1
|
Fischer M, Kukley M. Hidden in the white matter: Current views on interstitial white matter neurons. Neuroscientist 2024:10738584241282969. [PMID: 39365761 DOI: 10.1177/10738584241282969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
The mammalian brain comprises two structurally and functionally distinct compartments: the gray matter (GM) and the white matter (WM). In humans, the WM constitutes approximately half of the brain volume, yet it remains significantly less investigated than the GM. The major cellular elements of the WM are neuronal axons and glial cells. However, the WM also contains cell bodies of the interstitial neurons, estimated to number 10 to 28 million in the adult bat brain, 67 million in Lar gibbon brain, and 450 to 670 million in the adult human brain, representing as much as 1.3%, 2.25%, and 3.5% of all neurons in the cerebral cortex, respectively. Many studies investigated the interstitial WM neurons (IWMNs) using immunohistochemistry, and some information is available regarding their electrophysiological properties. However, the functional role of IWMNs in physiologic and pathologic conditions largely remains unknown. This review aims to provide a concise update regarding the distribution and properties of interstitial WM neurons, highlight possible functions of these cells as debated in the literature, and speculate about other possible functions of the IWMNs and their interactions with glial cells. We hope that our review will inspire new research on IWMNs, which represent an intriguing cell population in the brain.
Collapse
Affiliation(s)
- Maximilian Fischer
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Maria Kukley
- Achucarro Basque Centre for Neuroscience, Leioa, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
2
|
Wiesner D, Feldengut S, Woelfle S, Boeckers TM, Ludolph AC, Roselli F, Del Tredici K. Neuropeptide FF (NPFF)-positive nerve cells of the human cerebral cortex and white matter in controls, selected neurodegenerative diseases, and schizophrenia. Acta Neuropathol Commun 2024; 12:108. [PMID: 38943180 PMCID: PMC11212262 DOI: 10.1186/s40478-024-01792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/02/2024] [Indexed: 07/01/2024] Open
Abstract
We quantified and determined for the first time the distribution pattern of the neuropeptide NPFF in the human cerebral cortex and subjacent white matter. To do so, we studied n = 9 cases without neurological disorders and n = 22 cases with neurodegenerative diseases, including sporadic amyotrophic lateral sclerosis (ALS, n = 8), Alzheimer's disease (AD, n = 8), Pick's disease (PiD, n = 3), and schizophrenia (n = 3). NPFF-immunopositive cells were located chiefly, but not exclusively, in the superficial white matter and constituted there a subpopulation of white matter interstitial cells (WMIC): Pyramidal-like and multipolar somata predominated in the gyral crowns, whereas bipolar and ovoid somata predominated in the cortex surrounding the sulci. Their sparsely ramified axons were unmyelinated and exhibited NPFF-positive bead-like varicosities. We found significantly fewer NPFF-immunopositive cells in the gray matter of the frontal, cingulate, and superior temporal gyri of both sporadic ALS and late-stage AD patients than in controls, and significantly fewer NPFF-positive cells in the subjacent as well as deep white matter of the frontal gyrus of these patients compared to controls. Notably, the number of NPFF-positive cells was also significantly lower in the hippocampal formation in AD compared to controls. In PiD, NPFF-positive cells were present in significantly lower numbers in the gray and white matter of the cingulate and frontal gyrii in comparison to controls. In schizophrenic patients, lower wNPFF cell counts in the neocortex were significant and global (cingulate, frontal, superior temporal gyrus, medial, and inferior gyri). The precise functions of NPFF-positive cells and their relationship to the superficial corticocortical white matter U-fibers are currently unknown. Here, NPFF immunohistochemistry and expression characterize a previously unrecognized population of cells in the human brain, thereby providing a new entry-point for investigating their physiological and pathophysiological roles.
Collapse
Affiliation(s)
- Diana Wiesner
- Department of Neurology, Center for Biomedical Research, Ulm University, 89081, Ulm, Germany
- DZNE, Ulm Site, 89081, Ulm, Germany
| | - Simone Feldengut
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, Ulm University, 89081, Ulm, Germany
| | - Sarah Woelfle
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
| | - Tobias M Boeckers
- DZNE, Ulm Site, 89081, Ulm, Germany
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
| | | | - Francesco Roselli
- Department of Neurology, Center for Biomedical Research, Ulm University, 89081, Ulm, Germany.
- DZNE, Ulm Site, 89081, Ulm, Germany.
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, Ulm University, 89081, Ulm, Germany
| |
Collapse
|
3
|
Wada M, Noda Y, Iwata Y, Tsugawa S, Yoshida K, Tani H, Hirano Y, Koike S, Sasabayashi D, Katayama H, Plitman E, Ohi K, Ueno F, Caravaggio F, Koizumi T, Gerretsen P, Suzuki T, Uchida H, Müller DJ, Mimura M, Remington G, Grace AA, Graff-Guerrero A, Nakajima S. Dopaminergic dysfunction and excitatory/inhibitory imbalance in treatment-resistant schizophrenia and novel neuromodulatory treatment. Mol Psychiatry 2022; 27:2950-2967. [PMID: 35444257 DOI: 10.1038/s41380-022-01572-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
Abstract
Antipsychotic drugs are the mainstay in the treatment of schizophrenia. However, one-third of patients do not show adequate improvement in positive symptoms with non-clozapine antipsychotics. Additionally, approximately half of them show poor response to clozapine, electroconvulsive therapy, or other augmentation strategies. However, the development of novel treatment for these conditions is difficult due to the complex and heterogenous pathophysiology of treatment-resistant schizophrenia (TRS). Therefore, this review provides key findings, potential treatments, and a roadmap for future research in this area. First, we review the neurobiological pathophysiology of TRS, particularly the dopaminergic, glutamatergic, and GABAergic pathways. Next, the limitations of existing and promising treatments are presented. Specifically, this article focuses on the therapeutic potential of neuromodulation, including electroconvulsive therapy, repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and deep brain stimulation. Finally, we propose multivariate analyses that integrate various perspectives of the pathogenesis, such as dopaminergic dysfunction and excitatory/inhibitory imbalance, thereby elucidating the heterogeneity of TRS that could not be obtained by conventional statistics. These analyses can in turn lead to a precision medicine approach with closed-loop neuromodulation targeting the detected pathophysiology of TRS.
Collapse
Affiliation(s)
- Masataka Wada
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Yusuke Iwata
- Department of Neuropsychiatry, University of Yamanashi Faculty of Medicine, Yamanashi, Japan
| | - Sakiko Tsugawa
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Kazunari Yoshida
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan.,Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Hideaki Tani
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Kyushu University, Fukuoka, Japan.,Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Haruyuki Katayama
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Eric Plitman
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kazutaka Ohi
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Fumihiko Ueno
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Fernando Caravaggio
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Teruki Koizumi
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan.,Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, Japan
| | - Philip Gerretsen
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Takefumi Suzuki
- Department of Neuropsychiatry, University of Yamanashi Faculty of Medicine, Yamanashi, Japan
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Daniel J Müller
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Gary Remington
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ariel Graff-Guerrero
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan. .,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
| |
Collapse
|
4
|
Swiegers J, Bhagwandin A, Maseko BC, Sherwood CC, Hård T, Bertelsen MF, Spocter MA, Molnár Z, Manger PR. The distribution, number, and certain neurochemical identities of infracortical white matter neurons in the brains of a southern lesser galago, a black-capped squirrel monkey, and a crested macaque. J Comp Neurol 2021; 529:3676-3708. [PMID: 34259349 DOI: 10.1002/cne.25216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/01/2021] [Accepted: 07/10/2021] [Indexed: 12/20/2022]
Abstract
In the current study, we examined the number, distribution, and aspects of the neurochemical identities of infracortical white matter neurons, also termed white matter interstitial cells (WMICs), in the brains of a southern lesser galago (Galago moholi), a black-capped squirrel monkey (Saimiri boliviensis boliviensis), and a crested macaque (Macaca nigra). Staining for neuronal nuclear marker (NeuN) revealed WMICs throughout the infracortical white matter, these cells being most dense close to inner cortical border, decreasing in density with depth in the white matter. Stereological analysis of NeuN-immunopositive cells revealed estimates of approximately 1.1, 10.8, and 37.7 million WMICs within the infracortical white matter of the galago, squirrel monkey, and crested macaque, respectively. The total numbers of WMICs form a distinct negative allometric relationship with brain mass and white matter volume when examined in a larger sample of primates where similar measures have been obtained. In all three primates studied, the highest densities of WMICs were in the white matter of the frontal lobe, with the occipital lobe having the lowest. Immunostaining revealed significant subpopulations of WMICs containing neuronal nitric oxide synthase (nNOS) and calretinin, with very few WMICs containing parvalbumin, and none containing calbindin. The nNOS and calretinin immunopositive WMICs represent approximately 21% of the total WMIC population; however, variances in the proportions of these neurochemical phenotypes were noted. Our results indicate that both the squirrel monkey and crested macaque might be informative animal models for the study of WMICs in neurodegenerative and psychiatric disorders in humans.
Collapse
Affiliation(s)
- Jordan Swiegers
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Busisiwe C Maseko
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Chet C Sherwood
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | | | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Muhammad A Spocter
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Anatomy, Des Moines University, Des Moines, Iowa, USA
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
5
|
Swiegers J, Bhagwandin A, Williams VM, Maseko BC, Sherwood CC, Hård T, Bertelsen MF, Rockland KS, Molnár Z, Manger PR. The distribution, number, and certain neurochemical identities of infracortical white matter neurons in a chimpanzee (Pan troglodytes) brain. J Comp Neurol 2021; 529:3429-3452. [PMID: 34180538 DOI: 10.1002/cne.25202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 01/06/2023]
Abstract
We examined the number, distribution, and immunoreactivity of the infracortical white matter neuronal population, also termed white matter interstitial cells (WMICs), throughout the telencephalic white matter of an adult female chimpanzee. Staining for neuronal nuclear marker (NeuN) revealed WMICs throughout the infracortical white matter, these cells being most numerous and dense close to the inner border of cortical layer VI, decreasing significantly in density with depth in the white matter. Stereological analysis of NeuN-immunopositive cells revealed an estimate of approximately 137.2 million WMICs within the infracortical white matter of the chimpanzee brain studied. Immunostaining revealed subpopulations of WMICs containing neuronal nitric oxide synthase (nNOS, approximately 14.4 million in number), calretinin (CR, approximately 16.7 million), very few WMICs containing parvalbumin (PV), and no calbindin-immunopositive neurons. The nNOS, CR, and PV immunopositive WMICs, possibly all inhibitory neurons, represent approximately 22.6% of the total WMIC population. As the white matter is affected in many cognitive conditions, such as schizophrenia, autism, epilepsy, and also in neurodegenerative diseases, understanding these neurons across species is important for the translation of findings of neural dysfunction in animal models to humans. Furthermore, studies of WMICs in species such as apes provide a crucial phylogenetic context for understanding the evolution of these cell types in the human brain.
Collapse
Affiliation(s)
- Jordan Swiegers
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Victoria M Williams
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Busisiwe C Maseko
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | | | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Kathleen S Rockland
- Department of Anatomy and Neurobiology, Boston University, School of Medicine, Boston, Massachusetts, USA
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
6
|
Sato J, Hirano Y, Hirakawa N, Takahashi J, Oribe N, Kuga H, Nakamura I, Hirano S, Ueno T, Togao O, Hiwatashi A, Nakao T, Onitsuka T. Lower Hippocampal Volume in Patients with Schizophrenia and Bipolar Disorder: A Quantitative MRI Study. J Pers Med 2021; 11:jpm11020121. [PMID: 33668432 PMCID: PMC7918861 DOI: 10.3390/jpm11020121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 01/02/2023] Open
Abstract
Since patients with schizophrenia (SZ) and bipolar disorder (BD) share many biological features, detecting biomarkers that differentiate SZ and BD patients is crucial for optimized treatments. High-resolution magnetic resonance imaging (MRI) is suitable for detecting subtle brain structural differences in patients with psychiatric disorders. In the present study, we adopted a neuroanatomically defined and manually delineated region of interest (ROI) method to evaluate the amygdalae, hippocampi, Heschl’s gyrus (HG), and planum temporale (PT), because these regions are crucial in the development of SZ and BD. ROI volumes were measured using high resolution MRI in 31 healthy subjects (HS), 23 SZ patients, and 21 BD patients. Right hippocampal volumes differed significantly among groups (HS > BD > SZ), whereas left hippocampal volumes were lower in SZ patients than in HS and BD patients (HS = BD > SZ). Volumes of the amygdalae, HG, and PT did not differ among the three groups. For clinical correlations, there were no significant associations between ROI volumes and demographics/clinical symptoms. Our study revealed significant lower hippocampal volume in patients with SZ and BD, and we suggest that the right hippocampal volume is a potential biomarker for differentiation between SZ and BD.
Collapse
Affiliation(s)
- Jinya Sato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
- Correspondence: (Y.H.); (T.O.); Tel.: +81-92-642-5627 (Y.H. & T.O.)
| | - Noriaki Hirakawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
| | - Junichi Takahashi
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
| | - Naoya Oribe
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
- Hizen Psychiatric Medical Center, Division of Clinical Research, National Hospital Organization, Saga 842-0192, Japan;
| | - Hironori Kuga
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
- Hizen Psychiatric Medical Center, Division of Clinical Research, National Hospital Organization, Saga 842-0192, Japan;
| | - Itta Nakamura
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
| | - Shogo Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
| | - Takefumi Ueno
- Hizen Psychiatric Medical Center, Division of Clinical Research, National Hospital Organization, Saga 842-0192, Japan;
| | - Osamu Togao
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Akio Hiwatashi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
| | - Toshiaki Onitsuka
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
- Correspondence: (Y.H.); (T.O.); Tel.: +81-92-642-5627 (Y.H. & T.O.)
| |
Collapse
|
7
|
Yoshikawa H, Kitamura S, Matsuoka K, Takahashi M, Ishida R, Kishimoto N, Yasuno F, Yasuda Y, Hashimoto R, Miyasaka T, Kichikawa K, Kishimoto T, Makinodan M. Adverse Childhood Experience Is Associated With Disrupted White Matter Integrity in Autism Spectrum Disorder: A Diffusion Tensor Imaging Study. Front Psychiatry 2021; 12:823260. [PMID: 35046859 PMCID: PMC8761790 DOI: 10.3389/fpsyt.2021.823260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Individuals with autism spectrum disorder (ASD) have an increased risk of adverse childhood experiences (ACEs) than typically developed (TD) children. Since multiple lines of studies have suggested that ACEs are related to myelination in the frontal lobe, an exposure to ACEs can be associated with white matter microstructural disruption in the frontal lobe, which may be implicated in subsequential psychological deficits after the adulthood. In this study, we investigated the relationship between ACEs and microstructural integrity on frontal lobe-related white matter tracts using diffusion tensor imaging in 63 individuals with ASD and 38 TD participants. Using a tractography-based analysis, we delineated the uncinate fasciculus (UF), dorsal cingulum (Ci), and anterior thalamic radiation (ATR), which are involved in the neural pathology of ASD, and estimated each diffusion parameter. Compared to the TD participants, individuals with ASD displayed significantly lower fractional anisotropy (FA) and higher radial diffusivity (RD) in the left ATR. Then, ASD individuals exposed to severe ACEs displayed higher RD than those exposed to mild ACEs and TD participants in the left ATR. Moreover, the severity of ACEs, particularly neglect, correlated with lower FA and higher RD in the left UF and ATR in individuals with ASD, which was not observed in TD participants. These results suggest that an exposure to ACEs is associated with abnormality in the frontal lobe-related white matter in ASD.
Collapse
Affiliation(s)
- Hiroaki Yoshikawa
- Department of Psychiatry, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Soichiro Kitamura
- Department of Psychiatry, School of Medicine, Nara Medical University, Kashihara, Japan.,Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kiwamu Matsuoka
- Department of Psychiatry, School of Medicine, Nara Medical University, Kashihara, Japan.,Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Masato Takahashi
- Department of Psychiatry, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Rio Ishida
- Department of Psychiatry, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Naoko Kishimoto
- Department of Psychiatry, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Fumihiko Yasuno
- Department of Psychiatry, School of Medicine, Nara Medical University, Kashihara, Japan.,Department of Psychiatry, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yuka Yasuda
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.,Medical Cooperation Foster, Osaka, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | | | - Toshifumi Kishimoto
- Department of Psychiatry, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Manabu Makinodan
- Department of Psychiatry, School of Medicine, Nara Medical University, Kashihara, Japan
| |
Collapse
|
8
|
Tsai SH, Tsao CY, Lee LJ. Altered White Matter and Layer VIb Neurons in Heterozygous Disc1 Mutant, a Mouse Model of Schizophrenia. Front Neuroanat 2020; 14:605029. [PMID: 33384588 PMCID: PMC7769951 DOI: 10.3389/fnana.2020.605029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Increased white matter neuron density has been associated with neuropsychiatric disorders including schizophrenia. However, the pathogenic features of these neurons are still largely unknown. Subplate neurons, the earliest generated neurons in the developing cortex have also been associated with schizophrenia and autism. The link between these neurons and mental disorders is also not well established. Since cortical layer VIb neurons are believed to be the remnant of subplate neurons in the adult rodent brain, in this study, we aimed to examine the cytoarchitecture of neurons in cortical layer VIb and the underlying white matter in heterozygous Disc1 mutant (Het) mice, a mouse model of schizophrenia. In the white matter, the number of NeuN-positive neurons was quite low in the external capsule; however, the density of these cells was found increased (54%) in Het mice compared with wildtype (WT) littermates. The density of PV-positive neurons was unchanged in the mutants. In the cortical layer VIb, the density of CTGF-positive neurons increased (21.5%) in Het mice, whereas the number of Cplx3-positive cells reduced (16.1%) in these mutants, compared with WT mice. Layer VIb neurons can be classified by their morphological characters. The morphology of Type I pyramidal neurons was comparable between genotypes while the dendritic length and complexity of Type II multipolar neurons were significantly reduced in Het mice. White matter neurons and layer VIb neurons receive synaptic inputs and modulate the process of sensory information and sleep/arousal pattern. Aberrances of these neurons in Disc1 mutants implies altered brain functions in these mice.
Collapse
Affiliation(s)
- Shin-Hwa Tsai
- School of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Yu Tsao
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | - Li-Jen Lee
- School of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
- Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Kubo KI, Deguchi K. Human neocortical development as a basis to understand mechanisms underlying neurodevelopmental disabilities in extremely preterm infants. J Obstet Gynaecol Res 2020; 46:2242-2250. [PMID: 32924239 DOI: 10.1111/jog.14468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/24/2020] [Indexed: 01/21/2023]
Abstract
AIM Recent advances in perinatal and neonatal medicine have resulted in marked improvements in the survival rates of extremely preterm infants (born before 28 gestational weeks) around the world, and Japan is among the countries with the highest reported survival rates of extremely preterm infants. However, it remains a major concern that many survivors develop neurodevelopmental disabilities, including cognitive dysfunctions and neurodevelopmental disorders later in life. In order to understand the pathophysiological mechanisms underlying the neurodevelopmental disabilities observed in the survivors of extremely preterm births, we reviewed recently reported findings about the development of the human neocortex. METHODS First, we have summarized the current knowledge about the development of the neocortex, including recently reported human- and/or primate-specific developmental events. Next, we discussed the possible causal mechanisms underlying the development of neurodevelopmental disabilities in extremely preterm infants. RESULTS Around the birth of extremely preterm infants, neurogenesis and succeeding neuronal migrations are ongoing in the neocortex of human brain. Expansion and maturation of the subplate, which is thought to reflect the axonal wiring in the neocortex, is also prominent at this time. CONCLUSION Brain injuries that occur around the birth of extremely preterm infants are presumed to affect the dynamic developmental events in the neocortex, such as neurogenesis, neuronal migrations and maturation of the subplate, which could underlie the neurodevelopmental disabilities that often develop subsequently in extremely preterm infants. These possibilities should be borne in mind while considering maternal and neonatal care to further improve the long-term outcomes of extremely preterm infants.
Collapse
Affiliation(s)
- Ken-Ichiro Kubo
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.,Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | - Kimiko Deguchi
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.,Department of Pediatrics, Deguchi Pediatric Clinic, Omura, Japan
| |
Collapse
|
10
|
Matsuoka K, Makinodan M, Kitamura S, Takahashi M, Yoshikawa H, Yasuno F, Ishida R, Kishimoto N, Yasuda Y, Hashimoto R, Taoka T, Miyasaka T, Kichikawa K, Kishimoto T. Increased Dendritic Orientation Dispersion in the Left Occipital Gyrus is Associated with Atypical Visual Processing in Adults with Autism Spectrum Disorder. Cereb Cortex 2020; 30:5617-5625. [PMID: 32515826 DOI: 10.1093/cercor/bhaa121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
In autism spectrum disorder (ASD), the complexity-specific hypothesis explains that atypical visual processing is attributable to selective functional changes in visual pathways. We investigated dendritic microstructures and their associations with functional connectivity (FC). Participants included 28 individuals with ASD and 29 typically developed persons. We explored changes in neurite orientation dispersion and density imaging (NODDI) and brain areas whose FC was significantly correlated with NODDI parameters in the explored regions of interests. Individuals with ASD showed significantly higher orientation dispersion index (ODI) values in the left occipital gyrus (OG) corresponding to the secondary visual cortex (V2). FC values between the left OG and the left middle temporal gyrus (MTG) were significantly negatively correlated with mean ODI values. The mean ODI values in the left OG were significantly positively associated with low registration of the visual quadrants of the Adolescent/Adult Sensory Profile (AASP), resulting in a significant positive correlation with passive behavioral responses of the AASP visual quadrants; additionally, the FC values between the left OG and the left MTG were significantly negatively associated with reciprocal social interaction. Our results suggest that abnormal V2 dendritic arborization is associated with atypical visual processing by altered intermediation in the ventral visual pathway.
Collapse
Affiliation(s)
- Kiwamu Matsuoka
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan.,Department of Psychiatry, Nara Medical University, Kashihara 634-8521, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University, Kashihara 634-8521, Japan
| | - Soichiro Kitamura
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan.,Department of Psychiatry, Nara Medical University, Kashihara 634-8521, Japan
| | - Masato Takahashi
- Department of Psychiatry, Nara Medical University, Kashihara 634-8521, Japan
| | - Hiroaki Yoshikawa
- Department of Psychiatry, Nara Medical University, Kashihara 634-8521, Japan
| | - Fumihiko Yasuno
- Department of Psychiatry, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Rio Ishida
- Department of Psychiatry, Nara Medical University, Kashihara 634-8521, Japan
| | - Naoko Kishimoto
- Department of Psychiatry, Nara Medical University, Kashihara 634-8521, Japan
| | - Yuka Yasuda
- Department of Psychiatry, Nara Medical University, Kashihara 634-8521, Japan.,Department of Psychiatry, Life Grow Brilliant Mental Clinic, Medical Corporation Foster, Osaka 530-0012, Japan.,Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan.,Department of Psychiatry, Osaka University Medical School, Suita 565-0871, Japan
| | - Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Toshiteru Miyasaka
- Department of Radiology, Nara Medical University, Kashihara 634-8521, Japan
| | - Kimihiko Kichikawa
- Department of Radiology, Nara Medical University, Kashihara 634-8521, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University, Kashihara 634-8521, Japan
| |
Collapse
|