1
|
Vergara R, Cirotteau P, Marty M, Hustache R, Dutriaux C, Beltzung F, de la Fouchardière A. Thymic blue melanoma arising on an extracutaneous blue naevus. Pathology 2024:S0031-3025(24)00234-4. [PMID: 39455320 DOI: 10.1016/j.pathol.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/04/2024] [Accepted: 06/30/2024] [Indexed: 10/28/2024]
Affiliation(s)
- Rémi Vergara
- Department of Pathology, Bordeaux University Hospital, Bordeaux, France.
| | - Paul Cirotteau
- Department of Dermatology, Bordeaux University Hospital, Bordeaux, France
| | - Marion Marty
- Department of Pathology, Bordeaux University Hospital, Bordeaux, France
| | - Romain Hustache
- Department of Thoracic Surgery, Bordeaux University Hospital, Bordeaux, France
| | - Caroline Dutriaux
- Department of Dermatology, Bordeaux University Hospital, Bordeaux, France
| | - Fanny Beltzung
- Department of Pathology, Bordeaux University Hospital, Bordeaux, France
| | | |
Collapse
|
2
|
Guo P, Wei X, Guo Z, Wu D. Clinicopathological features, current status, and progress of primary central nervous system melanoma diagnosis and treatment. Pigment Cell Melanoma Res 2024; 37:265-275. [PMID: 37886794 DOI: 10.1111/pcmr.13140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/10/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023]
Abstract
Primary central nervous system (CNS) melanoma is an extremely rare condition, with an incidence rate of 0.01 per 100,000 individuals per year. Despite its rarity, the etiology and pathogenesis of this disease are not yet fully understood. Primary CNS melanoma exhibits highly aggressive biological behavior and presents clinically in a distinct manner from other types of melanomas. It can develop at any age, predominantly affecting the meninges as the primary site, with clinical symptoms varying depending on the neoplasm's location. Due to the lack of specificity in its presentation and the challenging nature of imaging diagnosis, distinguishing primary CNS melanoma from other CNS diseases. The combination of challenges in early detection, heightened tumor aggressiveness, and the obscured location of its origin contribute to an unfavorable prognostic outcome. Furthermore, there has been currently no consensus on a standardized treatment approach for primary CNS melanoma. Despite recent advancements in targeted therapy and immunotherapy for CNS melanoma, patients with primary CNS melanoma have limited treatment options due to their inadequate response to these therapies. Here, we provided a comprehensive summary of the epidemiology, clinical features, molecular pathological manifestations, and available diagnostic and therapeutic approaches of primary CNS melanoma. Additionally, we proposed potential therapeutic strategies for it.
Collapse
Affiliation(s)
- Pengna Guo
- Cancer Center, The First Hospital Of Jilin University, Changchun, China
| | - Xiaoting Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhen Guo
- Cancer Center, The First Hospital Of Jilin University, Changchun, China
| | - Di Wu
- Cancer Center, The First Hospital Of Jilin University, Changchun, China
| |
Collapse
|
3
|
van den Bosch QCC, de Klein A, Verdijk RM, Kiliç E, Brosens E. Uveal melanoma modeling in mice and zebrafish. Biochim Biophys Acta Rev Cancer 2024; 1879:189055. [PMID: 38104908 DOI: 10.1016/j.bbcan.2023.189055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Despite extensive research and refined therapeutic options, the survival for metastasized uveal melanoma (UM) patients has not improved significantly. UM, a malignant tumor originating from melanocytes in the uveal tract, can be asymptomatic and small tumors may be detected only during routine ophthalmic exams; making early detection and treatment difficult. UM is the result of a number of characteristic somatic alterations which are associated with prognosis. Although UM morphology and biology have been extensively studied, there are significant gaps in our understanding of the early stages of UM tumor evolution and effective treatment to prevent metastatic disease remain elusive. A better understanding of the mechanisms that enable UM cells to thrive and successfully metastasize is crucial to improve treatment efficacy and survival rates. For more than forty years, animal models have been used to investigate the biology of UM. This has led to a number of essential mechanisms and pathways involved in UM aetiology. These models have also been used to evaluate the effectiveness of various drugs and treatment protocols. Here, we provide an overview of the molecular mechanisms and pharmacological studies using mouse and zebrafish UM models. Finally, we highlight promising therapeutics and discuss future considerations using UM models such as optimal inoculation sites, use of BAP1mut-cell lines and the rise of zebrafish models.
Collapse
Affiliation(s)
- Quincy C C van den Bosch
- Department of Ophthalmology, Erasmus MC, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Robert M Verdijk
- Department of Pathology, Section of Ophthalmic Pathology, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands; Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emine Kiliç
- Department of Ophthalmology, Erasmus MC, Rotterdam, the Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Wetzel-Strong SE, Galeffi F, Benavides C, Patrucco M, Bullock JL, Gallione CJ, Lee HK, Marchuk DA. Developmental expression of the Sturge-Weber syndrome-associated genetic mutation in Gnaq: a formal test of Happle's paradominant inheritance hypothesis. Genetics 2023; 224:iyad077. [PMID: 37098137 PMCID: PMC10894004 DOI: 10.1093/genetics/iyad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 04/27/2023] Open
Abstract
Sturge-Weber Syndrome (SWS) is a sporadic (non-inherited) syndrome characterized by capillary vascular malformations in the facial skin, leptomeninges, or the choroid. A hallmark feature is the mosaic nature of the phenotype. SWS is caused by a somatic mosaic mutation in the GNAQ gene (p.R183Q), leading to activation of the G protein, Gαq. Decades ago, Rudolf Happle hypothesized SWS as an example of "paradominant inheritance", that is, a "lethal gene (mutation) surviving by mosaicism". He predicted that the "presence of the mutation in the zygote will lead to death of the embryo at an early stage of development". We have created a mouse model for SWS using gene targeting to conditionally express the GNAQ p.R183Q mutation. We have employed two different Cre-drivers to examine the phenotypic effects of expression of this mutation at different levels and stages of development. As predicted by Happle, global, ubiquitous expression of this mutation in the blastocyst stage results in 100% embryonic death. The majority of these developing embryos show vascular defects consistent with the human vascular phenotype. By contrast, global but mosaic expression of the mutation enables a fraction of the embryos to survive, but those that survive to birth and beyond do not exhibit obvious vascular defects. These data validate Happle's paradominant inheritance hypothesis for SWS and suggest the requirement of a tight temporal and developmental window of mutation expression for the generation of the vascular phenotype. Furthermore, these engineered murine alleles provide the template for the development of a mouse model of SWS that acquires the somatic mutation during embryonic development, but permits the embryo to progress to live birth and beyond, so that postnatal phenotypes can also be investigated. These mice could then also be employed in pre-clinical studies of novel therapies.
Collapse
Affiliation(s)
- Sarah E Wetzel-Strong
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Francesca Galeffi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Christian Benavides
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mary Patrucco
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jessica L Bullock
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carol J Gallione
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Han Kyu Lee
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
5
|
Yeh I. Melanocytic naevi, melanocytomas and emerging concepts. Pathology 2023; 55:178-186. [PMID: 36642570 DOI: 10.1016/j.pathol.2022.12.341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
With the elucidation of the genetics of melanocytic tumours, new concepts have emerged. An important one is the identification of 'intermediate' melanocytic tumours, those with genetic progression events beyond those of melanocytic naevi but that are not fully malignant. Thus, melanocytic tumours exist on a genetic spectrum that likely corresponds to biological behaviour. There are multiple pathways to melanoma development with different initiating events and characteristic benign melanocytic neoplasms and the precise placement of tumours on these pathways remains to be established and the corresponding risks of progression quantified. In this review, I discuss the classification of melanocytic naevi based on clinical, histopathological and genetic features, as well as the concept of melanocytomas with discussion of specific recognisable subtypes.
Collapse
Affiliation(s)
- Iwei Yeh
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, USA.
| |
Collapse
|
6
|
Hanna SS, Jewell R, Anker CJ, DeWitt JC, Tranmer B, Thomas AA. Clinical Reasoning: A 67-Year-Old Woman With Abdominal Pain, Constipation, and Urinary Retention. Neurology 2022; 99:117-122. [PMID: 35523586 DOI: 10.1212/wnl.0000000000200748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/04/2022] [Indexed: 11/15/2022] Open
Abstract
Meningeal melanocytomas are extremely rare, pigmented tumors of the CNS. They generally carry a favorable prognosis, although recurrence and transformation into the more aggressive malignant melanoma have been reported. We present a case of a patient who reported constipation and abdominal pain around the umbilicus, which progressed into cord compression with lower extremity weakness and gait instability. Spinal MRI revealed a tumor at the level of T11, and she underwent gross total resection of the mass. Pathology demonstrated a meningeal melanocytoma with intermediate features. She received postoperative radiation therapy and had stable disease for 3 years, at which time she developed new weakness and drop metastases. This case represents a rare presentation of a rare disease, in which a spinal cord tumor presented with constipation and abdominal distress. Intradural extramedullary tumors of the thoracic spine are most commonly nerve sheath tumors or meningiomas, but rare entities such as melanocytomas can present in this location; even more rarely, these tumors can have an aggressive course with delayed recurrence.
Collapse
Affiliation(s)
- Sebastian S Hanna
- From the University of Vermont Larner College of Medicine (S.S.H., R.J., C.J.A., J.C.D., B.T., A.A.T.), Burlington; Department of Surgery, Division of Neurosurgery (R.J., B.T.); Department of Radiology, Division of Radiation Oncology (C.J.A.); Department of Pathology and Laboratory Medicine (J.C.D.); and Department of Neurological Sciences (A.A.T.).
| | - Ryan Jewell
- From the University of Vermont Larner College of Medicine (S.S.H., R.J., C.J.A., J.C.D., B.T., A.A.T.), Burlington; Department of Surgery, Division of Neurosurgery (R.J., B.T.); Department of Radiology, Division of Radiation Oncology (C.J.A.); Department of Pathology and Laboratory Medicine (J.C.D.); and Department of Neurological Sciences (A.A.T.)
| | - Christopher J Anker
- From the University of Vermont Larner College of Medicine (S.S.H., R.J., C.J.A., J.C.D., B.T., A.A.T.), Burlington; Department of Surgery, Division of Neurosurgery (R.J., B.T.); Department of Radiology, Division of Radiation Oncology (C.J.A.); Department of Pathology and Laboratory Medicine (J.C.D.); and Department of Neurological Sciences (A.A.T.)
| | - John C DeWitt
- From the University of Vermont Larner College of Medicine (S.S.H., R.J., C.J.A., J.C.D., B.T., A.A.T.), Burlington; Department of Surgery, Division of Neurosurgery (R.J., B.T.); Department of Radiology, Division of Radiation Oncology (C.J.A.); Department of Pathology and Laboratory Medicine (J.C.D.); and Department of Neurological Sciences (A.A.T.)
| | - Bruce Tranmer
- From the University of Vermont Larner College of Medicine (S.S.H., R.J., C.J.A., J.C.D., B.T., A.A.T.), Burlington; Department of Surgery, Division of Neurosurgery (R.J., B.T.); Department of Radiology, Division of Radiation Oncology (C.J.A.); Department of Pathology and Laboratory Medicine (J.C.D.); and Department of Neurological Sciences (A.A.T.)
| | - Alissa A Thomas
- From the University of Vermont Larner College of Medicine (S.S.H., R.J., C.J.A., J.C.D., B.T., A.A.T.), Burlington; Department of Surgery, Division of Neurosurgery (R.J., B.T.); Department of Radiology, Division of Radiation Oncology (C.J.A.); Department of Pathology and Laboratory Medicine (J.C.D.); and Department of Neurological Sciences (A.A.T.)
| |
Collapse
|
7
|
Cooke M, Kazanietz MG. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci Signal 2022; 15:eabo0264. [PMID: 35412850 DOI: 10.1126/scisignal.abo0264] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diacylglycerol (DAG) is a lipid second messenger that is generated in response to extracellular stimuli and channels intracellular signals that affect mammalian cell proliferation, survival, and motility. DAG exerts a myriad of biological functions through protein kinase C (PKC) and other effectors, such as protein kinase D (PKD) isozymes and small GTPase-regulating proteins (such as RasGRPs). Imbalances in the fine-tuned homeostasis between DAG generation by phospholipase C (PLC) enzymes and termination by DAG kinases (DGKs), as well as dysregulation in the activity or abundance of DAG effectors, have been widely associated with tumor initiation, progression, and metastasis. DAG is also a key orchestrator of T cell function and thus plays a major role in tumor immunosurveillance. In addition, DAG pathways shape the tumor ecosystem by arbitrating the complex, dynamic interaction between cancer cells and the immune landscape, hence representing powerful modifiers of immune checkpoint and adoptive T cell-directed immunotherapy. Exploiting the wide spectrum of DAG signals from an integrated perspective could underscore meaningful advances in targeted cancer therapy.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Targeting GPCRs and Their Signaling as a Therapeutic Option in Melanoma. Cancers (Basel) 2022; 14:cancers14030706. [PMID: 35158973 PMCID: PMC8833576 DOI: 10.3390/cancers14030706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Sixteen G-protein-coupled receptors (GPCRs) have been involved in melanogenesis or melanomagenesis. Here, we review these GPCRs, their associated signaling, and therapies. Abstract G-protein-coupled receptors (GPCRs) serve prominent roles in melanocyte lineage physiology, with an impact at all stages of development, as well as on mature melanocyte functions. GPCR ligands are present in the skin and regulate melanocyte homeostasis, including pigmentation. The role of GPCRs in the regulation of pigmentation and, consequently, protection against external aggression, such as ultraviolet radiation, has long been established. However, evidence of new functions of GPCRs directly in melanomagenesis has been highlighted in recent years. GPCRs are coupled, through their intracellular domains, to heterotrimeric G-proteins, which induce cellular signaling through various pathways. Such signaling modulates numerous essential cellular processes that occur during melanomagenesis, including proliferation and migration. GPCR-associated signaling in melanoma can be activated by the binding of paracrine factors to their receptors or directly by activating mutations. In this review, we present melanoma-associated alterations of GPCRs and their downstream signaling and discuss the various preclinical models used to evaluate new therapeutic approaches against GPCR activity in melanoma. Recent striking advances in our understanding of the structure, function, and regulation of GPCRs will undoubtedly broaden melanoma treatment options in the future.
Collapse
|
9
|
Burgos R, Cardona AF, Santoyo N, Ruiz-Patiño A, Cure-Casilimas J, Rojas L, Ricaurte L, Muñoz Á, Garcia-Robledo JE, Ordoñez C, Sotelo C, Rodríguez J, Zatarain-Barrón ZL, Pineda D, Arrieta O. Case Report: Differential Genomics and Evolution of a Meningeal Melanoma Treated With Ipilimumab and Nivolumab. Front Oncol 2022; 11:691017. [PMID: 35070950 PMCID: PMC8766339 DOI: 10.3389/fonc.2021.691017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Primary melanocytic tumors of the CNS are extremely rare conditions, encompassing different disease processes including meningeal melanoma and meningeal melanocytosis. Its incidence range between 3-5%, with approximately 0.005 cases per 100,000 people. Tumor biological behavior is commonly aggressive, with poor prognosis and very low survivability, and a high recurrence rate, even after disease remission with multimodal treatments. Specific genetic alterations involving gene transcription, alternative splicing, RNA translation, and cell proliferation are usually seen, affecting genes like BRAF, TERT, GNAQ, SF3B1, and EIF1AX. Here we present an interesting case of a 59-year-old male presenting with neurologic symptoms and a further confirmed diagnosis of primary meningeal melanoma. Multiple therapy lines were used, including radiosurgery, immunotherapy, and chemotherapy. The patient developed two relapses and an evolving genetic makeup that confirmed the disease’s clonal origin. We also provide a review of the literature on the genetic basis of primary melanocytic tumors of the CNS.
Collapse
Affiliation(s)
- Remberto Burgos
- Neurosurgery Department, Clínica del Country/Clínica Colsanitas, Bogotá, Colombia
| | - Andrés F Cardona
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia.,Direction of Research and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center (CTIC), Bogotá, Colombia
| | - Nicolas Santoyo
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
| | - Alejandro Ruiz-Patiño
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | | | - Leonardo Rojas
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia.,Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia.,Clinical Oncology Department, Clínica Colsanitas, Bogotá, Colombia
| | - Luisa Ricaurte
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia.,Direction of Research and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center (CTIC), Bogotá, Colombia
| | - Álvaro Muñoz
- Radiotherapy Department, Carlos Ardila Lulle Institute of Cancer (ICCAL), Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | | | - Camila Ordoñez
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Carolina Sotelo
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - July Rodríguez
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Zyanya Lucia Zatarain-Barrón
- Thoracic Oncology Unit and Personalized Oncology Laboratory, National Cancer Institute (INCan), México City, Mexico
| | - Diego Pineda
- Thoracic Oncology Unit and Personalized Oncology Laboratory, National Cancer Institute (INCan), México City, Mexico
| | - Oscar Arrieta
- Radiology Department, Clinica del County/Resonancia Magnética de Colombia, Bogotá, Colombia
| |
Collapse
|
10
|
Urtatiz O, Haage A, Tanentzapf G, Van Raamsdonk CD. Crosstalk with keratinocytes causes GNAQ oncogene specificity in melanoma. eLife 2021; 10:71825. [PMID: 34939927 PMCID: PMC8747508 DOI: 10.7554/elife.71825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Different melanoma subtypes exhibit specific and non-overlapping sets of oncogene and tumor suppressor mutations, despite a common cell of origin in melanocytes. For example, activation of the Gαq/11 signaling pathway is a characteristic initiating event in primary melanomas that arise in the dermis, uveal tract, or central nervous system. It is rare in melanomas arising in the epidermis. The mechanism for this specificity is unknown. Here, we present evidence that in the mouse, crosstalk with the epidermal microenvironment actively impairs the survival of melanocytes expressing the GNAQQ209L oncogene. We found that GNAQQ209L, in combination with signaling from the interfollicular epidermis (IFE), stimulates dendrite extension, leads to actin cytoskeleton disorganization, inhibits proliferation, and promotes apoptosis in melanocytes. The effect was reversible and paracrine. In contrast, the epidermal environment increased the survival of wildtype and BrafV600E expressing melanocytes. Hence, our studies reveal the flip side of Gαq/11 signaling, which was hitherto unsuspected. In the future, the identification of the epidermal signals that restrain the GNAQQ209L oncogene could suggest novel therapies for GNAQ and GNA11 mutant melanomas.
Collapse
Affiliation(s)
- Oscar Urtatiz
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Amanda Haage
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
11
|
Matias M, Pinho JO, Penetra MJ, Campos G, Reis CP, Gaspar MM. The Challenging Melanoma Landscape: From Early Drug Discovery to Clinical Approval. Cells 2021; 10:3088. [PMID: 34831311 PMCID: PMC8621991 DOI: 10.3390/cells10113088] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Jacinta O. Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria João Penetra
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Gonçalo Campos
- CICS–UBI–Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal;
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| |
Collapse
|
12
|
Nerve-associated Schwann cell precursors contribute extracutaneous melanocytes to the heart, inner ear, supraorbital locations and brain meninges. Cell Mol Life Sci 2021; 78:6033-6049. [PMID: 34274976 PMCID: PMC8316242 DOI: 10.1007/s00018-021-03885-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
Melanocytes are pigmented cells residing mostly in the skin and hair follicles of vertebrates, where they contribute to colouration and protection against UV-B radiation. However, the spectrum of their functions reaches far beyond that. For instance, these pigment-producing cells are found inside the inner ear, where they contribute to the hearing function, and in the heart, where they are involved in the electrical conductivity and support the stiffness of cardiac valves. The embryonic origin of such extracutaneous melanocytes is not clear. We took advantage of lineage-tracing experiments combined with 3D visualizations and gene knockout strategies to address this long-standing question. We revealed that Schwann cell precursors are recruited from the local innervation during embryonic development and give rise to extracutaneous melanocytes in the heart, brain meninges, inner ear, and other locations. In embryos with a knockout of the EdnrB receptor, a condition imitating Waardenburg syndrome, we observed only nerve-associated melanoblasts, which failed to detach from the nerves and to enter the inner ear. Finally, we looked into the evolutionary aspects of extracutaneous melanocytes and found that pigment cells are associated mainly with nerves and blood vessels in amphibians and fish. This new knowledge of the nerve-dependent origin of extracutaneous pigment cells might be directly relevant to the formation of extracutaneous melanoma in humans.
Collapse
|
13
|
Onken MD, Blumer KJ, Cooper JA. Uveal melanoma cells use ameboid and mesenchymal mechanisms of cell motility crossing the endothelium. Mol Biol Cell 2021; 32:413-421. [PMID: 33405963 PMCID: PMC8098856 DOI: 10.1091/mbc.e20-04-0241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Uveal melanomas (UMs) are malignant cancers arising from the pigmented layers of the eye. UM cells spread through the bloodstream, and circulating UM cells are detectable in patients before metastases appear. Extravasation of UM cells is necessary for formation of metastases, and transendothelial migration (TEM) is a key step in extravasation. UM cells execute TEM via a stepwise process involving the actin-based processes of ameboid blebbing and mesenchymal lamellipodial protrusion. UM cancers are driven by oncogenic mutations that activate Gαq/11, and this activates TRIO, a guanine nucleotide exchange factor for RhoA and Rac1. We found that pharmacologic inhibition of Gαq/11 in UM cells reduced TEM. Inhibition of the RhoA pathway blocked amoeboid motility but led to enhanced TEM; in contrast, inhibition of the Rac1 pathway decreased mesenchymal motility and reduced TEM. Inhibition of Arp2/3 complex allowed cells to transmigrate without intercalation, a direct mechanism similar to the one often displayed by immune cells. BAP1-deficient (+/–) UM subclones displayed motility behavior and increased levels of TEM, similar to the effects of RhoA inhibitors. We conclude that RhoA and Rac1 signaling pathways, downstream of oncogenic Gαq/11, combine with pathways regulated by BAP1 to control the motility and transmigration of UM cells.
Collapse
Affiliation(s)
- Michael D Onken
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110
| | - Kendall J Blumer
- Department of Cell Biology & Physiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - John A Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110
| |
Collapse
|
14
|
Jain F, Longakit A, Huang JLY, Van Raamsdonk CD. Endothelin signaling promotes melanoma tumorigenesis driven by constitutively active GNAQ. Pigment Cell Melanoma Res 2020; 33:834-849. [PMID: 32453908 DOI: 10.1111/pcmr.12900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 12/20/2022]
Abstract
The G-protein-coupled receptor, endothelin receptor B (EDNRB), is an important regulator of melanocyte survival and proliferation. It acts by stimulating downstream heterotrimeric G proteins, such as Gαq and Gα1 . Constitutively active, oncogenic versions of Gαq and Gα11 drive melanomagenesis, but the role of Ednrb in the context of these mutant G proteins has not been previously examined. In this paper, we used a knock-in mouse allele at the Rosa26 locus to force oncogenic GNAQQ209L expression in melanocytes in combination with Ednrb gene knockout. The resulting pathological analysis revealed that every aspect of melanomagenesis driven by GNAQQ209L was inhibited. We conclude that even in the presence of oncogenic Gαq , the Ednrb receptor activates normal Gαq and Gα11 proteins. This likely promotes tumorigenesis by activating phospholipase C-beta, the immediate effector of Gαq/11 . These findings suggest that it might be possible to target upstream receptors to offset the effects of hyperactive G proteins, recognized as the cause of a growing number of human disorders.
Collapse
Affiliation(s)
- Fagun Jain
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Anne Longakit
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jenny Li-Ying Huang
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Catherine D Van Raamsdonk
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Larribère L, Utikal J. Update on GNA Alterations in Cancer: Implications for Uveal Melanoma Treatment. Cancers (Basel) 2020; 12:E1524. [PMID: 32532044 PMCID: PMC7352965 DOI: 10.3390/cancers12061524] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Tumorigenesis is correlated with abnormal expression and activity of G protein-coupled receptors (GPCRs) and associated G proteins. Oncogenic mutations in both GPCRs and G proteins (GNAS, GNAQ or GNA11) encoding genes have been identified in a significant number of tumors. Interestingly, uveal melanoma driver mutations in GNAQ/GNA11 were identified for a decade, but their discovery did not lead to mutation-specific drug development, unlike it the case for BRAF mutations in cutaneous melanoma which saw enormous success. Moreover, new immunotherapies strategies such as immune checkpoint inhibitors have given underwhelming results. In this review, we summarize the current knowledge on cancer-associated alterations of GPCRs and G proteins and we focus on the case of uveal melanoma. Finally, we discuss the possibilities that this signaling might represent in regard to novel drug development for cancer prevention and treatment.
Collapse
Affiliation(s)
- Lionel Larribère
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|