1
|
Yue L, Xu H. MicroRNA-200c promotes trophoblast cell dysfunction via inhibition of PI3K/Akt signaling in unexplained recurrent spontaneous abortion. Reprod Biol 2024; 24:100951. [PMID: 39243437 DOI: 10.1016/j.repbio.2024.100951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/24/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Dysfunction in trophoblast cells is closely associated with the development of recurrent spontaneous abortion (RSA). Previous reports have indicated that microRNA (miR)-200c was upregulated in the serum of patients who have had abortions. This study aimed to investigate the regulatory effects and mechanisms of miR-200c in trophoblast cells. The human extravillous trophoblast cell line HTR-8/SVneo was either subjected to knockdown or overexpression of miR-200c, and its levels were measured using RT-qPCR. The cell behaviors of HTR-8/SVneo were assessed using CCK-8, Transwell, wound healing assays, and flow cytometry. Western blotting was used to detect the protein levels of Ki67, Bcl-2, Bax, MMP2/9, and PI3K/Akt-related markers. The findings revealed that miR-200c levels were higher in the villous tissues of URSA patients. Depletion of miR-200c impeded HTR-8/SVneo cell apoptosis and enhanced cell migration, invasiveness, and proliferation, while overexpression of miR-200c exhibited the opposite effects. The data suggested that mechanistically, miR-200c inactivated PI3K/Akt signaling in trophoblast cells. Furthermore, rescue experiments demonstrated that blocking PI3K/Akt signaling reversed the effects of miR-200c depletion on HTR-8/SVneo cell behavior. Therefore, miR-200c depletion can potentially improve trophoblast cell function by activating PI3K/Akt signaling.
Collapse
Affiliation(s)
- Lei Yue
- Department of Obstetrics and Gynecology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Hui Xu
- Department of Obstetrics and Gynecology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
2
|
Afsar S, Syed RU, Khojali WMA, Masood N, Osman ME, Jyothi JS, Hadi MA, Khalifa AAS, Aboshouk NAM, Alsaikhan HA, Alafnan AS, Alrashidi BA. Non-coding RNAs in BRAF-mutant melanoma: targets, indicators, and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03366-3. [PMID: 39167168 DOI: 10.1007/s00210-024-03366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Melanoma, a highly aggressive skin cancer, is often driven by BRAF mutations, such as the V600E mutation, which promotes cancer growth through the MAPK pathway and contributes to treatment resistance. Understanding the role of non-coding RNAs (ncRNAs) in these processes is crucial for developing new therapeutic strategies. This review aims to elucidate the relationship between ncRNAs and BRAF mutations in melanoma, focusing on their regulatory roles and impact on treatment resistance. We comprehensively reviewed current literature to synthesize evidence on ncRNA-mediated regulation of BRAF-mutant melanoma and their influence on therapeutic responses. Key ncRNAs, including microRNAs and long ncRNAs, were identified as significant regulators of melanoma development and therapy resistance. MicroRNAs such as miR-15/16 and miR-200 families modulate critical pathways like Wnt signaling and melanogenesis. Long ncRNAs like ANRIL and SAMMSON play roles in cell growth, invasion, and drug susceptibility. Specific ncRNAs, such as BANCR and RMEL3, intersect with the MAPK pathway, highlighting their potential as therapeutic targets or biomarkers in BRAF-mutant melanoma. Additionally, ncRNAs involved in drug resistance, such as miR-579-3p and miR-1246, target processes like autophagy and immune checkpoint regulation. This review highlights the pivotal roles of ncRNAs in regulating BRAF-mutant melanoma and their contribution to drug resistance. These findings underscore the potential of ncRNAs as biomarkers and therapeutic targets, paving the way for innovative treatments to improve outcomes for melanoma patients.
Collapse
Affiliation(s)
- S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh, 517502, India.
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, 81442, Hail, Saudi Arabia.
| | - Weam M A Khojali
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Omdurman, 14415, Sudan
| | - Najat Masood
- Chemistry Department, Faculty of Science, University of Ha'il, P.O. Box 2440, 81451, Ha'il,, Saudi Arabia
| | - Mhdia Elhadi Osman
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - J Siva Jyothi
- Department of Pharmaceutics, Hindu College of Pharmacy, Andhra Pradesh, India
| | - Mohd Abdul Hadi
- Department of Pharmaceutics, Bhaskar Pharmacy College, Moinabad, R.R.District, Hyderabad, 500075, Telangana, India
| | - Amna Abakar Suleiman Khalifa
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 81442, Hail, Saudi Arabia
| | - Nayla Ahmed Mohammed Aboshouk
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 81442, Hail, Saudi Arabia
| | | | | | | |
Collapse
|
3
|
Bezrookove V, Khan I, Bhattacharjee A, Fan J, Jones R, Sharma A, Nosrati M, Desprez PY, Salomonis N, Shi Y, Dar A, Kashani-Sabet M. miR-876-3p is a tumor suppressor on 9p21 that is inactivated in melanoma and targets ERK. J Transl Med 2024; 22:758. [PMID: 39138582 PMCID: PMC11321151 DOI: 10.1186/s12967-024-05527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/20/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND While melanomas commonly harbor losses of 9p21, on which CDKN2A resides, the presence of additional tumor suppressor elements at this locus is incompletely characterized. Here we assess the expression levels and functional role of microRNA-876-3p (miR-876), whose gene also maps to 9p21. METHODS Expression of miR-876 was assessed in human tissues and cell lines using quantitative miRNA reverse transcriptase polymerase chain reaction (qRT-PCR). MIR876 copy number was determined in The Cancer Genome Atlas (TCGA) melanoma cohort. The consequences of regulation of miR-876 expression were assessed on melanoma cell colony formation, migration, invasion, apoptosis, cell cycle progression, and drug sensitivity in culture, and on in vivo tumor growth in a xenograft model. Genome-wide transcriptomic changes induced by miR-876 overexpression were determined using RNA sequencing (RNA-Seq). RESULTS miR-876 expression was significantly decreased in primary melanoma samples when compared with nevi, and in human melanoma cell lines when compared with human melanocytes. Analysis of the TCGA cohort revealed deletions in MIR876 in > 50% of melanomas. miR-876 overexpression resulted in decreased melanoma cell colony formation, migration, and invasion, which was accompanied by cell cycle arrest and increased apoptosis. Intra-tumoral injections of miR-876 significantly suppressed melanoma growth in vivo. RNA-Seq analysis of miR-876-treated tumors revealed downregulation of several growth-promoting genes, along with upregulation of tumor suppressor genes, which was confirmed by qRT-PCR analysis. Computational analyses identified MAPK1 (or ERK2) as a possible target of miR-876 action. Overexpression of miR-876 significantly suppressed luciferase expression driven by the MAPK1/ERK2 3' UTR, and resulted in decreased ERK protein expression in melanoma cells. MAPK1/ERK2 cDNA overexpression rescued the effects of miR-876 on melanoma colony formation. miR-876 overexpression sensitized melanoma cells to treatment with the BRAF inhibitor vemurafenib. CONCLUSIONS These studies identify miR-876 as a distinct tumor suppressor on 9p21 that is inactivated in melanoma and suggest miR-876 loss as an additional mechanism to activate ERK and the mitogen activated protein kinase (MAPK) pathway in melanoma. In addition, they suggest the therapeutic potential of combining miR-876 overexpression with BRAF inhibition as a rational therapeutic strategy for melanoma.
Collapse
Affiliation(s)
- Vladimir Bezrookove
- California Pacific Medical Center (CPMC) Research Institute, 475 Brannan St., Suite 130, San Francisco, CA, 94107, USA
- Center for Melanoma Research and Treatment, CPMC, San Francisco, CA, USA
| | - Imran Khan
- California Pacific Medical Center (CPMC) Research Institute, 475 Brannan St., Suite 130, San Francisco, CA, 94107, USA
- Center for Melanoma Research and Treatment, CPMC, San Francisco, CA, USA
| | - Anukana Bhattacharjee
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Juifang Fan
- California Pacific Medical Center (CPMC) Research Institute, 475 Brannan St., Suite 130, San Francisco, CA, 94107, USA
| | - Robyn Jones
- California Pacific Medical Center (CPMC) Research Institute, 475 Brannan St., Suite 130, San Francisco, CA, 94107, USA
| | - Anima Sharma
- California Pacific Medical Center (CPMC) Research Institute, 475 Brannan St., Suite 130, San Francisco, CA, 94107, USA
| | - Mehdi Nosrati
- California Pacific Medical Center (CPMC) Research Institute, 475 Brannan St., Suite 130, San Francisco, CA, 94107, USA
- Center for Melanoma Research and Treatment, CPMC, San Francisco, CA, USA
| | - Pierre-Yves Desprez
- California Pacific Medical Center (CPMC) Research Institute, 475 Brannan St., Suite 130, San Francisco, CA, 94107, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yihui Shi
- California Pacific Medical Center (CPMC) Research Institute, 475 Brannan St., Suite 130, San Francisco, CA, 94107, USA
| | - Altaf Dar
- California Pacific Medical Center (CPMC) Research Institute, 475 Brannan St., Suite 130, San Francisco, CA, 94107, USA
| | - Mohammed Kashani-Sabet
- California Pacific Medical Center (CPMC) Research Institute, 475 Brannan St., Suite 130, San Francisco, CA, 94107, USA.
- Center for Melanoma Research and Treatment, CPMC, San Francisco, CA, USA.
| |
Collapse
|
4
|
Nikolova E, Laleva L, Milev M, Spiriev T, Stoyanov S, Ferdinandov D, Mitev V, Todorova A. miRNAs and related genetic biomarkers according to the WHO glioma classification: From diagnosis to future therapeutic targets. Noncoding RNA Res 2024; 9:141-152. [PMID: 38035044 PMCID: PMC10686814 DOI: 10.1016/j.ncrna.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 12/02/2023] Open
Abstract
In the 2021 WHO classification of Tumors of the Central Nervous System, additional molecular characteristics have been included, defining the following adult-type diffuse glioma entities: Astrocytoma IDH-mutant, Oligodendroglioma IDH-mutant and 1p/19q-codeleted, and Glioblastoma IDH-wildtype. Despite advances in genetic analysis, precision oncology, and targeted therapy, malignant adult-type diffuse gliomas remain "hard-to-treat tumors", indicating an urgent need for better diagnostic and therapeutic strategies. In the last decades, miRNA analysis has been a hotspot for researching and developing diagnostic, prognostic, and predictive biomarkers for various disorders, including brain cancer. Scientific interest has recently been directed towards therapeutic applications of miRNAs, with encouraging results. Databases such as NCBI, PubMed, and Medline were searched for a selection of articles reporting the relationship between deregulated miRNAs and genetic aberrations used in the latest WHO CNS classification. The current review discussed the recommended molecular biomarkers and genetic aberrations based on the 2021 WHO classification in adult-type diffuse gliomas, along with associated deregulated miRNAs. Additionally, the study highlights miRNA-based treatment advancements in adults with gliomas.
Collapse
Affiliation(s)
- Emiliya Nikolova
- Department of Medical Chemistry and Biochemistry, Medical University – Sofia, Sofia, 1431, Bulgaria
- Independent Medico-Diagnostic Laboratory Genome Center Bulgaria, Sofia, 1612, Bulgaria
| | - Lili Laleva
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Milko Milev
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Toma Spiriev
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Stoycho Stoyanov
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Dilyan Ferdinandov
- Department of Neurosurgery, Medical University – Sofia, Sofia, 1431, Bulgaria
| | - Vanyo Mitev
- Department of Medical Chemistry and Biochemistry, Medical University – Sofia, Sofia, 1431, Bulgaria
| | - Albena Todorova
- Department of Medical Chemistry and Biochemistry, Medical University – Sofia, Sofia, 1431, Bulgaria
- Independent Medico-Diagnostic Laboratory Genome Center Bulgaria, Sofia, 1612, Bulgaria
| |
Collapse
|
5
|
Castellani G, Buccarelli M, Arasi MB, Rossi S, Pisanu ME, Bellenghi M, Lintas C, Tabolacci C. BRAF Mutations in Melanoma: Biological Aspects, Therapeutic Implications, and Circulating Biomarkers. Cancers (Basel) 2023; 15:4026. [PMID: 37627054 PMCID: PMC10452867 DOI: 10.3390/cancers15164026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Melanoma is an aggressive form of skin cancer resulting from the malignant transformation of melanocytes. Recent therapeutic approaches, including targeted therapy and immunotherapy, have improved the prognosis and outcome of melanoma patients. BRAF is one of the most frequently mutated oncogenes recognised in melanoma. The most frequent oncogenic BRAF mutations consist of a single point mutation at codon 600 (mostly V600E) that leads to constitutive activation of the BRAF/MEK/ERK (MAPK) signalling pathway. Therefore, mutated BRAF has become a useful target for molecular therapy and the use of BRAF kinase inhibitors has shown promising results. However, several resistance mechanisms invariably develop leading to therapeutic failure. The aim of this manuscript is to review the role of BRAF mutational status in the pathogenesis of melanoma and its impact on differentiation and inflammation. Moreover, this review focuses on the mechanisms responsible for resistance to targeted therapies in BRAF-mutated melanoma and provides an overview of circulating biomarkers including circulating tumour cells, circulating tumour DNA, and non-coding RNAs.
Collapse
Affiliation(s)
- Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Beatrice Arasi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Elena Pisanu
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Maria Bellenghi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| |
Collapse
|
6
|
Role of miRNA in Melanoma Development and Progression. Int J Mol Sci 2022; 24:ijms24010201. [PMID: 36613640 PMCID: PMC9820801 DOI: 10.3390/ijms24010201] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Melanoma is one of the most aggressive and progressive skin cancers. It develops from normal pigment-producing cells known as melanocytes, so it is important to know the mechanism behind such transformations. The study of metastasis mechanisms is crucial for a better understanding the biology of neoplastic cells. Metastasis of melanoma, or any type of cancer, is a multi-stage process in which the neoplastic cells leave the primary tumour, travel through the blood and/or lymphatic vessels, settle in distant organs and create secondary tumours. MicroRNA (miRNA) can participate in several steps of the metastatic process. This review presents the role of miRNA molecules in the development and progression as well as the immune response to melanoma.
Collapse
|
7
|
Andrews MC, Oba J, Wu CJ, Zhu H, Karpinets T, Creasy CA, Forget MA, Yu X, Song X, Mao X, Robertson AG, Romano G, Li P, Burton EM, Lu Y, Sloane RS, Wani KM, Rai K, Lazar AJ, Haydu LE, Bustos MA, Shen J, Chen Y, Morgan MB, Wargo JA, Kwong LN, Haymaker CL, Grimm EA, Hwu P, Hoon DSB, Zhang J, Gershenwald JE, Davies MA, Futreal PA, Bernatchez C, Woodman SE. Multi-modal molecular programs regulate melanoma cell state. Nat Commun 2022; 13:4000. [PMID: 35810190 PMCID: PMC9271073 DOI: 10.1038/s41467-022-31510-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Melanoma cells display distinct intrinsic phenotypic states. Here, we seek to characterize the molecular regulation of these states using multi-omic analyses of whole exome, transcriptome, microRNA, long non-coding RNA and DNA methylation data together with reverse-phase protein array data on a panel of 68 highly annotated early passage melanoma cell lines. We demonstrate that clearly defined cancer cell intrinsic transcriptomic programs are maintained in melanoma cells ex vivo and remain highly conserved within melanoma tumors, are associated with distinct immune features within tumors, and differentially correlate with checkpoint inhibitor and adoptive T cell therapy efficacy. Through integrative analyses we demonstrate highly complex multi-omic regulation of melanoma cell intrinsic programs that provide key insights into the molecular maintenance of phenotypic states. These findings have implications for cancer biology and the identification of new therapeutic strategies. Further, these deeply characterized cell lines will serve as an invaluable resource for future research in the field.
Collapse
Affiliation(s)
- Miles C. Andrews
- grid.1002.30000 0004 1936 7857Department of Medicine, Monash University, Melbourne, VIC Australia ,grid.240145.60000 0001 2291 4776Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Junna Oba
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.26091.3c0000 0004 1936 9959Department of Extended Intelligence for Medicine, The Ishii-Ishibashi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Chang-Jiun Wu
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Haifeng Zhu
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Tatiana Karpinets
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Caitlin A. Creasy
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Marie-Andrée Forget
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Xiaoxing Yu
- grid.26091.3c0000 0004 1936 9959Department of Extended Intelligence for Medicine, The Ishii-Ishibashi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Xingzhi Song
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Xizeng Mao
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - A. Gordon Robertson
- grid.434706.20000 0004 0410 5424Canada’s Michael Smith Genome Sciences Center, BC Cancer, Vancouver, BC Canada ,Dxige Research Inc., Courtenay, BC Canada
| | - Gabriele Romano
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Peng Li
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Elizabeth M. Burton
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Yiling Lu
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Robert Szczepaniak Sloane
- grid.240145.60000 0001 2291 4776Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Khalida M. Wani
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Kunal Rai
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Alexander J. Lazar
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Lauren E. Haydu
- grid.240145.60000 0001 2291 4776Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Matias A. Bustos
- grid.416507.10000 0004 0450 0360Departments of Translational Molecular Medicine and Genomic Sequencing Center, St John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA USA
| | - Jianjun Shen
- grid.240145.60000 0001 2291 4776Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX USA
| | - Yueping Chen
- grid.240145.60000 0001 2291 4776Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX USA
| | - Margaret B. Morgan
- grid.240145.60000 0001 2291 4776Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Jennifer A. Wargo
- grid.240145.60000 0001 2291 4776Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Lawrence N. Kwong
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Cara L. Haymaker
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Elizabeth A. Grimm
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Patrick Hwu
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.468198.a0000 0000 9891 5233H Lee Moffitt Cancer Center, Tampa, FL USA
| | - Dave S. B. Hoon
- grid.416507.10000 0004 0450 0360Departments of Translational Molecular Medicine and Genomic Sequencing Center, St John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA USA
| | - Jianhua Zhang
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Jeffrey E. Gershenwald
- grid.240145.60000 0001 2291 4776Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Michael A. Davies
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - P. Andrew Futreal
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Chantale Bernatchez
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Biologics Development, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Scott E. Woodman
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
8
|
Safaei S, Amini M, Najjary S, Mokhtarzadeh A, Bolandi N, Saeedi H, Alizadeh N, Javadrashid D, Baradaran B. miR-200c increases the sensitivity of breast cancer cells to Doxorubicin through downregulating MDR1 gene. Exp Mol Pathol 2022; 125:104753. [DOI: 10.1016/j.yexmp.2022.104753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 02/03/2022] [Accepted: 02/24/2022] [Indexed: 12/28/2022]
|
9
|
Montico B, Giurato G, Pecoraro G, Salvati A, Covre A, Colizzi F, Steffan A, Weisz A, Maio M, Sigalotti L, Fratta E. The pleiotropic roles of circular and long noncoding RNAs in cutaneous melanoma. Mol Oncol 2022; 16:565-593. [PMID: 34080276 PMCID: PMC8807361 DOI: 10.1002/1878-0261.13034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Cutaneous melanoma (CM) is a very aggressive disease, often characterized by unresponsiveness to conventional therapies and high mortality rates worldwide. The identification of the activating BRAFV600 mutations in approximately 50% of CM patients has recently fueled the development of novel small-molecule inhibitors that specifically target BRAFV600 -mutant CM. In addition, a major progress in CM treatment has been made by monoclonal antibodies that regulate the immune checkpoint inhibitors. However, although target-based therapies and immunotherapeutic strategies have yielded promising results, CM treatment remains a major challenge. In the last decade, accumulating evidence points to the aberrant expression of different types of noncoding RNAs (ncRNAs) in CM. While studies on microRNAs have grown exponentially leading to significant insights on CM biology, the role of circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) in this tumor is less understood, and much remains to be discovered. Here, we summarize and critically review the available evidence on the molecular functions of circRNAs and lncRNAs in BRAFV600 -mutant CM and CM immunogenicity, providing recent updates on their functional role in targeted therapy and immunotherapy resistance. In addition, we also include an evaluation of several algorithms and databases for prediction and validation of circRNA and lncRNA functional interactions.
Collapse
Affiliation(s)
- Barbara Montico
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Giovanni Pecoraro
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
| | - Alessia Covre
- Center for Immuno‐OncologyUniversity Hospital of SienaItaly
- University of SienaItaly
| | - Francesca Colizzi
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Agostino Steffan
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Michele Maio
- Center for Immuno‐OncologyUniversity Hospital of SienaItaly
- University of SienaItaly
- NIBIT Foundation OnlusSienaItaly
| | - Luca Sigalotti
- Oncogenetics and Functional Oncogenomics UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Elisabetta Fratta
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| |
Collapse
|
10
|
Zhong J, Yan W, Wang C, Liu W, Lin X, Zou Z, Sun W, Chen Y. BRAF Inhibitor Resistance in Melanoma: Mechanisms and Alternative Therapeutic Strategies. Curr Treat Options Oncol 2022; 23:1503-1521. [PMID: 36181568 PMCID: PMC9596525 DOI: 10.1007/s11864-022-01006-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 01/30/2023]
Abstract
OPINION STATEMENT Melanoma is caused by a variety of somatic mutations, and among these mutations, BRAF mutation occurs most frequently and has routinely been evaluated as a critical diagnostic biomarker in clinical practice. The introduction of targeted agents for BRAF-mutant melanoma has significantly improved overall survival in a large proportion of patients. However, there is BRAF inhibitor resistance in most patients, and its mechanisms are complicated and need further clarification. Additionally, treatment approaches to overcome resistance have evolved rapidly, shifting from monotherapy to multimodality treatment, which has dramatically improved patient outcomes in clinical trials and practice. This review highlights the mechanisms of BRAF inhibitor resistance in melanoma and discusses the current state of its therapeutic approaches that can be further explored in clinical practice.
Collapse
Affiliation(s)
- Jingqin Zhong
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Wangjun Yan
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Chunmeng Wang
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Wanlin Liu
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Xinyi Lin
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Zijian Zou
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Wei Sun
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Yong Chen
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| |
Collapse
|
11
|
Non-coding RNA dysregulation in skin cancers. Essays Biochem 2021; 65:641-655. [PMID: 34414406 DOI: 10.1042/ebc20200048] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
Skin cancers are the most common cancers worldwide. They can be classified in melanoma and non-melanoma skin cancer (NMSC), the latter includes squamous cell carcinoma (SCC), basal cell carcinoma (BCC) and merkel cell carcinoma (MCC). In recent years, the crucial role of non-coding RNAs (ncRNAs) in skin cancer pathogenesis has become increasingly evident. NcRNAs are functional RNA molecules that lack any protein-coding activity. These ncRNAs are classified based on their length: small, medium-size, and long ncRNAs. Among the most studied ncRNAs there are microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNA (circRNAs). ncRNAs have the ability to regulate gene expression at transcriptional and post-transcriptional levels and are involved in skin cancer cell proliferation, angiogenesis, invasion, and metastasis. Many ncRNAs exhibit tissue- or cell-specific expression while others have been correlated to tumor staging, drug resistance, and prognosis. For these reasons, ncRNAs have both a diagnostic and prognostic significance in skin cancers. Our review summarizes the functional role of ncRNAs in skin cancers and their potential clinical application as biomarkers.
Collapse
|
12
|
Peng Q, Wang J. Non-coding RNAs in melanoma: Biological functions and potential clinical applications. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:219-231. [PMID: 34514101 PMCID: PMC8424110 DOI: 10.1016/j.omto.2021.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malignant melanoma (MM) is a malignant tumor that originates from melanocytes and has a high mortality rate. Therefore, early diagnosis and treatment are very important for survival. So far, the exact molecular mechanism leading to the occurrence of melanoma, especially the molecular metastatic mechanism, remains largely unknown. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNA (circRNAs), have been investigated and found to play vital roles in regulating tumor occurrence and development, including melanoma. In this review, we summarize the progress of recent research on the effects of ncRNAs on melanoma and attempt to elucidate the role of ncRNAs as molecular markers or potential targets that will provide promising application perspectives on melanoma.
Collapse
Affiliation(s)
- Qiu Peng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China
| | - Jia Wang
- Department of Immunology, Changzhi Medical College, Changzhi, Shanxi 046000 China
| |
Collapse
|
13
|
Colak DK, Egeli U, Eryilmaz IE, Aybastier O, Malyer H, Cecener G, Tunca B. The Anticancer Effect of Inula viscosa Methanol Extract by miRNAs' Re-regulation: An in vitro Study on Human Malignant Melanoma Cells. Nutr Cancer 2021; 74:211-224. [PMID: 33570434 DOI: 10.1080/01635581.2020.1869791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Alternative and natural therapies are needed for malignant melanoma (MM), the most deadly skin cancer type due to chemotherapy's limited effect. In the present study, we evaluated the anticancer potentials of Inula viscosa methanol and water extracts (IVM and IVW) on MM cells, A2058 and MeWo, and normal fibroblasts. After the chromatographic and antioxidant activity analysis, their antiproliferative effects were determined with the increasing doses for 24-72 h. IVM induced more cell death in a dose and time-dependent manner in MM cells compared to IVW. This effect was probably due to the higher amount of phenolics in it. IVM significantly induced more apoptotic death in MM cells than fibroblasts (p < 0.01), which was also supported morphologically. IVM also caused cell cycle arrest at G0/G1 and G2/M phases in A2058 and MeWo, respectively, and suppressed the migration ability of MM cells (p < 0.01). Additionally, IVM was found to have significant potential in regulating MM-related miRNAs, upregulating miR-579 and miR-524, and downregulating miR-191 and miR-193, in MM cells (p < 0.05, p < 0.01). As a result, the anticancer effect of IVM via regulating miRNAs' expression has been demonstrated for the first time. Thus, IVM, with these potentials, may be a promising candidate for MM treatment.
Collapse
Affiliation(s)
| | - Unal Egeli
- Medical Biology Department, Bursa Uludag University, Bursa, Turkey
| | | | - Onder Aybastier
- Analytical Chemistry Department, Bursa Uludag University, Bursa, Turkey
| | - Hulusi Malyer
- Biology Department, Bursa Uludag University, Bursa, Turkey
| | - Gulsah Cecener
- Medical Biology Department, Bursa Uludag University, Bursa, Turkey
| | - Berrin Tunca
- Medical Biology Department, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
14
|
Lazăr AD, Dinescu S, Costache M. The Non-Coding Landscape of Cutaneous Malignant Melanoma: A Possible Route to Efficient Targeted Therapy. Cancers (Basel) 2020; 12:cancers12113378. [PMID: 33203119 PMCID: PMC7696690 DOI: 10.3390/cancers12113378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Considered to be highly lethal if not diagnosed in early stages, cutaneous malignant melanoma is among the most aggressive and treatment-resistant human cancers, and its incidence continues to rise, largely due to ultraviolet radiation exposure, which is the main carcinogenic factor. Over the years, researchers have started to unveil the molecular mechanisms by which malignant melanoma can be triggered and sustained, in order to establish specific, reliable biomarkers that could aid the prognosis and diagnosis of this fatal disease, and serve as targets for development of novel efficient therapies. The high mutational burden and heterogeneous nature of melanoma shifted the main focus from the genetic landscape to epigenetic and epitranscriptomic modifications, aiming at elucidating the role of non-coding RNA molecules in the fine tuning of melanoma progression. Here we review the contribution of microRNAs and lncRNAs to melanoma invasion, metastasis and acquired drug resistance, highlighting their potential for clinical applications as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Andreea D. Lazăr
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (A.D.L.); (M.C.)
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (A.D.L.); (M.C.)
- Research Institute of the University of Bucharest, 050663 Bucharest, Romania
- Correspondence:
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (A.D.L.); (M.C.)
- Research Institute of the University of Bucharest, 050663 Bucharest, Romania
| |
Collapse
|
15
|
Nguyen MHT, Lin CH, Liu SM, Miyashita A, Ihn H, Lin H, Ng CH, Tsai JC, Chen MH, Tsai MS, Lin IY, Liu SC, Li LY, Fukushima S, Lu J, Ma N. miR-524-5p reduces the progression of the BRAF inhibitor-resistant melanoma. Neoplasia 2020; 22:789-799. [PMID: 33142243 PMCID: PMC7642759 DOI: 10.1016/j.neo.2020.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
BRAF inhibitors were approved for the treatment of BRAF-mutant melanoma. However, most patients acquire the resistance to BRAF inhibitors after several months of treatment. miR-524-5p is considered as a tumor suppressor in many cancers, including melanoma. In this study, we investigated the biological functions of miR-524-5p in melanoma with acquired resistance to BRAF inhibitor and evaluated the endogenous miR-524-5p expression as a biomarker for melanoma. The results showed that the expression of miR-524-5p was 0.481-fold lower in melanoma tissues (n = 117) than in nevus tissues (n = 40). Overexpression of miR-524-5p significantly reduced proliferative, anchorage-independent growth, migratory and invasive abilities of BRAF inhibitor-resistant melanoma cells. Moreover, the introduction of miR-524-5p led to a reduced development of BRAF inhibitor-resistant melanoma in vivo. Remarkably, the MAPK/ERK signaling pathway was decreased after treatment with miR-524-5p. Furthermore, next-generation sequencing analysis implied that the complement system, leukocyte extravasation, liver X receptor/retinoid-X-receptor activation, and cAMP-mediated signaling may be related to miR-524-5p-induced pathways in the resistant cells. The miR-524-5p level was higher on average in complete response and long-term partial response patients than in progressive disease and short-term partial response patients treated with BRAF inhibitors. Our results proposed that miR-524-5p could be considered as a target for treatment BRAF inhibitor-resistant melanoma and a prognostic marker in the response of patients to BRAF inhibitors for melanoma.
Collapse
Affiliation(s)
- Mai-Huong Thi Nguyen
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Chen-Huan Lin
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Szu-Mam Liu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Azusa Miyashita
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hsuan Lin
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan; Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi Hou Ng
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jen-Chieh Tsai
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Ming-Hong Chen
- Department of Pathology, Saint Paul's Hospital, Taoyuan, Taiwan
| | - Mu-Shiun Tsai
- Department of Pathology, Landseed Hospital, Taoyuan, Taiwan
| | - In-Yu Lin
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Shu-Chen Liu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Long-Yuan Li
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Jean Lu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan; Department of Life Science, Tzu Chi University, Hualien, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; National Core Facility Program for Biotechnology, National RNAi Platform, Taipei, Taiwan.
| | - Nianhan Ma
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
16
|
DiVincenzo MJ, Latchana N, Abrams Z, Moufawad M, Regan-Fendt K, Courtney NB, Howard JH, Gru AA, Zhang X, Fadda P, Carson WE. Tissue microRNA expression profiling in hepatic and pulmonary metastatic melanoma. Melanoma Res 2020; 30:455-464. [PMID: 32804708 PMCID: PMC7484309 DOI: 10.1097/cmr.0000000000000692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Malignant melanoma has a propensity for the development of hepatic and pulmonary metastases. MicroRNAs (miRs) are small, noncoding RNA molecules containing about 22 nucleotides that mediate protein expression and can contribute to cancer progression. We aim to identify clinically useful differences in miR expression in metastatic melanoma tissue. RNA was extracted from formalin-fixed, paraffin-embedded samples of hepatic and pulmonary metastatic melanoma, benign, nevi, and primary cutaneous melanoma. Assessment of miR expression was performed on purified RNA using the NanoString nCounter miRNA assay. miRs with greater than twofold change in expression when compared to other tumor sites (P value ≤ 0.05, modified t-test) were identified as dysregulated. Common gene targets were then identified among dysregulated miRs unique to each metastatic site. Melanoma metastatic to the liver had differential expression of 26 miRs compared to benign nevi and 16 miRs compared to primary melanoma (P < 0.048). Melanoma metastatic to the lung had differential expression of 19 miRs compared to benign nevi and 10 miRs compared to primary melanoma (P < 0.024). Compared to lung metastases, liver metastases had greater than twofold upregulation of four miRs, and 4.2-fold downregulation of miR-200c-3p (P < 0.0081). These findings indicate that sites of metastatic melanoma have unique miR profiles that may contribute to their development and localization. Further investigation of the utility of these miRs as diagnostic and prognostic biomarkers and their impact on the development of metastatic melanoma is warranted.
Collapse
Affiliation(s)
| | | | - Zachary Abrams
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Maribelle Moufawad
- The Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
| | - Kelly Regan-Fendt
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Nicholas B. Courtney
- The Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
| | | | - Alejandro A. Gru
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Paolo Fadda
- The Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
| | - William E. Carson
- The Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
- Department of Surgery, The Ohio State University, Columbus, OH
| |
Collapse
|
17
|
Proietti I, Skroza N, Bernardini N, Tolino E, Balduzzi V, Marchesiello A, Michelini S, Volpe S, Mambrin A, Mangino G, Romeo G, Maddalena P, Rees C, Potenza C. Mechanisms of Acquired BRAF Inhibitor Resistance in Melanoma: A Systematic Review. Cancers (Basel) 2020; 12:E2801. [PMID: 33003483 PMCID: PMC7600801 DOI: 10.3390/cancers12102801] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
This systematic review investigated the literature on acquired v-raf murine sarcoma viral oncogene homolog B1 (BRAF) inhibitor resistance in patients with melanoma. We searched MEDLINE for articles on BRAF inhibitor resistance in patients with melanoma published since January 2010 in the following areas: (1) genetic basis of resistance; (2) epigenetic and transcriptomic mechanisms; (3) influence of the immune system on resistance development; and (4) combination therapy to overcome resistance. Common resistance mutations in melanoma are BRAF splice variants, BRAF amplification, neuroblastoma RAS viral oncogene homolog (NRAS) mutations and mitogen-activated protein kinase kinase 1/2 (MEK1/2) mutations. Genetic and epigenetic changes reactivate previously blocked mitogen-activated protein kinase (MAPK) pathways, activate alternative signaling pathways, and cause epithelial-to-mesenchymal transition. Once BRAF inhibitor resistance develops, the tumor microenvironment reverts to a low immunogenic state secondary to the induction of programmed cell death ligand-1. Combining a BRAF inhibitor with a MEK inhibitor delays resistance development and increases duration of response. Multiple other combinations based on known mechanisms of resistance are being investigated. BRAF inhibitor-resistant cells develop a range of 'escape routes', so multiple different treatment targets will probably be required to overcome resistance. In the future, it may be possible to personalize combination therapy towards the specific resistance pathway in individual patients.
Collapse
Affiliation(s)
- Ilaria Proietti
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Nevena Skroza
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Nicoletta Bernardini
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Ersilia Tolino
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Veronica Balduzzi
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Anna Marchesiello
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Simone Michelini
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Salvatore Volpe
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Alessandra Mambrin
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (G.R.)
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (G.R.)
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00185 Rome, Italy
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
| | - Patrizia Maddalena
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | | | - Concetta Potenza
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| |
Collapse
|
18
|
Nguyen HT, Phung CD, Tran TH, Pham TT, Pham LM, Nguyen TT, Jeong JH, Choi HG, Ku SK, Yong CS, Kim JO. Manipulating immune system using nanoparticles for an effective cancer treatment: Combination of targeted therapy and checkpoint blockage miRNA. J Control Release 2020; 329:524-537. [PMID: 32971203 DOI: 10.1016/j.jconrel.2020.09.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023]
Abstract
Accumulating clinical data shows that less than half of patients are beneficial from PD-1/PD-L1 blockage therapy owing to the limited infiltration of effector immune cells into the tumor and abundant of the immunosuppressive factors in the tumor microenvironment. In this study, PD-L1 inhibition therapy and BRAF-targeted therapy, which showed clinical benefit, were combined in a CXCR4-targeted nanoparticle co-delivering dabrafenib (Dab), a BRAF inhibitor, and miR-200c which can down-regulate PD-L1 expression. The cationic PCL-PEI core containing Dab- and miR-200c- were coated with poly-L-glutamic acid conjugated with LY2510924, a CXCR-4 antagonist peptide, (PGA-pep) to obtain miR@PCL-PEI/Dab@PGA-pep nanoformulation. The stimulus pH- and redox- reactive of PGA-pep was ascribed to exhibit an enhanced release of drug in the tumor microenvironment as well as improve the stability of miR-200c during the blood circulation. In addition, the presence of LY2510924 peptide would enhance the binding affinity of miR@PCL-PEI/Dab@PGA-pep NPs to cancer cells, leading to improved cellular uptake, cytotoxicity, and in vivo accumulation into tumor area. The in vivo results indicated that both, the immunogenic cell death (ICD) and the inhibition of PD-L1 expression, induced by treatment with CXCR-4 targeted nanoparticles, enables to improve the DC maturation in lymph node and CD8+ T cell activation in the spleen. More importantly, effector T cells were increasingly infiltrated into the tumor, whereas the immunosuppressive factors like PD-L1 expression and regulatory T cells were significantly reduced. They, all together, promote the immune responses against the tumor, indicating the therapeutic efficiency of the current strategy in cancer treatment.
Collapse
Affiliation(s)
- Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Cao Dai Phung
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tuan Hiep Tran
- Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Viet Nam
| | - Tung Thanh Pham
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Le Minh Pham
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tiep Tien Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
19
|
MicroRNAs as Key Players in Melanoma Cell Resistance to MAPK and Immune Checkpoint Inhibitors. Int J Mol Sci 2020; 21:ijms21124544. [PMID: 32604720 PMCID: PMC7352536 DOI: 10.3390/ijms21124544] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Advances in the use of targeted and immune therapies have revolutionized the clinical management of melanoma patients, prolonging significantly their overall and progression-free survival. However, both targeted and immune therapies suffer limitations due to genetic mutations and epigenetic modifications, which determine a great heterogeneity and phenotypic plasticity of melanoma cells. Acquired resistance of melanoma patients to inhibitors of BRAF (BRAFi) and MEK (MEKi), which block the mitogen-activated protein kinase (MAPK) pathway, limits their prolonged use. On the other hand, immune checkpoint inhibitors improve the outcomes of patients in only a subset of them and the molecular mechanisms underlying lack of responses are under investigation. There is growing evidence that altered expression levels of microRNAs (miRNA)s induce drug-resistance in tumor cells and that restoring normal expression of dysregulated miRNAs may re-establish drug sensitivity. However, the relationship between specific miRNA signatures and acquired resistance of melanoma to MAPK and immune checkpoint inhibitors is still limited and not fully elucidated. In this review, we provide an updated overview of how miRNAs induce resistance or restore melanoma cell sensitivity to mitogen-activated protein kinase inhibitors (MAPKi) as well as on the relationship existing between miRNAs and immune evasion by melanoma cell resistant to MAPKi.
Collapse
|
20
|
Lorusso C, De Summa S, Pinto R, Danza K, Tommasi S. miRNAs as Key Players in the Management of Cutaneous Melanoma. Cells 2020; 9:E415. [PMID: 32054078 PMCID: PMC7072468 DOI: 10.3390/cells9020415] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
The number of treatment options for melanoma patients has grown in the past few years, leading to considerable improvements in both overall and progression-free survival. Targeted therapies and immune checkpoint inhibitors have opened a new era in the management of melanoma patients. Despite the clinical advances, further research efforts are needed to identify other "druggable" targets and new biomarkers to improve the stratification of melanoma patients who could really benefit from targeted and immunotherapies. To this end, many studies have focused on the role of microRNAs (miRNAs) that are small non-coding RNAs (18-25 nucleotides in length), which post-transcriptionally regulate the expression of their targets. In cancer, they can behave either as oncogenes or oncosuppressive genes and play a central role in many intracellular pathways involved in proliferation and invasion. Given their modulating activity on the transcriptional landscape, their biological role is under investigation to study resistance mechanisms. They are able to mediate the communication between tumor cells and their microenvironment and regulate tumor immunity through direct regulation of the genes involved in immune activation or suppression. To date, a very promising miRNA-based strategy is to use them as prognosis and diagnosis biomarkers both as cell-free miRNAs and extracellular-vesicle miRNAs. However, miRNAs have a complex role since they target different genes in different cellular conditions. Thus, the ultimate aim of studies has been to recapitulate their role in melanoma in biological networks that account for miRNA/gene expression and mutational state. In this review, we will provide an overview of current scientific knowledge regarding the oncogenic or oncosuppressive role of miRNAs in melanoma and their use as biomarkers, with respect to approved therapies for melanoma treatment.
Collapse
|
21
|
The miRNAs Role in Melanoma and in Its Resistance to Therapy. Int J Mol Sci 2020; 21:ijms21030878. [PMID: 32013263 PMCID: PMC7037367 DOI: 10.3390/ijms21030878] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 12/11/2022] Open
Abstract
Melanoma is the less common but the most malignant skin cancer. Since the survival rate of melanoma metastasis is about 10–15%, many different studies have been carried out in order to find a more effective treatment. Although the development of target-based therapies and immunotherapeutic strategies has improved chances for patient survival, melanoma treatment still remains a big challenge for oncologists. Here, we collect recent data about the emerging role of melanoma-associated microRNAs (miRNAs) currently available treatments, and their involvement in drug resistance. We also reviewed miRNAs as prognostic factors, because of their chemical stability and resistance to RNase activity, in melanoma progression. Moreover, despite miRNAs being considered small conserved regulators with the limitation of target specificity, we outline the dual role of melanoma-associated miRNAs, as oncogenic and/or tumor suppressive factors, compared to other tumors.
Collapse
|
22
|
Rossi A, Roberto M, Panebianco M, Botticelli A, Mazzuca F, Marchetti P. Drug resistance of BRAF-mutant melanoma: Review of up-to-date mechanisms of action and promising targeted agents. Eur J Pharmacol 2019; 862:172621. [PMID: 31446019 DOI: 10.1016/j.ejphar.2019.172621] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 12/29/2022]
Abstract
Melanoma onset and progression are associated with a high variety of activating mutations in the MAPK-pathway, most frequently involving BRAF (35-45%) and NRAS (15-25%) genes, but also c-KIT and PTEN. Targeted therapies with BRAF and MEK inhibitors showed promising results over the past years, but it is known that most responses are temporary, and almost all of patients develop a tumor relapse within one year. Different drug-resistance mechanisms underlie the progression of disease and activation of both MAPK and PI3K/AKT/mTOR pathways. Therefore, in this article we reviewed the main studies about clinical effects of several target inhibitors, describing properly the most prominent mechanisms of both intrinsic and acquired resistance. Furthermore, suggestive strategies for overcoming drug resistance and the most recent alternative combination therapies to optimize the use of MAPK pathway inhibitors were also discussed.
Collapse
Affiliation(s)
- Alessandro Rossi
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy
| | - Michela Roberto
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy; Department of Medical-Surgical Sciences and Translation Medicine, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy.
| | - Martina Panebianco
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy
| | - Andrea Botticelli
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy
| | - Federica Mazzuca
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy
| | - Paolo Marchetti
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy; Oncology Unit, IDI-IRCCS of Rome, Italy
| |
Collapse
|
23
|
Caporali S, Amaro A, Levati L, Alvino E, Lacal PM, Mastroeni S, Ruffini F, Bonmassar L, Antonini Cappellini GC, Felli N, Carè A, Pfeffer U, D'Atri S. miR-126-3p down-regulation contributes to dabrafenib acquired resistance in melanoma by up-regulating ADAM9 and VEGF-A. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:272. [PMID: 31227006 PMCID: PMC6588909 DOI: 10.1186/s13046-019-1238-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
Background Development of resistance to inhibitors of BRAF (BRAFi) and MEK (MEKi) remains a great challenge for targeted therapy in patients with BRAF-mutant melanoma. Here, we explored the role of miRNAs in melanoma acquired resistance to BRAFi. Methods miRNA expression in two BRAF-mutant melanoma cell lines and their dabrafenib-resistant sublines was determined using Affymetrix GeneChip® miRNA 3.1 microarrays and/or qRT-PCR. The effects of miR-126-3p re-expression on proliferation, apoptosis, cell cycle, ERK1/2 and AKT phosphorylation, dabrafenib sensitivity, invasiveness and VEGF-A secretion were evaluated in the dabrafenib-resistant sublines using MTT assays, flow cytometry, immunoblotting, invasion assays in Boyden chambers and ELISA. ADAM9, PIK3R2, MMP7 and CXCR4 expression in the sensitive and dabrafenib-resistant cells was determined by immunoblotting. Small RNA interference was performed to investigate the consequence of VEGFA or ADAM9 silencing on proliferation, invasiveness or dabrafenib sensitivity of the resistant sublines. Long-term proliferation assays were carried out in dabrafenib-sensitive cells to assess the effects of enforced miR-126-3p expression or ADAM9 silencing on resistance development. VEGF-A serum levels in melanoma patients treated with BRAFi or BRAFi+MEKi were evaluated at baseline (T0), after two months of treatment (T2) and at progression (TP) by ELISA. Results miR-126-3p was significantly down-regulated in the dabrafenib-resistant sublines as compared with their parental counterparts. miR-126-3p replacement in the drug-resistant cells inhibited proliferation, cell cycle progression, phosphorylation of ERK1/2 and/or AKT, invasiveness, VEGF-A and ADAM9 expression, and increased dabrafenib sensitivity. VEGFA or ADAM9 silencing impaired proliferation and invasiveness of the drug-resistant sublines. ADAM9 knock-down in the resistant cells increased dabrafenib sensitivity, whereas miR-126-3p enforced expression or ADAM9 silencing in the drug-sensitive cells delayed the development of resistance. At T0 and T2, statistically significant differences were observed in VEGF-A serum levels between patients who responded to therapy and patients who did not. In responder patients, a significant increase of VEGF-A levels was observed at TP versus T2. Conclusions Strategies restoring miR-126-3p expression or targeting VEGF-A or ADAM9 could restrain growth and metastasis of dabrafenib-resistant melanomas and increase their drug sensitivity. Circulating VEGF-A is a promising biomarker for predicting patients’ response to BRAFi or BRAFi+MEKi and for monitoring the onset of resistance. Electronic supplementary material The online version of this article (10.1186/s13046-019-1238-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simona Caporali
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167, Rome, Italy
| | - Adriana Amaro
- Molecular Pathology, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | - Lauretta Levati
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167, Rome, Italy
| | - Ester Alvino
- Institute of Translational Pharmacology, National Council of Research, Rome, Italy
| | - Pedro Miguel Lacal
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167, Rome, Italy
| | | | - Federica Ruffini
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167, Rome, Italy
| | - Laura Bonmassar
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167, Rome, Italy
| | | | - Nadia Felli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Carè
- Center of Gender Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Ulrich Pfeffer
- Molecular Pathology, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | - Stefania D'Atri
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167, Rome, Italy.
| |
Collapse
|
24
|
Gajos-Michniewicz A, Czyz M. Role of miRNAs in Melanoma Metastasis. Cancers (Basel) 2019; 11:E326. [PMID: 30866509 PMCID: PMC6468614 DOI: 10.3390/cancers11030326] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/16/2022] Open
Abstract
Tumour metastasis is a multistep process. Melanoma is a highly aggressive cancer and metastasis accounts for the majority of patient deaths. microRNAs (miRNAs) are non-coding RNAs that affect the expression of their target genes. When aberrantly expressed they contribute to the development of melanoma. While miRNAs can act locally in the cell where they are synthesized, they can also influence the phenotype of neighboring melanoma cells or execute their function in the direct tumour microenvironment by modulating ECM (extracellular matrix) and the activity of fibroblasts, endothelial cells, and immune cells. miRNAs are involved in all stages of melanoma metastasis, including intravasation into the lumina of vessels, survival during circulation in cardiovascular or lymphatic systems, extravasation, and formation of the pre-metastatic niche in distant organs. miRNAs contribute to metabolic alterations that provide a selective advantage during melanoma progression. They play an important role in the development of drug resistance, including resistance to targeted therapies and immunotherapies. Distinct profiles of miRNA expression are detected at each step of melanoma development. Since miRNAs can be detected in liquid biopsies, they are considered biomarkers of early disease stages or response to treatment. This review summarizes recent findings regarding the role of miRNAs in melanoma metastasis.
Collapse
Affiliation(s)
- Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland.
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland.
| |
Collapse
|
25
|
Riefolo M, Porcellini E, Dika E, Broseghini E, Ferracin M. Interplay between small and long non-coding RNAs in cutaneous melanoma: a complex jigsaw puzzle with missing pieces. Mol Oncol 2019; 13:74-98. [PMID: 30499222 PMCID: PMC6322194 DOI: 10.1002/1878-0261.12412] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
The incidence of cutaneous melanoma (CM) has increased in the past few decades. The biology of melanoma is characterized by a complex interaction between genetic, environmental and phenotypic factors. A greater understanding of the molecular mechanisms that promote melanoma cell growth and dissemination is crucial to improve diagnosis, prognostication, and treatment of CM. Both small and long non-coding RNAs (lncRNAs) have been identified to play a role in melanoma biology; microRNA and lncRNA expression is altered in transformed melanocytes and this in turn has functional effects on cell proliferation, apoptosis, invasion, metastasis, and immune response. Moreover, specific dysregulated ncRNAs were shown to have a diagnostic or prognostic role in melanoma and to drive the establishment of drug resistance. Here, we review the current literature on small and lncRNAs with a role in melanoma, with the aim of putting into some order this complex jigsaw puzzle.
Collapse
Affiliation(s)
- Mattia Riefolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Elisa Porcellini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Emi Dika
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Elisabetta Broseghini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| |
Collapse
|
26
|
Fattore L, Mancini R, Ascierto PA, Ciliberto G. The potential of BRAF-associated non-coding RNA as a therapeutic target in melanoma. Expert Opin Ther Targets 2018; 23:53-68. [PMID: 30507327 DOI: 10.1080/14728222.2019.1554057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The advent of targeted therapies and immune checkpoints inhibitors has enhanced the treatment of metastatic melanomas. Despite striking improvements of patients' survival, drug resistance continues to limit the efficacy of such treatments. Genetic and nongenetic/adaptive mechanisms of resistance could be involved; in the latter mechanism, noncoding RNAs (ncRNAs) are emerging as key players. Areas covered: This article outlines the current knowledge of ncRNA involvement in BRAF-mutant melanomas and the development of resistance to targeted/immunotherapies. We also discuss how ncRNAs can be exploited for the development of therapeutic and diagnostic approaches. Expert opinion: ncRNAs can be envisaged as powerful diagnostics and therapeutics. Despite progress in our knowledge about their deregulation in cancer, it is still difficult to derive universal and robust ncRNAs unique signatures of malignancy for diagnostic purposes, which need validation in large cohort of patients. Also, ncRNA specific targeting to melanoma cells in vivo requires the development of improved systemic delivery tools. In this regard, the development of stable nanodelivery particles seems to offer renewed hope for success in the clinic.
Collapse
Affiliation(s)
- Luigi Fattore
- a IRCCS , Regina Elena National Cancer Institute , Rome , Italy
| | - Rita Mancini
- b Department of Molecular and Clinical Medicine , University of Roma "Sapienza" , Rome , Italy
| | | | | |
Collapse
|
27
|
Abstract
In this short report, we pinpoint some technical and conceptual flaws that we found in the article entitled “miR-204-5p and miR-211-5p contribute to BRAF inhibitor resistance in melanoma” (Díaz-Martínez et al., Cancer Research 2018). We also discuss how, in our opinion, these flaws led Díaz-Martínez and colleagues to incorrect conclusions about the biological role that miR-204 and miR-211 play in melanoma and about the terms of their involvement in the phenomenon of resistance to BRAF inhibitors.
Collapse
|
28
|
Abstract
Loss of miR-200c is correlated to advanced cancer-subtypes due to increased EMT and decreased treatment efficacy by chemotherapeutics. As miRNAs regulate a multitude of targets, the analysis of differentially expressed proteins upon a genomic knock-out (KO) is of interest. In this study, we generated a TALENs KO of miR-200c in MCF7 breast cancer cells, excluded its compensation by family-members and evaluated the impact on the proteome by analyzing three individual KO-clones. We identified 26 key proteins and a variety of enrichments in metabolic and cytoskeletal pathways. In six of these targets (AGR2, FLNA/B, ALDH7A1, SCIN, GSTM3) the differential expression was additionally detected at mRNA level. Together, these alterations in protein abundance accounted for the observed biological phenotypes, i.e. increased migration and chemoresistance and altered metabolism, found in the miR-200c-KO clones. These findings provide novel insights into miR-200c and pave the way for further studies.
Collapse
|
29
|
miR-7 reverses the resistance to BRAFi in melanoma by targeting EGFR/IGF-1R/CRAF and inhibiting the MAPK and PI3K/AKT signaling pathways. Oncotarget 2018; 7:53558-53570. [PMID: 27448964 PMCID: PMC5288205 DOI: 10.18632/oncotarget.10669] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 06/29/2016] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are attractive therapeutic targets for various therapy-resistant tumors. However, the association between miRNA and BRAF inhibitor resistance in melanoma remains to be elucidated. We used microarray analysis to comprehensively study the miRNA expression profiling of vemurafenib resistant (VemR) A375 melanoma cells in relation to parental A375 melanoma cells. MicroRNA-7 (miR-7) was identified to be the most significantly down-regulated miRNA in VemR A375 melanoma cells. We also found that miR-7 was down-regulated in Mel-CVR cells (vemurafenib resistant Mel-CV melanoma cells). Reestablishment of miR-7 expression could reverse the resistance of both cells to vemurafenib. We showed that epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R) and CRAF were over-expressed in VemR A375 melanoma cells. Introduction of miR-7 mimics could markedly decrease the expressions of EGFR, IGF-1R and CRAF and further suppressed the activation of MAPK and PI3K/AKT pathway in VemR A375 melanoma cells. Furthermore, tumor growth was inhibited in an in vivo murine VemR A375 melanoma tumor model transfected with miR-7 mimics. Collectively, our study demonstrated that miR-7 could reverse the resistance to BRAF inhibitors in certain vemurafenib resistant melanoma cell lines. It could advance the field and provide the basis for further studies in BRAF inhibitor resistance in melanoma.
Collapse
|
30
|
Díaz-Martínez M, Benito-Jardón L, Alonso L, Koetz-Ploch L, Hernando E, Teixidó J. miR-204-5p and miR-211-5p Contribute to BRAF Inhibitor Resistance in Melanoma. Cancer Res 2017; 78:1017-1030. [PMID: 29229605 DOI: 10.1158/0008-5472.can-17-1318] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/03/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022]
Abstract
Melanoma treatment with the BRAF V600E inhibitor vemurafenib provides therapeutic benefits but the common emergence of drug resistance remains a challenge. We generated A375 melanoma cells resistant to vemurafenib with the goal of investigating changes in miRNA expression patterns that might contribute to resistance. Increased expression of miR-204-5p and miR-211-5p occurring in vemurafenib-resistant cells was determined to impact vemurafenib response. Their expression was rapidly affected by vemurafenib treatment through RNA stabilization. Similar effects were elicited by MEK and ERK inhibitors but not AKT or Rac inhibitors. Ectopic expression of both miRNA in drug-naïve human melanoma cells was sufficient to confer vemurafenib resistance and more robust tumor growth in vivo Conversely, silencing their expression in resistant cells inhibited cell growth. Joint overexpression of miR-204-5p and miR-211-5p durably stimulated Ras and MAPK upregulation after vemurafenib exposure. Overall, our findings show how upregulation of miR-204-5p and miR-211-5p following vemurafenib treatment enables the emergence of resistance, with potential implications for mechanism-based strategies to improve vemurafenib responses.Significance: Identification of miRNAs that enable resistance to BRAF inhibitors in melanoma suggests a mechanism-based strategy to limit resistance and improve clinical outcomes. Cancer Res; 78(4); 1017-30. ©2017 AACR.
Collapse
Affiliation(s)
- Marta Díaz-Martínez
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Lucía Benito-Jardón
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Lola Alonso
- Bioinformatics and Biostatistics Unit, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Lisa Koetz-Ploch
- Department of Pathology, New York University School of Medicine, NYU Langone Medical Center, New York, NY
| | - Eva Hernando
- Department of Pathology, New York University School of Medicine, NYU Langone Medical Center, New York, NY
| | - Joaquin Teixidó
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.
| |
Collapse
|
31
|
Romano G, Kwong LN. miRNAs, Melanoma and Microenvironment: An Intricate Network. Int J Mol Sci 2017; 18:ijms18112354. [PMID: 29112174 PMCID: PMC5713323 DOI: 10.3390/ijms18112354] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/02/2017] [Accepted: 11/05/2017] [Indexed: 12/14/2022] Open
Abstract
miRNAs are central players in cancer biology and they play a pivotal role in mediating the network communication between tumor cells and their microenvironment. In melanoma, miRNAs can impair or facilitate a wide array of processes, and here we will focus on: the epithelial to mesenchymal transition (EMT), the immune milieu, and metabolism. Multiple miRNAs can affect the EMT process, even at a distance, for example through exosome-mediated mechanisms. miRNAs also strongly act on some components of the immune system, regulating the activity of key elements such as antigen presenting cells, and can facilitate an immune evasive/suppressive phenotype. miRNAs are also involved in the regulation of metabolic processes, specifically in response to hypoxic stimuli where they can mediate the metabolic switch from an oxidative to a glycolytic metabolism. Overall, this review discusses and summarizes recent findings on miRNA regulation in the melanoma tumor microenvironment, analyzing their potential diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Gabriele Romano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Fattore L, Costantini S, Malpicci D, Ruggiero CF, Ascierto PA, Croce CM, Mancini R, Ciliberto G. MicroRNAs in melanoma development and resistance to target therapy. Oncotarget 2017; 8:22262-22278. [PMID: 28118616 PMCID: PMC5400662 DOI: 10.18632/oncotarget.14763] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/10/2017] [Indexed: 12/18/2022] Open
Abstract
microRNAs constitute a complex class of pleiotropic post-transcriptional regulators of gene expression involved in the control of several physiologic and pathologic processes. Their mechanism of action is primarily based on the imperfect matching of a seed region located at the 5′ end of a 21-23 nt sequence with a partially complementary sequence located in the 3′ untranslated region of target mRNAs. This leads to inhibition of mRNA translation and eventually to its degradation. Individual miRNAs are capable of binding to several mRNAs and several miRNAs are capable of influencing the function of the same mRNAs. In recent years networks of miRNAs are emerging as capable of controlling key signaling pathways responsible for the growth and propagation of cancer cells. Furthermore several examples have been provided which highlight the involvement of miRNAs in the development of resistance to targeted drug therapies. In this review we provide an updated overview of the role of miRNAs in the development of melanoma and the identification of the main downstream pathways controlled by these miRNAs. Furthermore we discuss a group of miRNAs capable to influence through their respective up- or down-modulation the development of resistance to BRAF and MEK inhibitors.
Collapse
Affiliation(s)
- Luigi Fattore
- Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale", Napoli, Italia
| | - Susan Costantini
- CROM, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Napoli, Italia
| | - Debora Malpicci
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Catanzaro "Magna Graecia", Catanzaro, Italia
| | - Ciro Francesco Ruggiero
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Catanzaro "Magna Graecia", Catanzaro, Italia
| | - Paolo Antonio Ascierto
- Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale", Napoli, Italia
| | - Carlo M Croce
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Rita Mancini
- Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Roma, Italia
| | - Gennaro Ciliberto
- Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale", Napoli, Italia.,IRCCS Istituto Nazionale Tumori "Regina Elena", Roma, Italy
| |
Collapse
|
33
|
Fattore L, Sacconi A, Mancini R, Ciliberto G. MicroRNA-driven deregulation of cytokine expression helps development of drug resistance in metastatic melanoma. Cytokine Growth Factor Rev 2017; 36:39-48. [PMID: 28551321 DOI: 10.1016/j.cytogfr.2017.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/15/2017] [Indexed: 12/12/2022]
Abstract
microRNAs are major components of the eukaryotic post-transcriptional machinery and are frequently deregulated during cancer development. Increasing evidence points to them also as key players in the establishment of drug resistance. In this review, we provide an updated overview of the role of miRNAs in melanoma development and drug resistance and postulate that they are able to drive these processes in concert with deregulation of inflammatory and angiogenic cytokine expression. Notably, we have identified by querying the Cancer Genome Atlas database, a defined set of miRNAs which mostly have an impact on the development of melanoma and have recognized the main downstream pathways controlled by them. Most importantly, these miRNAs, which are down-regulated in metastatic melanomas as compared to primary tumors, are also able to predict prognosis of BRAF-mutated melanoma patients. Finally, we discuss the possibility that a common miRNA signature characterizes not only acquired resistance to MAPKi but also innate resistance to anti-PD-1 immunotherapy, since these conditions are both associated with alterations of the same pro-angiogenetic and pro-inflammatory pathways.
Collapse
Affiliation(s)
- Luigi Fattore
- National Cancer Institute of Naples "Fondazione G. Pascale", Naples, Italy
| | - Andrea Sacconi
- Translational Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Rita Mancini
- Department of Molecular and Clinical Medicine, University of Roma "Sapienza", Rome, Italy.
| | | |
Collapse
|
34
|
Si L, Tian H, Yue W, Li L, Li S, Gao C, Qi L. Potential use of microRNA-200c as a prognostic marker in non-small cell lung cancer. Oncol Lett 2017; 14:4325-4330. [PMID: 28943946 DOI: 10.3892/ol.2017.6667] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 04/21/2017] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are a class of small, highly conserved non-coding RNAs that can serve either oncogenic or tumor-suppressive roles in a wide variety of tumors. miR-200c is a member of the miR-200 family whose specific role in non-small cell lung cancer (NSCLC) has not yet been elucidated. The purpose of the present study was to detect the expression level of miR-200c in NSCLC, and to analyze its association with clinicopathological factors and patient prognosis. The present study determined the expression levels of miR-200c in 110 tumor samples collected from patients diagnosed with NSCLC who underwent complete tumor resection with regional lymph node dissection, as assessed by reverse transcription-quantitative polymerase chain reaction. The association between the expression level of miR-200c and clinicopathological features and patient prognosis was also analyzed. The results showed that miR-200c overexpression was detected in 66 of the 110 cases and was significantly associated with positive lymph node metastasis (P<0.001). Univariate survival analysis demonstrated that high miR-200c expression, positive lymph node metastasis and advanced Tumor-Node-Metastasis (TNM) classification stage significantly predicted decreased 5-year disease-free survival rates (all P<0.05) and poor 5-year overall survival rates (all P<0.01), respectively. The results of multivariate Cox regression analysis showed that TNM stage and miR-200c expression retained its significance as an independent prognostic factor for unfavorable 5-year disease-free survival rates (P<0.05) and poor 5-year overall survival rates (P<0.01). The present findings suggest that miR-200c overexpression is significantly associated with poor survival rates in NSCLC and that miR-200c could play an oncogenic role. miR-200c may have clinical potential as a promising prognostic predictor for patients with NSCLC.
Collapse
Affiliation(s)
- Libo Si
- Department of Thoracic Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Weiming Yue
- Department of Thoracic Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lin Li
- Department of Thoracic Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shuhai Li
- Department of Thoracic Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Cun Gao
- Department of Thoracic Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lei Qi
- Department of Thoracic Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
35
|
Fogli S, Polini B, Carpi S, Pardini B, Naccarati A, Dubbini N, Lanza M, Breschi MC, Romanini A, Nieri P. Identification of plasma microRNAs as new potential biomarkers with high diagnostic power in human cutaneous melanoma. Tumour Biol 2017; 39:1010428317701646. [PMID: 28466785 DOI: 10.1177/1010428317701646] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Melanoma is a devastating disease with few therapeutic options in the advanced stage and with the urgent need of reliable biomarkers for early detection. In this context, circulating microRNAs are raising great interest as diagnostic biomarkers. We analyzed the expression profiles of 21 selected microRNAs in plasma samples from melanoma patients and healthy donors to identify potential diagnostic biomarkers. Data analysis was performed using global mean normalization and NormFinder algorithm. Linear regression followed by receiver operating characteristic analyses was carried out to evaluate whether selected plasma miRNAs were able to discriminate between cases and controls. We found five microRNAs that were differently expressed among cases and controls after Bonferroni correction for multiple testing. Specifically, miR-15b-5p, miR-149-3p, and miR-150-5p were up-regulated in plasma of melanoma patients compared with healthy controls, while miR-193a-3p and miR-524-5p were down-regulated. Receiver operating characteristic analyses of these selected microRNAs provided area under the receiver operating characteristic curve values ranging from 0.80 to 0.95. Diagnostic value of microRNAs is improved when considering the combination of miR-149-3p, miR-150-5p, and miR-193a-3p. The triple classifier had a high capacity to discriminate between melanoma patients and healthy controls, making it suitable to be used in early melanoma diagnosis.
Collapse
Affiliation(s)
- Stefano Fogli
- 1 Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Sara Carpi
- 1 Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | - Nevio Dubbini
- 3 Medical Oncology Unit, University Hospital of Pisa, Pisa, Italy
| | - Maria Lanza
- 3 Medical Oncology Unit, University Hospital of Pisa, Pisa, Italy
| | | | | | - Paola Nieri
- 1 Department of Pharmacy, University of Pisa, Pisa, Italy
| |
Collapse
|
36
|
Koetz-Ploch L, Hanniford D, Dolgalev I, Sokolova E, Zhong J, Díaz-Martínez M, Bernstein E, Darvishian F, Flaherty KT, Chapman PB, Tawbi H, Hernando E. MicroRNA-125a promotes resistance to BRAF inhibitors through suppression of the intrinsic apoptotic pathway. Pigment Cell Melanoma Res 2017; 30:328-338. [PMID: 28140520 DOI: 10.1111/pcmr.12578] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Abstract
Melanoma patients with BRAFV600E -mutant tumors display striking responses to BRAF inhibitors (BRAFi); however, almost all invariably relapse with drug-resistant disease. Here, we report that microRNA-125a (miR-125a) expression is upregulated in human melanoma cells and patient tissues upon acquisition of BRAFi resistance. We show that miR-125a induction confers resistance to BRAFV600E melanoma cells to BRAFi by directly suppressing pro-apoptotic components of the intrinsic apoptosis pathway, including BAK1 and MLK3. Apoptotic suppression and prolonged survival favor reactivation of the MAPK and AKT pathways by drug-resistant melanoma cells. We demonstrate that miR-125a inhibition suppresses the emergence of resistance to BRAFi and, in a subset of resistant melanoma cell lines, leads to partial drug resensitization. Finally, we show that miR-125a upregulation is mediated by TGFβ signaling. In conclusion, the identification of this novel role for miR-125a in BRAFi resistance exposes clinically relevant mechanisms of melanoma cell survival that can be exploited therapeutically.
Collapse
Affiliation(s)
- Lisa Koetz-Ploch
- Department of Pathology, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA.,NYU Interdisciplinary Melanoma Cooperative Group, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA
| | - Douglas Hanniford
- Department of Pathology, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA.,NYU Interdisciplinary Melanoma Cooperative Group, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA
| | - Igor Dolgalev
- Genomics Technology Center, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA
| | - Elena Sokolova
- Department of Pathology, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA.,NYU Interdisciplinary Melanoma Cooperative Group, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA
| | - Judy Zhong
- NYU Interdisciplinary Melanoma Cooperative Group, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA.,Division of Biostatistics, Department of Environmental Medicine, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA
| | | | | | - Farbod Darvishian
- Department of Pathology, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA.,NYU Interdisciplinary Melanoma Cooperative Group, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA
| | - Keith T Flaherty
- Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Paul B Chapman
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Eva Hernando
- Department of Pathology, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA.,NYU Interdisciplinary Melanoma Cooperative Group, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA
| |
Collapse
|
37
|
Kozar I, Cesi G, Margue C, Philippidou D, Kreis S. Impact of BRAF kinase inhibitors on the miRNomes and transcriptomes of melanoma cells. Biochim Biophys Acta Gen Subj 2017; 1861:2980-2992. [PMID: 28408301 DOI: 10.1016/j.bbagen.2017.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/01/2017] [Accepted: 04/06/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Melanoma is an aggressive skin cancer with increasing incidence worldwide. The development of BRAF kinase inhibitors as targeted treatments for patients with BRAF-mutant tumours contributed profoundly to an improved overall survival of patients with metastatic melanoma. Despite these promising results, the emergence of rapid resistance to targeted therapy remains a serious clinical issue. METHODS To investigate the impact of BRAF inhibitors on miRNomes and transcriptomes, we used in vitro melanoma models consisting of BRAF inhibitor-sensitive and -resistant cell lines generated in our laboratory. Subsequently, microarray analyses were performed followed by RT-qPCR validations. RESULTS Regarding miRNome and transcriptome changes, the long-term effects of BRAF inhibition differed in a cell line-specific manner with the two different BRAF inhibitors inducing comparable responses in three melanoma cell lines. Despite this heterogeneity, several miRNAs (e.g. miR-92a-1-5p, miR-708-5p) and genes (e.g. DOK5, PCSK2) were distinctly differentially expressed in drug-resistant versus -sensitive cell lines. Analyses of coexpressed miRNAs, as well as inversely correlated miRNA-mRNA pairs, revealed a low MITF/AXL ratio in two drug-resistant cell lines that might be regulated by miRNAs. CONCLUSION Several genes and miRNAs were differentially regulated in the drug-resistant and -sensitive cell lines and might be considered as prognostic and/or diagnostic resistance biomarkers in melanoma drug resistance. GENERAL SIGNIFICANCE Thus far, only little information is available on the significance and role of miRNAs with respect to kinase inhibitor treatments and emergence of drug resistance. In this study, promising miRNAs and genes were identified and associated to BRAF inhibitor-mediated resistance in melanoma. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Ines Kozar
- Life Sciences Research Unit, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg.
| | - Giulia Cesi
- Life Sciences Research Unit, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg.
| | - Christiane Margue
- Life Sciences Research Unit, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg.
| | - Demetra Philippidou
- Life Sciences Research Unit, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg.
| | - Stephanie Kreis
- Life Sciences Research Unit, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg.
| |
Collapse
|
38
|
Vergani E, Di Guardo L, Dugo M, Rigoletto S, Tragni G, Ruggeri R, Perrone F, Tamborini E, Gloghini A, Arienti F, Vergani B, Deho P, De Cecco L, Vallacchi V, Frati P, Shahaj E, Villa A, Santinami M, De Braud F, Rivoltini L, Rodolfo M. Overcoming melanoma resistance to vemurafenib by targeting CCL2-induced miR-34a, miR-100 and miR-125b. Oncotarget 2016; 7:4428-41. [PMID: 26684239 PMCID: PMC4826216 DOI: 10.18632/oncotarget.6599] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/25/2015] [Indexed: 01/06/2023] Open
Abstract
In melanoma, the adaptative cell response to BRAF inhibitors includes altered patterns of cytokine production contributing to tumor progression and drug resistance. Among the factors produced by PLX4032-resistant melanoma cell lines, CCL2 was higher compared to the sensitive parental cell lines and increased upon drug treatment. CCL2 acted as an autocrine growth factor for melanoma cells, stimulating the proliferation and resistance to apoptosis. In patients, CCL2 is detected in melanoma cells in tumors and in plasma at levels that correlate with tumor burden and lactate dehydrogenase. Vemurafenib treatment increased the CCL2 levels in plasma, whereas the long-term clinical response was associated with low CCL2 levels.Increased CCL2 production was associated with miRNA deregulation in the resistant cells. miR-34a, miR-100 and miR-125b showed high expression in both resistant cells and in tumor biopsies that were obtained from treated patients, and they were involved in the control of cell proliferation and apoptosis. Inhibition of CCL2 and of the selected miRNAs restored both the cell apoptosis and the drug efficacy in resistant melanoma cells. Therefore, CCL2 and miRNAs are potential prognostic factors and attractive targets for counteracting treatment resistance in metastatic melanoma.
Collapse
Affiliation(s)
- Elisabetta Vergani
- Immunotherapy Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lorenza Di Guardo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Dugo
- Functional Genomics and Bioinformatics Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Rigoletto
- Immunotherapy Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gabrina Tragni
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Roberta Ruggeri
- Melanoma and Sarcoma Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Perrone
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Tamborini
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Annunziata Gloghini
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Flavio Arienti
- Immunohematology and Transfusion Medicine Service, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Barbara Vergani
- Consorzio MIA, Microscopy and Image Analysis, University of Milan Bicocca, Monza, Italy
| | - Paola Deho
- Immunotherapy Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Loris De Cecco
- Functional Genomics and Bioinformatics Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Viviana Vallacchi
- Immunotherapy Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paola Frati
- Immunotherapy Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Eriomina Shahaj
- Immunotherapy Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Antonello Villa
- Consorzio MIA, Microscopy and Image Analysis, University of Milan Bicocca, Monza, Italy
| | - Mario Santinami
- Melanoma and Sarcoma Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo De Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Licia Rivoltini
- Immunotherapy Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Rodolfo
- Immunotherapy Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
39
|
Emmons MF, Faião-Flores F, Smalley KSM. The role of phenotypic plasticity in the escape of cancer cells from targeted therapy. Biochem Pharmacol 2016; 122:1-9. [PMID: 27349985 DOI: 10.1016/j.bcp.2016.06.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/23/2016] [Indexed: 01/01/2023]
Abstract
Targeted therapy has proven to be beneficial at producing significant responses in patients with a wide variety of cancers. Despite initially impressive responses, most individuals ultimately fail these therapies and show signs of drug resistance. Very few patients are ever cured. Emerging evidence suggests that treatment of cancer cells with kinase inhibitors leads a minor population of cells to undergo a phenotypic switch to a more embryonic-like state. The adoption of this state, which is analogous to an epithelial-to-mesenchymal transition, is associated with drug resistance and increased tumor aggressiveness. In this commentary we will provide a comprehensive analysis of the mechanisms that underlie the embryonic reversion that occurs on targeted cancer therapy and will review potential novel therapeutic strategies designed to eradicate the escaping cells.
Collapse
Affiliation(s)
- Michael F Emmons
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Fernanda Faião-Flores
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA; The Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Keiran S M Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA; The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA.
| |
Collapse
|
40
|
miR-200c: a versatile watchdog in cancer progression, EMT, and drug resistance. J Mol Med (Berl) 2016; 94:629-44. [PMID: 27094812 DOI: 10.1007/s00109-016-1420-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are 20-22-nucleotide small endogenous non-coding RNAs which regulate gene expression at post-transcriptional level. In the last two decades, identification of almost 2600 miRNAs in human and their potential to be modulated opened a new avenue to target almost all hallmarks of cancer. miRNAs have been classified as tumor suppressors or oncogenes depending on the phenotype they induce, the targets they modulate, and the tissue where they function. miR-200c, an illustrious tumor suppressor, is one of the highly studied miRNAs in terms of development, stemness, proliferation, epithelial-mesenchymal transition (EMT), therapy resistance, and metastasis. In this review, we first focus on the regulation of miR-200c expression and its role in regulating EMT in a ZEB1/E-cadherin axis-dependent and ZEB1/E-cadherin axis-independent manner. We then describe the role of miR-200c in therapy resistance in terms of multidrug resistance, chemoresistance, targeted therapy resistance, and radiotherapy resistance in various cancer types. We highlight the importance of miR-200c at the intersection of EMT and chemoresistance. Furthermore, we show how miR-200c coordinates several important signaling cascades such as TGF-β signaling, PI3K/Akt signaling, Notch signaling, VEGF signaling, and NF-κB signaling. Finally, we discuss miR-200c as a potential prognostic/diagnostic biomarker in several diseases, but mainly focusing on cancer and its potential application in future therapeutics.
Collapse
|
41
|
Venza M, Visalli M, Catalano T, Biondo C, Beninati C, Teti D, Venza I. DNA methylation-induced E-cadherin silencing is correlated with the clinicopathological features of melanoma. Oncol Rep 2016; 35:2451-60. [PMID: 26883095 DOI: 10.3892/or.2016.4618] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/22/2016] [Indexed: 11/06/2022] Open
Abstract
E-cadherin, a calcium-dependent cell-cell adhesion molecule, has an important role in epithelial cell function, maintenance of tissue architecture and cancer suppression. Loss of E-cadherin promotes tumor metastatic dissemination and predicts poor prognosis. The present study investigated the clinicopathological significance of E-cadherin expression in cutaneous, mucosal and uveal melanoma related to epigenetic mechanisms that may contribute to E-cadherin silencing. E-cadherin expression was reduced in 55/130 cutaneous (42.3%), 49/82 mucosal (59.7%) and 36/64 uveal (56.2%) melanoma samples as compared to normal skin controls and was inversely associated with promoter methylation. Of the 10 different CpG sites studied (nt 863, 865, 873, 879, 887, 892, 901, 918, 920 and 940), two sites (nt 892 and 940) were 90-100% methylated in all the melanoma specimens examined and the other ones were partially methylated (range, 53-86%). In contrast, the methylation rate of the E-cadherin gene was low in normal tissues (range, 5-24%). In all the three types of melanoma studied, a significant correlation was found between reduced levels of E-cadherin and reduced survival, high mitotic index and metastasis, accounting for the predilection of lymph nodal localization. In cutaneous and mucosal melanoma, low E-cadherin expression was positively correlated also with head/neck localization and ulceration. A high frequency of reduced E-cadherin levels occurred in choroid melanomas. In vitro experiments showed that E-cadherin transcription was restored following 5-aza-2'-deoxycytidine (5-aza-dC) treatment or DNMT1 silencing and was negatively correlated with the invasive potential of melanoma cells. The significant relationship between E-cadherin silencing and several poor prognostic factors indicates that this adhesion molecule may play an important role in melanomagenesis. Therefore, the inverse association of E-cadherin expression with promoter methylation raises the intriguing possibility that reactivation of E-cadherin expression through promoter demethylation may represent a potential therapeutic strategy for the treatment of melanoma.
Collapse
Affiliation(s)
- Mario Venza
- Department of Clinical and Experimental Medicine, Azienda Policlinico Universitario G. Martino, Messina, Italy
| | - Maria Visalli
- Department of Clinical and Experimental Medicine, Azienda Policlinico Universitario G. Martino, Messina, Italy
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, Azienda Policlinico Universitario G. Martino, Messina, Italy
| | - Carmelo Biondo
- Department of Human Pathology of Adult and Developmental Age 'Gaetano Barresi', Azienda Policlinico Universitario G. Martino, Messina, Italy
| | - Concetta Beninati
- Department of Human Pathology of Adult and Developmental Age 'Gaetano Barresi', Azienda Policlinico Universitario G. Martino, Messina, Italy
| | - Diana Teti
- Department of Clinical and Experimental Medicine, Azienda Policlinico Universitario G. Martino, Messina, Italy
| | - Isabella Venza
- Department of Clinical and Experimental Medicine, Azienda Policlinico Universitario G. Martino, Messina, Italy
| |
Collapse
|