1
|
Ziegler J, Tittel SR, Biester T, Kapellen T, Dost A, Rochow N, Barbarini DS, Böhle A, Galler A, Holl RW. Type 1 Diabetes Mellitus in the First Years of Life - Onset, Initial Treatment, and Early Disease Course. Exp Clin Endocrinol Diabetes 2024; 132:432-442. [PMID: 39142301 DOI: 10.1055/a-2316-0512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
OBJECTIVE This study investigated the onset and the choice of treatment in children with very early onset of type 1 diabetes mellitus (T1D). METHODS The study included 5,763 patients from the German Diabetes Patient Follow-up registry with onset of T1D in the first 4 years of life from January 2010 - June 2022. The analysis included diabetes-specific parameters, anthropometric data, and mode of treatment at onset, within the first and second year of T1D. Three groups were compared according to age at onset (G1: 223 patients 6-<12 months, G2: 1519 patients 12-<24 months, G3: 4001 patients 24-48 months). RESULTS In 12.3% of all cases in childhood and adolescence, the incidence of diabetes in the first 4 years of life was rare. At the onset, clinical status was worse and diabetic ketoacidosis (DKA) rates were higher in G1 and G2 (52.3% and 46.5%, respectively) compared to G3 (27.3% (p<0.001)). G1 and G2 were significantly more likely to be treated with insulin pump therapy (CSII) 2 years after onset (98.1% and 94.1%, respectively)) compared to G3 (85.8%, p<0.001). Median HbA1c after 2 years did not differ between groups (G1: 7.27% (56.0 mmol/mol), G2: 7.34% (56.7 mmol/mol) and G3: 7.27% (56.0 mmol/mol)) or when comparing CSII vs MDI. The rate of severe hypoglycemia (SH) and DKA during the first 2 years of treatment did not differ among the three groups, ranging from 1.83-2.63/100 patient-years (PY) for DKA and 9.37-24.2/100 PY for SH. Children with T1D under 4 years of age are more likely to be diagnosed with celiac disease but less likely to have thyroiditis than older children with T1DM. CONCLUSIONS Young children with T1D had high rates of DKA at onset and were predominantly treated with insulin pump therapy during the first 2 years. The median HbA1c for all three groups was<7.5% (58 mmol/mol) without increased risk of SH or DKA. The use of continuous glucose monitoring (CGM) was not associated with lower HbA1c in children under 48 months.
Collapse
Affiliation(s)
- J Ziegler
- University Hospital Tübingen, Department of Pediatric and Adolescent Medicine, Tübingen, Germany
| | - S R Tittel
- University of Ulm, Institute for Epidemiology and Medical Biometry, ZIBMT, Ulm, Germany
- German Center for Diabetes Research e.V., Munich-Neuherberg, Germany
| | - T Biester
- Children's Hospital Auf der Bult, Hanover, Germany
| | - T Kapellen
- University Hospital Leipzig, Department of Pediatric and Adolescent Medicine, Leipzig, Germany
| | - A Dost
- University Hospital Jena, Department of Pediatric and Adolescent Medicine, Jena, Germany
| | - N Rochow
- University Hospital of Paracelsus Medical Private University, Department for Newborns, Children and Adolescents, Nuremberg, Germany
| | - D Seick Barbarini
- Landeskrankenhaus Feldkirch, Academic Teaching Hospital, Department of Pediatrics, Feldkirch, Austria
| | - A Böhle
- Wilhelmstift Children's Hospital, Hamburg, Germany
| | - A Galler
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Sozialpädiatrisches Zentrum, Paediatric Endocrinology and Diabetology, Berlin, Germany
| | - R W Holl
- University of Ulm, Institute for Epidemiology and Medical Biometry, ZIBMT, Ulm, Germany
- German Center for Diabetes Research e.V., Munich-Neuherberg, Germany
| |
Collapse
|
2
|
Stachowiak L, Kraczkowska W, Świercz A, Jagodziński PP. Circulating non-coding RNA in type 1 diabetes mellitus as a source of potential biomarkers - An emerging role of sex difference. Biochem Biophys Res Commun 2024; 736:150482. [PMID: 39121670 DOI: 10.1016/j.bbrc.2024.150482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Non-coding RNAs (ncRNAs), such as microRNA, long non-coding RNA, and circular RNA, are considered essential regulatory molecules mediating many cellular processes. Moreover, an increasing number of studies have investigated the role of ncRNAs in cancers and various metabolic disorders, including diabetes mellitus. Interestingly, some circulating ncRNA detected in body fluids may serve as novel biomarkers. There is still a lack of conventional biomarkers that detect the early stage of type 1 diabetes mellitus. Many circulating microRNA, long non-coding RNA, and circular RNA show aberrant expression in type 1 diabetes patients compared to healthy individuals. However, most studies have focused on circulating microRNA rather than long non-coding RNA or circular RNA. In addition, a few studies have evaluated sex differences in ncRNA biomarkers. Therefore, this article summarises current knowledge about circulating ncRNAs as potential biomarkers for type 1 diabetes and explores the effects of sex on such biomarkers.
Collapse
Affiliation(s)
- Lucyna Stachowiak
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 street, 60-781, Poznań, Poland.
| | - Weronika Kraczkowska
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 street, 60-781, Poznań, Poland.
| | - Aleksandra Świercz
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2 street, 60-965, Poznań, Poland; Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 street, 61-704, Poznań, Poland.
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 street, 60-781, Poznań, Poland.
| |
Collapse
|
3
|
Tojjar J, Cervin M, Hedlund E, Brahimi Q, Forsander G, Elding Larsson H, Ludvigsson J, Samuelsson U, Marcus C, Persson M, Carlsson A. Sex Differences in Age of Diagnosis, HLA Genotype, and Autoantibody Profile in Children With Type 1 Diabetes. Diabetes Care 2023; 46:1993-1996. [PMID: 37699205 DOI: 10.2337/dc23-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023]
Abstract
OBJECTIVE To examine sex differences in children with newly diagnosed type 1 diabetes (T1D) with respect to age at diagnosis, presence of autoantibodies (GAD antibody [GADA], insulinoma-associated protein 2 [IA-2A], insulin autoantibody [IAA], and zinc transporter 8 autoantibody), and HLA risk. RESEARCH DESIGN AND METHODS A population-based nationwide sample of 3,645 Swedish children at T1D diagnosis was used. RESULTS Girls were younger at T1D diagnosis (9.53 vs. 10.23 years; P < 0.001), more likely to be autoantibody-positive (94.7% vs. 92.0%; P = 0.002), more often positive for multiple autoantibodies (P < 0.001), more likely to be positive for GADA (64.9% vs. 49.0%; P < 0.001), and less likely to be positive for IAA (32.3% vs. 33.8%; P = 0.016). Small sex differences in HLA risk were found in children <9 years of age. CONCLUSIONS The disease mechanisms leading to T1D may influence the immune system differently in girls and boys.
Collapse
Affiliation(s)
- Jasaman Tojjar
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Matti Cervin
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Emma Hedlund
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Paediatrics, Kristianstad Central Hospital, Kristianstad, Sweden
| | - Qefsere Brahimi
- Department of Clinical Sciences, Malmö, Clinical Research Center, Lund University, Malmö, Sweden
| | - Gun Forsander
- The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Helena Elding Larsson
- Department of Clinical Sciences, Malmö, Clinical Research Center, Lund University, Malmö, Sweden
- Skåne University Hospital, Malmö, Sweden
| | - Johnny Ludvigsson
- Crown Princess Victoria Childreńs Hospital, Linköping University Hospital, Linköping, Sweden
- Division of Pediatrics, Department of Biomedical and Clinical Sciences (BKV), Medical Faculty, Linköping University, Linköping, Sweden
| | - Ulf Samuelsson
- Crown Princess Victoria Childreńs Hospital, Linköping University Hospital, Linköping, Sweden
- Division of Pediatrics, Department of Biomedical and Clinical Sciences (BKV), Medical Faculty, Linköping University, Linköping, Sweden
| | - Claude Marcus
- Division of Pediatrics, Department of Clinical Science Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Martina Persson
- Department of Medicine, Clinical Epidemiology, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Science and Education, Karolinska Institute, Södersjukhuset, Stockholm, Sweden
| | | |
Collapse
|
4
|
de Vries SAG, Verheugt CL, Mul D, Nieuwdorp M, Sas TCJ. Do sex differences in paediatric type 1 diabetes care exist? A systematic review. Diabetologia 2023; 66:618-630. [PMID: 36700969 PMCID: PMC9947056 DOI: 10.1007/s00125-022-05866-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/25/2022] [Indexed: 01/27/2023]
Abstract
AIMS/HYPOTHESIS Sex differences are present in cardiovascular care and in outcomes among adults with type 1 diabetes mellitus, which typically commences in childhood. Whether sex influences care and outcomes in childhood is not known. This systematic review provides an overview of sex differences in children with type 1 diabetes, focusing on patient and disease characteristics, treatment, comorbidities and complications. METHODS Literature in MEDLINE up to 15 June 2021 was searched, using the terms diabetes mellitus, sex characteristics, sex distribution, children and/or adolescents. All primary outcome studies on children with type 1 diabetes that mentioned a sex difference in outcome were included, with the exception of qualitative studies, case reports or case series. Studies not pertaining to the regular clinical care process and on incidence or prevalence only were excluded. Articles reporting sex differences were identified and assessed on quality and risk of bias using Joanna Briggs Institute critical appraisal tools. Narrative synthesis and an adapted Harvest plot were used to summarise evidence by category. RESULTS A total of 8640 articles were identified, rendering 90 studies for review (n=643,217 individuals). Studies were of observational design and comprised cohort, cross-sectional and case-control studies. Most of the included studies showed a higher HbA1c in young female children both at diagnosis (seven studies, n=22,089) and during treatment (20 out of 21 studies, n=144,613), as well as a steeper HbA1c increase over time. Many studies observed a higher BMI (all ages, ten studies, n=89,700; adolescence, seven studies, n=33,153), a higher prevalence of being overweight or obese, and a higher prevalence of dyslipidaemia among the female sex. Hypoglycaemia and partial remission occurred more often in male participants, and ketoacidosis (at diagnosis, eight studies, n=3561) and hospitalisation was more often seen in female participants. Most of the findings showed that female participants used pump therapy more frequently (six studies, n=211,324) and needed higher insulin doses than male participants. Several comorbidities, such as thyroid disease and coeliac disease, appeared to be more common in female participants. All studies reported lower quality of life in female participants (15 studies, n=8722). Because the aim of this study was to identify sex differences, studies with neutral outcomes or minor differences may have been under-targeted. The observational designs of the included studies also limit conclusions on the causality between sex and clinical outcomes. CONCLUSIONS/INTERPRETATION Sex disparities were observed throughout diabetes care in children with type 1 diabetes. Several outcomes appear worse in young female children, especially during adolescence. Focus on the cause and treatment of these differences may provide opportunities for better outcomes. REGISTRATION This systematic review is registered in PROSPERO (CRD42020213640).
Collapse
Affiliation(s)
- Silvia A G de Vries
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands.
| | - Carianne L Verheugt
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Dick Mul
- Diabeter, Center for Paediatric and Adult Diabetes Care and Research, Rotterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Theo C J Sas
- Diabeter, Center for Paediatric and Adult Diabetes Care and Research, Rotterdam, the Netherlands
- Department of Paediatrics, Division of Paediatric Endocrinology, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands
| |
Collapse
|
5
|
Kieleväinen V, Turtinen M, Luopajärvi K, Härkönen T, Ilonen J, Knip M. Increased HLA class II risk is associated with a more aggressive presentation of clinical type 1 diabetes. Acta Paediatr 2023; 112:522-528. [PMID: 36480115 DOI: 10.1111/apa.16621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/15/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
AIM To determine the association of HLA class II risk with the demographic and clinical characteristics of type 1 diabetes at diagnosis. METHODS We conducted a register-based retrospective cohort study of 4993 Finnish children (2169 girls) - diagnosed with type 1 diabetes under the age of 15 years in 2003-2016. The participants were divided into six risk groups based on their HLA DR/DQ genotype. Demographic characteristics, family history of type 1 diabetes and metabolic markers at the time of diagnosis were compared between the groups. RESULTS In total, 4056/4993 children (81.2%) carried an HLA genotype associated with an increased risk of type 1 diabetes (risk groups 3-5), whereas 937/4993 children (18.8%) carried a HLA genotype conferring no or decreased disease risk. Children with higher HLA risk were younger at diagnosis (p < 0.001) and had a shorter duration of classical symptoms before diagnosis (p = 0.016). Subjects in the high-risk group were more likely to have a family member affected by type 1 diabetes when compared to those in the neutral risk group (11.5% vs. 8.8%, p = 0.05). CONCLUSION Children with stronger HLA disease susceptibility are younger at their disease manifestation and have a shorter period of symptoms before diagnosis, suggesting that the HLA class II genes are associated with a more aggressive disease presentation.
Collapse
Affiliation(s)
- Vilma Kieleväinen
- Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maaret Turtinen
- Pediatric Research Center, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kristiina Luopajärvi
- Pediatric Research Center, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Taina Härkönen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Mikael Knip
- Pediatric Research Center, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | | |
Collapse
|
6
|
Chai J, Wang Y, Sun Z, Zhou Q, Xu J. Evaluation among trace elements, clinical parameters and type 1 diabetes according to sex: A new sight of auxiliary prediction in negative insulin auto-antibodies population. J Trace Elem Med Biol 2023; 75:127100. [PMID: 36410305 DOI: 10.1016/j.jtemb.2022.127100] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/13/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Type 1 diabetes (T1D) exhibited sex-specific metabolic status including oxidative stress with dynamic change of trace elements, which emphasized the importance of the evaluation of trace elements according to sex. Besides, the most significant characteristic, insulin auto-antibodies, could not be found in all T1D patients, which needed the auxiliary prediction of clinical parameters. And it would benefit the early detection and treatment if some high-risk groups of T1D could predict and prevent the occurrence of disease through common clinical parameters. Hence, there was an urgent need to construct more effective and scientific statistical prediction models to serve clinic better. This study aimed to evaluate the sex-specific levels of trace elements and the relationship between trace elements and clinical parameters in T1D, and construct sex-specific auxiliary prediction model combined with trace elements and clinical parameters. METHODS A total of 105 T1D patients with negative insulin auto-antibodies and 105 age/sex-matched healthy individuals were enrolled in First Hospital of Jilin University. Inductively Coupled Plasma Mass Spectrometry was performed for the measurement of calcium (Ca), magnesium (Mg), zinc (Zn), copper (Cu), iron (Fe), selenium (Se) in the serum, and the data of clinical parameters were received from medical record system. The lambda-mu-sigma method was used to evaluate the relationship between abnormal clinical parameters and trace elements. Training set and validation set were divided for the construction of predictable models in males and females: clinical parameters model, trace element model and the combined model (clinical parameters and trace elements). Goodness fit test, decision curve analysis and other related statistical methods were used to perform data analysis. RESULTS Lower levels of Mg, Ca, Fe in the serum were found in T1D population in females compared with healthy population, while levels of Fe, Zn and Cu of serum in T1D individuals were higher than those of healthy population in males. Levels of serum Mg, Fe and Cu in T1D group were found with significant sex difference for (P < 0.05), and the levels of Fe and Cu in serum of males were higher than those of females, level of serum Mg in males was lower than those of females. Levels of serum Mg and Zn showed fluctuation trend with increased numbers of abnormal clinical parameters (NACP) in males. Serum Zn in females showed consistent elevated trend with NACP; serum Se increased first and then decreased with NACP in males and females. The auxiliary prediction model (Triglyceride, Total protein, serum Mg) was found with the highest predicted efficiency in males (AUC=0.993), while the model in females (Apolipoprotein A, Creatinine, Fe, Se, Zn/Cu ratio) showed the best predicted efficiency (AUC=0.951). The models had passed the verification in validation set, and Chi-square goodness-of-fit test, DCA results both confirmed their satisfactory clinical applicability. CONCLUSION Sex-specific difference were found in serum Mg, Fe and Cu in T1D. The combination of triglyceride, total protein and serum Mg for males, and apolipoprotein A, creatinine, Fe, Se, Zn/Cu ratio for females could effectively predict T1D in patients with negative anti-bodies, which would provide alarm for the population with high-risk of T1D and serve the T1D prediction in patients with negative anti-bodies.
Collapse
Affiliation(s)
- Jiatong Chai
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yiting Wang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zeyu Sun
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Qi Zhou
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiancheng Xu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
7
|
A Low Dose of Ouabain Alters the Metabolic Profile of Adult Rats Experiencing Intrauterine Growth Restriction in a Sex-Specific Manner. Reprod Sci 2022; 30:1594-1607. [PMID: 36333644 DOI: 10.1007/s43032-022-01118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Intrauterine growth restriction (IUGR) increases the risk of type 2 diabetes mellitus (T2DM) and metabolic diseases. The pancreas of fetuses with IUGR is usually characterized by pancreatic dysplasia and reduced levels of insulin secretion caused by the diminished replication of β-cells. Previous studies showed that a low dose of ouabain could reduce the apoptosis of embryonic nephric cells during IUGR and partially restore the number of nephrons at birth. The rescued kidneys functioned well and decreased the prevalence of hypertension. Thus, we hypothesized that ouabain could rescue pancreatic development during IUGR and reduce the morbidity of T2DM and metabolic diseases. Maternal malnutrition was used to induce the IUGR model, and then a low dose of ouabain was administered to rats with IUGR during pregnancy. Throughout the experiment, we monitored the pattern of weight increase and evaluated the metabolic parameters in the offspring in different stages. Male, but not female, offspring in the IUGR group presented catch-up growth. Ouabain could benefit the impaired glucose tolerance of male offspring; however, this desirable effect was eliminated by aging. The insulin sensitivity was significantly impaired in male offspring with IUGR, but it was improved by ouabain, even during old age. However, in the female offspring, low birth weight appeared to be a beneficial factor even in old age; administering ouabain exacerbated these favorable effects. Our data suggested that IUGR influenced glucose metabolism in a sex-specific manner and ouabain treatment during pregnancy exerted strongly contrasting effects in male and female rats.
Collapse
|
8
|
LeFevre JD, Cyriac SL, Tokmic A, Pitlick JM. Anti-CD3 monoclonal antibodies for the prevention and treatment of type 1 diabetes: A literature review. Am J Health Syst Pharm 2022; 79:2099-2117. [PMID: 36056809 DOI: 10.1093/ajhp/zxac244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DISCLAIMER In an effort to expedite the publication of articles, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time. PURPOSE Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of beta cells, resulting in a loss of insulin production. Patients with T1D carry a substantial disease burden as well as substantial short-term and long-term risks associated with inadequate glycemic control. Currently, treatment mainly consists of insulin, which only treats the symptoms of T1D and not the root cause. Thus, disease-modifying agents such as anti-CD3 monoclonal antibodies (mAbs) that target the autoimmune destruction of beta cells in T1D would provide significant relief and health benefits for patients with T1D. This review summarizes the clinical evidence regarding the safety and efficacy of anti-CD3 mAbs in the prevention and treatment of T1D. SUMMARY A total of 27 studies reporting or evaluating data from clinical trials involving otelixizumab and teplizumab were included in the review. Anti-CD3 mAbs have shown significant benefits in both patients at high risk for T1D and those with recent-onset T1D. In high-risk populations, anti-CD3 mAbs delayed time to diagnosis, preserved C-peptide levels, and improved metabolic parameters. In recent-onset T1D, anti-CD3 mAbs preserved C-peptide levels and reduced insulin needs for extended periods. Anti-CD3 mAb therapy appears to be safe, with primarily transient and self-limiting adverse effects and no negative long-term effects. CONCLUSION Anti-CD3 mAbs are promising disease-modifying treatments for T1D. Their role in T1D may introduce short-term and long-term benefits with the potential to mitigate the significant disease burden; however, more evidence is required for an accurate assessment.
Collapse
Affiliation(s)
- James D LeFevre
- Drake University College of Pharmacy and Health Sciences, Des Moines, IA, USA
| | - Sneha L Cyriac
- Drake University College of Pharmacy and Health Sciences, Des Moines, IA, USA
| | - Adna Tokmic
- Drake University College of Pharmacy and Health Sciences, Des Moines, IA, USA
| | - Jamie M Pitlick
- Drake University College of Pharmacy and Health Sciences, Des Moines, IA, USA
| |
Collapse
|
9
|
The relationship between GAD65 autoantibody and the risk of T1DM onset. J Diabetes Metab Disord 2022. [PMID: 36404832 PMCID: PMC9672278 DOI: 10.1007/s40200-022-01098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objectives Type 1 diabetes mellitus (T1DM) is a well-known autoimmune disease, characterized by β-cell destruction in pancreas islet cells, which results insulin deficiency and subsequent hyperglycemic sequelae. While there is screening for type 2 DM that leads to better glycemic control and outcome, the majority of T1DM patients are diagnosed when much of the pancreatic cells and their function are disturbed. The aim of this article is to present an overview of the effective factors in the positivity of Glutamic acid decarboxylase antibody )GADA( and identifying the high-risk individuals for T1DM. Methods We searched English literature available at National Library of Medicine via PubMed, and Google Scholar through December 2020. Finally, 79 papers have been included in the study. Studies were summarized based on the number of positive autoantibodies and onset of T1DM over time and GADA correlation with different variables. Conclusions GADA is an easy marker to measure that can be detected many months prior to the clinical presentation and remains positive even after early childhood.
Collapse
|
10
|
Turtinen M, Härkönen T, Ilonen J, Parkkola A, Knip M. Seasonality in the manifestation of type 1 diabetes varies according to age at diagnosis in Finnish children. Acta Paediatr 2022; 111:1061-1069. [PMID: 35137452 PMCID: PMC9303666 DOI: 10.1111/apa.16282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 11/30/2022]
Abstract
AIM We tested the hypothesis of a more aggressive disease process at diagnosis of type 1 diabetes during fall and winter, the colder seasons with consistently observed higher incidence of type 1 diabetes. METHODS Seasonality in the manifestation of type 1 diabetes was examined in 4993 Finnish children and adolescents. Metabolic characteristics, beta-cell autoantibodies and HLA class II genetics were analysed at clinical diagnosis. RESULTS Significant seasonality was observed with higher number of new cases during fall and winter (n = 1353/27.1% and n = 1286/25.8%) compared with spring and summer (n = 1135/22.7% and n = 219/24.4%) (p < 0.001). The youngest children (aged 0.5-4 years) differed from the older ones (aged 5-14 years) as a minority of them were diagnosed in winter (p = 0.019) while the older children followed the same pattern as that seen in the total series. Poorer metabolic decompensation was observed during seasons with lower number of new diagnoses. CONCLUSION The heterogeneity in the seasonality of diabetes manifestation between younger and older children suggests that different environmental factors may trigger the disease at different ages. Poorer clinical condition associated with seasons with a lower number of new cases may be more likely to be due to a delay in seeking medical help than to a more aggressive autoimmunity.
Collapse
Affiliation(s)
- Maaret Turtinen
- Pediatric Research Center Children's Hospital University of Helsinki and Helsinki University Hospital Helsinki Finland
- Research Program for Clinical and Molecular Metabolism Faculty of Medicine University of Helsinki Helsinki Finland
| | - Taina Härkönen
- Pediatric Research Center Children's Hospital University of Helsinki and Helsinki University Hospital Helsinki Finland
- Research Program for Clinical and Molecular Metabolism Faculty of Medicine University of Helsinki Helsinki Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory Institute of Biomedicine University of Turku Turku Finland
| | - Anna Parkkola
- Pediatric Research Center Children's Hospital University of Helsinki and Helsinki University Hospital Helsinki Finland
- Research Program for Clinical and Molecular Metabolism Faculty of Medicine University of Helsinki Helsinki Finland
| | - Mikael Knip
- Pediatric Research Center Children's Hospital University of Helsinki and Helsinki University Hospital Helsinki Finland
- Research Program for Clinical and Molecular Metabolism Faculty of Medicine University of Helsinki Helsinki Finland
- Tampere Center for Child Health Research Tampere University Hospital Tampere Finland
| | | |
Collapse
|
11
|
Progression of type 1 diabetes from latency to symptomatic disease is predicted by distinct autoimmune trajectories. Nat Commun 2022; 13:1514. [PMID: 35314671 PMCID: PMC8938551 DOI: 10.1038/s41467-022-28909-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Development of islet autoimmunity precedes the onset of type 1 diabetes in children, however, the presence of autoantibodies does not necessarily lead to manifest disease and the onset of clinical symptoms is hard to predict. Here we show, by longitudinal sampling of islet autoantibodies (IAb) to insulin, glutamic acid decarboxylase and islet antigen-2 that disease progression follows distinct trajectories. Of the combined Type 1 Data Intelligence cohort of 24662 participants, 2172 individuals fulfill the criteria of two or more follow-up visits and IAb positivity at least once, with 652 progressing to type 1 diabetes during the 15 years course of the study. Our Continuous-Time Hidden Markov Models, that are developed to discover and visualize latent states based on the collected data and clinical characteristics of the patients, show that the health state of participants progresses from 11 distinct latent states as per three trajectories (TR1, TR2 and TR3), with associated 5-year cumulative diabetes-free survival of 40% (95% confidence interval [CI], 35% to 47%), 62% (95% CI, 57% to 67%), and 88% (95% CI, 85% to 91%), respectively (p < 0.0001). Age, sex, and HLA-DR status further refine the progression rates within trajectories, enabling clinically useful prediction of disease onset. Presence of islet autoantibodies precedes the onset of type 1 diabetes but it does not predict whether and how fast symptomatic disease appears. Here authors present a model to predict and visualize progression to diabetes by using a large longitudinal data set on autoantibodies and clinical parameters as input.
Collapse
|
12
|
Nevalainen J, Datta S, Toppari J, Ilonen J, Hyöty H, Veijola R, Knip M, Virtanen SM. Frailty modeling under a selective sampling protocol: an application to type 1 diabetes related autoantibodies. Stat Med 2021; 40:6410-6420. [PMID: 34496070 DOI: 10.1002/sim.9190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 02/01/2023]
Abstract
In studies following selective sampling protocols for secondary outcomes, conventional analyses regarding their appearance could provide misguided information. In the large type 1 diabetes prevention and prediction (DIPP) cohort study monitoring type 1 diabetes-associated autoantibodies, we propose to model their appearance via a multivariate frailty model, which incorporates a correlation component that is important for unbiased estimation of the baseline hazards under the selective sampling mechanism. As further advantages, the frailty model allows for systematic evaluation of the association and the differences in regression parameters among the autoantibodies. We demonstrate the properties of the model by a simulation study and the analysis of the autoantibodies and their association with background factors in the DIPP study, in which we found that high genetic risk is associated with the appearance of all the autoantibodies, whereas the association with sex and urban municipality was evident for IA-2A and IAA autoantibodies.
Collapse
Affiliation(s)
- Jaakko Nevalainen
- Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Somnath Datta
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Jorma Toppari
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Jorma Ilonen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Riitta Veijola
- Department of Pediatrics, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Mikael Knip
- Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Suvi M Virtanen
- Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland.,Public Health and Welfare Department, Finnish Institute for Health and Welfare, Helsinki, Finland.,Research, Development and Innovation Centre, and Center for Child Health Research, Tampere University and University Hospital, Tampere, Finland
| |
Collapse
|
13
|
Segerer H, Wurm M, Grimsmann JM, Karges B, Neu A, Sindichakis M, Warncke K, Dost A, Holl RW. Diabetic Ketoacidosis at Manifestation of Type 1 Diabetes in Childhood and Adolescence. DEUTSCHES ARZTEBLATT INTERNATIONAL 2021; 118:367-372. [PMID: 34250891 DOI: 10.3238/arztebl.m2021.0133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/05/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Diabetic ketoacidosis (DKA) is a potentially life-threatening metabolic disorder that can occur with manifestation of type 1 diabetes mellitus (T1D). The aim of this study was to analyze the incidence of DKA at the time of the diagnosis of T1D in childhood and adolescence, the risk factors, and regional approaches to reduce the incidence of ketoacidosis. METHODS We investigated the proportion of patients under 18 years of age with DKA (defined as pH <7.3, severe DKA pH <7.1) at the manifestation of T1D in Germany in the period 2000-2019, based on data from the German-Austrian registry of diabetes (Diabetes-Patienten-Verlaufsdokumentation, DPV). The influence of the following factors was evaluated: year of manifestation, age, sex, family history of migration (MiH), and distance from the hospital. Moreover, data from the region with and the region without a pilot screening project from 2015 onwards were compared. RESULTS Of the 41 189 patients with manifestation of T1D, 19.8% presented with DKA (n = 8154, slight increase [p <0.001] over the study period) and 6.1% (n = 2513) had severe DKA. Children under 6 years of age had DKA more often than adolescents (12-17 years) (21.7% versus 18.6%, OR 1.22 {95% CI: [1.14; 1.30]}). Girls had a higher rate of DKA than boys (20.5% versus 19.2%, OR 1.10 [1.03; 1.14]), and patients with MiH were more likely to have DKA than those without MiH (21.4% versus 18.2%, OR 1.40 [1.32; 1.48]). In the region with a pilot screening project, the DKA rate stayed the same, at 20.6%, while in the control region the rate was 22.7% with a decreasing tendency. CONCLUSION The frequency of DKA at the time of diagnosis of T1D did not decrease between 2000 and 2019 and increased towards the end of the observation period. Children with MiH, children under 6, and girls were at a higher risk of DKA.
Collapse
Affiliation(s)
- Hugo Segerer
- Chair of Pediatric and Adolescent Medicine, University of Regensburg, Clinic St. Hedwig, Barmherzige Brüder Hospital, Regensburg, Germany; Institute of Epidemiology and Medical Biometry, ZIBMT, Medical Faculty of the University Ulm, Ulm, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Division of Endocrinology and Diabetes, Medical Faculty of the RWTH Aachen University, Aachen, Germany; Department of Pediatric and Adolescent Medicine, Bethlehem Health Center, Stolberg, Germany; Children's Hospital, Tübingen University Hospital, Tübingen, Germany; Department of Pediatric and Adolescent Medicine, Kliniken Südostbayern, Traunstein, Germany; Department of Pediatric and Adolescent Medicine, Children's Hospital Munich Schwabing, Technical University of Munich, Faculty of Medicine, Munich, Germany; Institute of Diabetes Research, Helmholtz Center Munich,German Research Center for Environmental Health, Munich, Germany; Department of Pediatric and Adolescent Medicine, Jena University Hospital, Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bauer W, Gyenesei A, Krętowski A. The Multifactorial Progression from the Islet Autoimmunity to Type 1 Diabetes in Children. Int J Mol Sci 2021; 22:7493. [PMID: 34299114 PMCID: PMC8305179 DOI: 10.3390/ijms22147493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Type 1 Diabetes (T1D) results from autoimmune destruction of insulin producing pancreatic ß-cells. This disease, with a peak incidence in childhood, causes the lifelong need for insulin injections and necessitates careful monitoring of blood glucose levels. However, despite the current insulin therapies, it still shortens life expectancy due to complications affecting multiple organs. Recently, the incidence of T1D in childhood has increased by 3-5% per year in most developed Western countries. The heterogeneity of the disease process is supported by the findings of follow-up studies started early in infancy. The development of T1D is usually preceded by the appearance of autoantibodies targeted against antigens expressed in the pancreatic islets. The risk of T1D increases significantly with an increasing number of positive autoantibodies. The order of autoantibody appearance affects the disease risk. Genetic susceptibility, mainly defined by the human leukocyte antigen (HLA) class II gene region and environmental factors, is important in the development of islet autoimmunity and T1D. Environmental factors, mainly those linked to the changes in the gut microbiome as well as several pathogens, especially viruses, and diet are key modulators of T1D. The aim of this paper is to expand the understanding of the aetiology and pathogenesis of T1D in childhood by detailed description and comparison of factors affecting the progression from the islet autoimmunity to T1D in children.
Collapse
Affiliation(s)
- Witold Bauer
- Clinical Research Centre, Medical University of Białystok, Marii Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (A.G.); (A.K.)
| | - Attila Gyenesei
- Clinical Research Centre, Medical University of Białystok, Marii Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (A.G.); (A.K.)
- Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| | - Adam Krętowski
- Clinical Research Centre, Medical University of Białystok, Marii Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (A.G.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Marii Skłodowskiej-Curie 24a, 15-276 Białystok, Poland
| |
Collapse
|
15
|
Wong TWC, Wong MYS, But WMB. Features of partial remission in children with type 1 diabetes using the insulin dose-adjusted A1c definition and risk factors associated with nonremission. Ann Pediatr Endocrinol Metab 2021; 26:118-125. [PMID: 34218633 PMCID: PMC8255863 DOI: 10.6065/apem.2040202.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE We sought to evaluate features of partial remission (PR) in children with type 1 diabetes mellitus (T1DM) using the insulin-dose adjusted A1c (IDAA1c) definition and to identify risk factors associated with nonremission. METHODS Medical records of patients with newly diagnosed T1DM between January 1, 2008, and June 30, 2018, were retrospectively reviewed. Hemoglobin A1c (HbA1c) readings and insulin total daily doses (TDDs) of each patient at each follow-up visit were obtained with IDAA1c values calculated. PR was defined as an IDAA1c score of 9 points or less within 6 months of diagnosis. The trends of HbA1c and TDD within 2 years after diagnosis were compared between remitters and nonremitters. Factors that may predict the occurrence of PR were studied, with their relative risks of nonremission calculated. RESULTS PR occurred in 26 patients (45.6%), including 8 girls and 18 boys, with a median duration of 8 months. The frequency of remission in male patients was significantly higher (P=0.002) and the relative risk of female sex with nonremission was 2.20 (95% confidence interval [CI], 1.24-3.91), which remained significant when adjusted by multivariate regression modeling. The initial HbA1c level at diagnosis was also significantly higher in the nonremission group (P=0.029), with a relative risk of 1.12 (95% CI, 1.01-1.25). Both HbA1c (P=0.012) and TDD (P=0.006) were significantly lower within 2 years after diagnosis among remitters than in nonremitters. TDD was significantly lower in male patients (P=0.029) during the same period, while there was no significant difference in HbA1c level between male and female patients (P=0.163). CONCLUSION Both the initial HbA1c level at diagnosis and sex were factors associated with the occurrence of PR. Female sex was an independent risk factor of nonremission, likely resulting from a higher insulin requirement in female T1DM patients.
Collapse
Affiliation(s)
- Tsz Wai Catherine Wong
- Department of Paediatrics, Queen Elizabeth Hospital, Jordan, Hong Kong,Address for correspondence:
Tsz Wai Catherine Wong
Department of Paediatrics, Queen
Elizabeth Hospital, 30 Gascoigne
Road, Jordan, Hong Kong
| | | | - Wai Man Betty But
- Department of Paediatrics, Queen Elizabeth Hospital, Jordan, Hong Kong
| |
Collapse
|
16
|
Parkkola A, Turtinen M, Härkönen T, Ilonen J, Knip M. Family history of type 2 diabetes and characteristics of children with newly diagnosed type 1 diabetes. Diabetologia 2021; 64:581-590. [PMID: 33331974 PMCID: PMC7864815 DOI: 10.1007/s00125-020-05342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/14/2020] [Indexed: 11/21/2022]
Abstract
AIMS/HYPOTHESIS Shared aetiopathogenetic factors have been proposed in type 1 diabetes and type 2 diabetes and both diseases have been shown to cluster in families. Characteristics related to type 2 diabetes have been described in patients with type 1 diabetes with a positive family history of type 2 diabetes. We wanted to characterise the family history of type 2 diabetes and its possible effects on the phenotype and genotype of type 1 diabetes in affected children at diagnosis. METHODS A total of 4993 children under the age of 15 years with newly diagnosed type 1 diabetes from the Finnish Pediatric Diabetes Register were recruited (56.6% boys, median age of 8.2 years) for a cross-sectional, observational, population-based investigation. The family history of diabetes at diagnosis was determined by a structured questionnaire, and markers of metabolic derangement, autoantibodies and HLA class II genetics at diagnosis were analysed. RESULTS Two per cent of the children had an immediate family member and 36% had grandparents with type 2 diabetes. Fathers and grandfathers were affected by type 2 diabetes more often than mothers and grandmothers. The children with a positive family history for type 2 diabetes were older at the diagnosis of type 1 diabetes (p < 0.001), had higher BMI-for-age (p = 0.01) and more often tested negative for all diabetes-related autoantibodies (p = 0.02). CONCLUSIONS/INTERPRETATION Features associated with type 2 diabetes, such as higher body weight, older age at diagnosis and autoantibody negativity, are more frequently already present at the diagnosis of type 1 diabetes in children with a positive family history of type 2 diabetes.
Collapse
Affiliation(s)
- Anna Parkkola
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maaret Turtinen
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Taina Härkönen
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Mikael Knip
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Center for Child Health Research, Tampere University Hospital, Tampere, Finland.
- Folkhälsan Research Center, Helsinki, Finland.
| | | |
Collapse
|
17
|
Pacaud D, Nucci AM, Cuthbertson D, Becker DJ, Virtanen SM, Ludvigsson J, Ilonen J, Knip M. Association between family history, early growth and the risk of beta cell autoimmunity in children at risk for type 1 diabetes. Diabetologia 2021; 64:119-128. [PMID: 33026463 PMCID: PMC7716821 DOI: 10.1007/s00125-020-05287-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/07/2020] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS The aim of this work was to examine the relationship between family history of type 1 diabetes, birthweight, growth during the first 2 years and development of multiple beta cell autoantibodies in children with a first-degree relative with type 1 diabetes and HLA-conferred disease susceptibility. METHODS In a secondary analysis of the Trial to Reduce IDDM in the Genetically at Risk (TRIGR), clinical characteristics and development of beta cell autoantibodies were compared in relation to family history of type 1 diabetes (mother vs father vs sibling) in 2074 children from families with a single affected family member. RESULTS Multiple autoantibodies (≥2 of 5 measured) developed in 277 (13%) children: 107 (10%), 114 (16%) and 56 (18%) born with a mother, father or sibling with type 1 diabetes, respectively (p < 0.001). The HR for time to multiple autoimmunity was 0.54 (95% CI 0.39, 0.75) in offspring of affected mothers (n = 107/1046, p < 0.001) and 0.81 (95% CI 0.59, 1.11) (n = 114/722, p = 0.19) in offspring of affected fathers, compared with participants with a sibling with type 1 diabetes (comparator group n = 56/306). The time to the first autoantibody present (to insulin, GAD, tyrosine phosphatase-related insulinoma-associated 2 molecules, islet cell or zinc transporter 8) was similar in the three groups. Height velocity (z score/year) in the first 24 months was independently associated with developing multiple antibodies in the total cohort (HR 1.31 [95% CI 1.01, 1.70], p = 0.04). A higher birthweight in children born to an affected mother vs affected father or an affected sibling was not related to the risk of multiple autoimmunity. CONCLUSIONS/INTERPRETATION The risk of developing multiple autoantibodies was lower in children with maternal type 1 diabetes. For the whole group, this risk of developing multiple autoantibodies was independent of birthweight but was greater in those with increased height velocity during the first 2 years of life. However, the risk associated with paternal type 1 diabetes was not linked to differences in birthweight or early growth. TRIAL REGISTRATION ClinicalTrials.gov NCT00179777 Graphical abstract.
Collapse
Affiliation(s)
- Danièle Pacaud
- Department of Pediatrics, Alberta Children’s Hospital, University of Calgary, Calgary, AB Canada
| | - Anita M. Nucci
- Department of Nutrition, Georgia State University, Atlanta, GA USA
| | - David Cuthbertson
- Pediatrics Epidemiology Center, University of South Florida, Tampa, FL USA
| | - Dorothy J. Becker
- Division of Endocrinology, University of Pittsburgh and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Suvi M. Virtanen
- Public Health Promotion Unit, National Institute for Health and Welfare, Helsinki, Finland
- Faculty of Social Sciences/Health, Tampere University, Tampere, Finland
- Center for Child Health Research, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Johnny Ludvigsson
- Crown Princess Victoria Children’s Hospital, Region Östergötland and Division of Pediatrics, Department of Clinical Experimental Medicine, Linkoping University, Linkoping, Sweden
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Mikael Knip
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
18
|
Mikk ML, Pfeiffer S, Kiviniemi M, Laine AP, Lempainen J, Härkönen T, Toppari J, Veijola R, Knip M, Ilonen J. HLA-DR-DQ haplotypes and specificity of the initial autoantibody in islet specific autoimmunity. Pediatr Diabetes 2020; 21:1218-1226. [PMID: 32613719 DOI: 10.1111/pedi.13073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/09/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE We aimed to clarify the association of various HLA risk alleles with different types of autoantibodies initiating islet specific autoimmunity. METHODS Follow-up cohorts from the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study and children diagnosed with type 1 diabetes (T1D) from the Finnish Pediatric Diabetes Register (FPDR) were analyzed for the presence of autoantibodies to insulin (IAA), glutamic acid decarboxylase (GADA), IA-2 antigen (IA-2A), and zinc transporter 8 (ZnT8A); and genotyped for HLA DR/DQ alleles. In the DIPP study, autoantibodies were regularly analyzed from birth up to 15 years of age. RESULTS In the DIPP cohort, 621 children developed one single persistent autoantibody, GADA in 284, IAA in 268, and IA-2A in 40 cases. Highly significant differences in the specificity of the first autoantibody were observed between HLA genotypes. Homozygotes for the DR3-DQ2 haplotype had almost exclusively GADA as the first autoantibody, whereas a more even distribution between GADA and IAA was found in DR3-DQ2/DR4-DQ8 as well as DR3-DQ/x and DR4-DQ8/x genotypes (x referring to neutral haplotypes). In DR4-DQ8 positive genotypes with the DRB1*04:01 allele IAA was more often the first autoantibody than in DRB1*04:04 positive genotypes. Various neutral haplotypes also significantly affected the relative proportions of different initial autoantibodies. These findings were confirmed and expanded in a series of 1591 T1D children under the age of 10 years from FPDR. CONCLUSIONS These results emphasize the importance of HLA class II polymorphisms in the recognition of autoantigen epitopes in the initiation of various pathways of the autoimmune response.
Collapse
Affiliation(s)
- Mari-Liis Mikk
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sophie Pfeiffer
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Minna Kiviniemi
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Antti-Pekka Laine
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Johanna Lempainen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland.,Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Taina Härkönen
- Pediatric Research Center, Children Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jorma Toppari
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland.,Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Mikael Knip
- Pediatric Research Center, Children Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland.,Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | | |
Collapse
|
19
|
Turtinen M, Härkönen T, Parkkola A, Ilonen J, Knip M. Characteristics of familial type 1 diabetes: effects of the relationship to the affected family member on phenotype and genotype at diagnosis. Diabetologia 2019; 62:2025-2039. [PMID: 31346657 PMCID: PMC6805821 DOI: 10.1007/s00125-019-4952-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/04/2019] [Indexed: 01/13/2023]
Abstract
AIMS/HYPOTHESIS In previous studies, the risk of developing familial type 1 diabetes has been reported to be more than two times higher in the offspring of affected fathers than in those of affected mothers. We tested the hypothesis that index children with an affected father may have a more aggressive disease process at diagnosis than those with other affected first-degree relatives. METHODS A cross-sectional, observational study was performed using the Finnish Pediatric Diabetes Register. Clinical and metabolic characteristics, beta cell autoantibodies and HLA class II genetics were analysed from index children in Finland diagnosed before the age of 15 years between January 2003 and December 2016. Information on the presence of type 1 diabetes in first-degree relatives was collected at diagnosis using a structured questionnaire. RESULTS Out of 4993 newly diagnosed index children, 519 (10.4%) had familial type 1 diabetes. More than 5% (n = 253, 5.1%) had an affected father, 2.8% (n = 141) had an affected mother, 1.9% (n = 95) had an affected sibling and 0.6% (n = 30) had two or more affected family members. All clinical and metabolic variables were markedly poorer in children with sporadic vs familial diabetes. The index children with an affected father or mother were younger than those with an affected sibling (median age 7.59 vs 6.74 vs 10.73 years, respectively; p < 0.001). After age- and sex-adjusted analyses, index children with an affected father presented more often with ketoacidosis (9.7% vs 3.6%; p = 0.033) and had greater weight loss before diagnosis (3.2% vs 0%; p = 0.006) than those with an affected mother. Children with familial disease tested negative for all autoantibodies more often (3.5% vs 2.1%; p = 0.041) and had insulin autoantibodies more frequently (49.8% vs 42.2%; p = 0.004) than those with sporadic disease. Both major HLA risk haplotypes (DR3-DQ2 and DR4-DQ8) were more often lacking among children with sporadic vs familial disease (15.9% vs 11.2%; p = 0.006). The DR4-DQ8 haplotype was more frequent in the familial vs the sporadic group (75.7% vs 68.5%; p = 0.001) and especially among children with an affected father when compared with children with sporadic disease (77.5% vs 68.5%; p < 0.05). When comparing index children with affected parents diagnosed before or after the birth of the index child, a clear male preponderance was seen among the affected parents diagnosed before the birth of the index child (fathers 66.2% vs mothers 33.8%; p = 0.006), whereas the proportion of fathers and mothers was similar if type 1 diabetes was diagnosed after the birth of the index child. CONCLUSIONS/INTERPRETATION The more severe metabolic derangement at diagnosis in children with sporadic type 1 diabetes compared with those with familial type 1 diabetes was confirmed. The higher frequency of diabetic ketoacidosis and increased weight loss at diagnosis in index children with an affected father compared with an affected mother support the hypothesis that paternal type 1 diabetes is associated with more severe disease in the offspring than maternal diabetes. The sex difference seen between affected parents diagnosed before and after the birth of the index child supports the hypothesis that maternal insulin treatment protects against type 1 diabetes.
Collapse
Affiliation(s)
- Maaret Turtinen
- Children's Hospital, University of Helsinki, P.O. Box 22, (Stenbäckinkatu 11), FI-00014, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Taina Härkönen
- Children's Hospital, University of Helsinki, P.O. Box 22, (Stenbäckinkatu 11), FI-00014, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anna Parkkola
- Children's Hospital, University of Helsinki, P.O. Box 22, (Stenbäckinkatu 11), FI-00014, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Mikael Knip
- Children's Hospital, University of Helsinki, P.O. Box 22, (Stenbäckinkatu 11), FI-00014, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Folkhälsan Research Center, Helsinki, Finland.
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland.
| |
Collapse
|