)
- E Y Gan
- Department of Paediatric Dermatology, National Centre for Rare Skin Disorders, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France.
| | - T Gahat
- Department of Paediatric Dermatology, National Centre for Rare Skin Disorders, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France
| | - M Cario-André
- University of Bordeaux and INSERM U1035, University of Bordeaux, Bordeaux, France
| | - J Seneschal
- Department of Paediatric Dermatology, National Centre for Rare Skin Disorders, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France.,University of Bordeaux and INSERM U1035, University of Bordeaux, Bordeaux, France
| | - K Ezzedine
- Department of Paediatric Dermatology, National Centre for Rare Skin Disorders, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France.,University of Bordeaux and INSERM U1035, University of Bordeaux, Bordeaux, France
| | - A Taïeb
- Department of Paediatric Dermatology, National Centre for Rare Skin Disorders, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France.,University of Bordeaux and INSERM U1035, University of Bordeaux, Bordeaux, France
| |
Collapse
|
32
|
Understanding Melanocyte Stem Cells for Disease Modeling and Regenerative Medicine Applications. Int J Mol Sci 2015; 16:30458-69. [PMID: 26703580 PMCID: PMC4691150 DOI: 10.3390/ijms161226207] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 02/04/2023] Open
Abstract
Melanocytes in the skin play an indispensable role in the pigmentation of skin and its appendages. It is well known that the embryonic origin of melanocytes is neural crest cells. In adult skin, functional melanocytes are continuously repopulated by the differentiation of melanocyte stem cells (McSCs) residing in the epidermis of the skin. Many preceding studies have led to significant discoveries regarding the cellular and molecular characteristics of this unique stem cell population. The alteration of McSCs has been also implicated in several skin abnormalities and disease conditions. To date, our knowledge of McSCs largely comes from studying the stem cell niche of mouse hair follicles. Suggested by several anatomical differences between mouse and human skin, there could be distinct features associated with mouse and human McSCs as well as their niches in the skin. Recent advances in human pluripotent stem cell (hPSC) research have provided us with useful tools to potentially acquire a substantial amount of human McSCs and functional melanocytes for research and regenerative medicine applications. This review highlights recent studies and progress involved in understanding the development of cutaneous melanocytes and the regulation of McSCs.
Collapse
|