1
|
Xu Q, Elrefaei M, Taupin JL, Hitchman KMK, Hiho S, Gareau AJ, Iasella CJ, Marrari M, Belousova N, Bettinotti M, Narula T, Alvarez F, Sanchez PG, Levvey B, Westall G, Snell G, Levine DJ, Zeevi A, Roux A. Chronic lung allograft dysfunction is associated with an increased number of non-HLA antibodies. J Heart Lung Transplant 2024; 43:663-672. [PMID: 38141896 DOI: 10.1016/j.healun.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND Chronic lung allograft dysfunction (CLAD) is the major cause of adverse outcomes in lung transplant recipients. Multiple factors, such as infection, alloimmunity, and autoimmunity, may lead to CLAD. Here, we aim to examine the role of non-human leukocytes antigen (HLA) antibodies in CLAD in a large retrospective cohort. METHODS We analyzed non-HLA antibodies in the pre- and post-transplant sera of 226 (100 CLAD, 126 stable) lung transplant recipients from 5 centers, and we used a separate cohort to confirm our findings. RESULTS A panel of 18 non-HLA antibodies was selected for analysis based on their significantly higher positive rates in CLAD vs stable groups. The panel-18 non-HLA antibodies (n > 3) may be positive pre- or post-transplant; the risk for CLAD is higher in the latter. The presence of both non-HLA antibody and HLA donor-specific antibody (DSA) was associated with an augmented risk of CLAD (HR=25.09 [5.52-14.04], p < 0.001), which was higher than that for single-positive patients. In the independent confirmatory cohort of 61 (20 CLAD, 41 stable) lung transplant recipients, the risk for CLAD remained elevated in double-positive patients (HR=10.67 [0.98-115.68], p = 0.052). After adjusting for nonstandard immunosuppression, patients with double-positive DSA/Non-HLA antibodies had an elevated risk for graft loss (HR=2.53 [1.29-4.96], p = 0.007). CONCLUSIONS Circulating non-HLA antibodies (n > 3) were independently associated with a higher risk for CLAD. Furthermore, when non-HLA antibodies and DSA were detected concomitantly, the risk for CLAD and graft loss was significantly increased. These results show that humoral immunity to HLA and non-HLA antigens may contribute to CLAD development.
Collapse
Affiliation(s)
- Qingyong Xu
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| | - Mohamed Elrefaei
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida
| | - Jean-Luc Taupin
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint Louis, Paris, France
| | - Kelley M K Hitchman
- Department of Pathology and Lab Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Steven Hiho
- Australian Red Cross Life Blood, Victorian and Immunogenetics, Melbourne, Victoria, Australia
| | - Alison J Gareau
- Immunogenetics Laboratory, Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Carlo J Iasella
- Department of Pharmacy, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Marilyn Marrari
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | - Maria Bettinotti
- Immunogenetics Laboratory, Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Tathagat Narula
- Division of Lung Failure and Transplant, Mayo Clinic, Jacksonville, Florida
| | - Francisco Alvarez
- Division of Lung Failure and Transplant, Mayo Clinic, Jacksonville, Florida
| | - Pablo G Sanchez
- Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Bronwyn Levvey
- Lung Transplant Service, Alfred Hospital, Melbourne, Victoria, Australia
| | - Glen Westall
- Lung Transplant Service, Alfred Hospital, Melbourne, Victoria, Australia
| | - Gregory Snell
- Lung Transplant Service, Alfred Hospital, Melbourne, Victoria, Australia
| | - Deborah J Levine
- Department of Medicine, Stanford University, Palo Alto, California
| | - Adriana Zeevi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Antoine Roux
- Department of Pneumology, Hôpital Foch, Suresnes, France
| |
Collapse
|
2
|
Lebraud E, Eloudzeri M, Rabant M, Lamarthée B, Anglicheau D. Microvascular Inflammation of the Renal Allograft: A Reappraisal of the Underlying Mechanisms. Front Immunol 2022; 13:864730. [PMID: 35392097 PMCID: PMC8980419 DOI: 10.3389/fimmu.2022.864730] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 12/26/2022] Open
Abstract
Antibody-mediated rejection (ABMR) is associated with poor transplant outcomes and was identified as a leading cause of graft failure after kidney transplantation. Although the hallmark histological features of ABMR (ABMRh), i.e., microvascular inflammation (MVI), usually correlate with the presence of anti-human leukocyte antigen donor-specific antibodies (HLA-DSAs), it is increasingly recognized that kidney transplant recipients can develop ABMRh in the absence of HLA-DSAs. In fact, 40-60% of patients with overt MVI have no circulating HLA-DSAs, suggesting that other mechanisms could be involved. In this review, we provide an update on the current understanding of the different pathogenic processes underpinning MVI. These processes include both antibody-independent and antibody-dependent mechanisms of endothelial injury and ensuing MVI. Specific emphasis is placed on non-HLA antibodies, for which we discuss the ontogeny, putative targets, and mechanisms underlying endothelial toxicity in connection with their clinical impact. A better understanding of these emerging mechanisms of allograft injury and all the effector cells involved in these processes may provide important insights that pave the way for innovative diagnostic tools and highly tailored therapeutic strategies.
Collapse
Affiliation(s)
- Emilie Lebraud
- Necker-Enfants Malades Institute, Inserm U1151, Université de Paris, Department of Nephrology and Kidney Transplantation, Necker Hospital, AP-HP, Paris, France
| | - Maëva Eloudzeri
- Necker-Enfants Malades Institute, Inserm U1151, Université de Paris, Department of Nephrology and Kidney Transplantation, Necker Hospital, AP-HP, Paris, France
| | - Marion Rabant
- Department of Renal Pathology, Necker Hospital, AP-HP, Paris, France
| | - Baptiste Lamarthée
- Université Bourgogne Franche-Comté, EFS BFC, Inserm UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Dany Anglicheau
- Necker-Enfants Malades Institute, Inserm U1151, Université de Paris, Department of Nephrology and Kidney Transplantation, Necker Hospital, AP-HP, Paris, France
| |
Collapse
|
3
|
Piras C, Guo Y, Soggiu A, Chanrot M, Greco V, Urbani A, Charpigny G, Bonizzi L, Roncada P, Humblot P. Changes in protein expression profiles in bovine endometrial epithelial cells exposed to E. coli LPS challenge. MOLECULAR BIOSYSTEMS 2017; 13:392-405. [PMID: 28070584 DOI: 10.1039/c6mb00723f] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
E. coli is one of the most frequently involved bacteria in uterine diseases. Lipopolysaccharide (LPS) is a component of the outer membrane of Gram-negative bacteria involved in pathogenic processes leading to post-partum metritis and endometritis in cattle. It also causes inflammation of the endometrium. The increase of cell proliferation by LPS is part of the inflammatory process. The aim of this study was to investigate possible changes in protein expression in relation to the proliferative response of bEECs after challenge with E. coli-LPS. In vitro culture of bEECs was performed from cow genital tracts collected at a slaughterhouse. In passage 5, bEECs from each of 9 cows (3 series of 3 cows) were exposed to 0, 8, and 16 μg ml-1 LPS for 72 h. At time 0 and 72 h later, attached cells/living cells were counted and for each time and LPS dosage, cells were frozen for proteomic analyses. All samples from the 3 series were analyzed by 2-D gel electrophoresis coupled to MALDI-TOF/TOF mass spectrometry. The samples from the first series were subjected to shotgun nLC-MS/MS analysis. From the whole differential proteomics analysis, 38 proteins were differentially expressed (p < 0.05 to p < 0.001) following exposure to LPS. Among them, twenty-eight were found to be up-regulated in the LPS groups in comparison to control groups and ten were down-regulated. Differentially expressed proteins were associated with cell proliferation and apoptosis, transcription, destabilization of cell structure, oxidative stress, regulation of histones, allergy and general cell metabolism pathways. The de-regulations induced by LPS were consistent with the proliferative phenotype and indicated strong alterations of several cell functions. In addition, some of the differentially expressed proteins relates to pathways activated at the time of implantation. The specific changes induced through those signals may have negative consequences for the establishment of pregnancy.
Collapse
Affiliation(s)
- Cristian Piras
- Dipartimento di Medicina Veterinaria, Università degli studi di Milano, Milano, Italy
| | - Yongzhi Guo
- Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences, SLU, Sweden
| | - Alessio Soggiu
- Dipartimento di Medicina Veterinaria, Università degli studi di Milano, Milano, Italy
| | - Metasu Chanrot
- Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences, SLU, Sweden and Rajamangala University of Srivijaya (RMUTSV), Thungyai, Thailand
| | - Viviana Greco
- Proteomics and Metabonomics Unit Fondazione Santa Lucia - IRCCS, Rome, Italy
| | - Andrea Urbani
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica, Roma, Italy
| | - Gilles Charpigny
- INRA, Biologie du Développement et Reproduction, 78350, Jouy en Josas, France
| | - Luigi Bonizzi
- Dipartimento di Medicina Veterinaria, Università degli studi di Milano, Milano, Italy
| | - Paola Roncada
- Dipartimento di Medicina Veterinaria, Università degli studi di Milano, Milano, Italy and Istituto Sperimentale Italiano L. Spallanzani, Milano and TechnologieS srl, via Celoria 10, 20133 Milano, Italy.
| | - Patrice Humblot
- Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences, SLU, Sweden
| |
Collapse
|
4
|
Yan D, Liu X, Hua L, Wu K, Sha X, Zhao J, Yang C, Zhang C, Shi J, Wu X. MMP-14 promotes VSMC migration via up-regulating CD44 expression in cardiac allograft vasculopathy. Pathol Res Pract 2016; 212:1119-1125. [PMID: 27712978 DOI: 10.1016/j.prp.2016.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/22/2016] [Accepted: 09/19/2016] [Indexed: 02/03/2023]
Abstract
Cardiac allograft vasculopathy (CAV) was the leading cause of late death in heart transplantation recipients. Matrix metalloproteinase-14 (MMP-14), as a member of the MMPs family, has been reported to play a vital role in coronary vascular lesions of allotransplanted hearts. However, concrete mechanism is still unclear. Herein, we showed that the expression of MMP-14 was different between isografts and allografts. Interestingly, we found MMP-14 could interact with CD44 in allografts. Cluster of differentiation 44 (CD44), as a cell adhesion receptor and is involved in cell migration, caused our interest in MMP-14/CD44 complex in allografts. Then we analyzed the effect of MMP-14/CD44 complex on pro-MMP-9 activation and vascular smooth muscle cell (VSMC) migration in rat VSMC TNF-α treated model. Then, we further found intervention of MMP-14/CD44 complex could inhibit VSMC migration. Our results elucidate the molecular mechanism of VSMC migration after cardiac transplantation and provide theoretical basis for seeking new specific drug targets for CAV prevention and treatment.
Collapse
Affiliation(s)
- Daliang Yan
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, PR China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu 226001, PR China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Lu Hua
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, PR China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Kunpeng Wu
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, PR China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Xilin Sha
- Department of Thoracic Surgery, Rugao People's Hospital, Rugao, Jiangsu 226500, PR China
| | - Jianhua Zhao
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, PR China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Chen Yang
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, PR China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Chao Zhang
- Department of Vasculocardiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, PR China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, PR China.
| | - Xiang Wu
- Department of Vasculocardiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, PR China.
| |
Collapse
|
5
|
Liu X, Yan D, Li Y, Sha X, Wu K, Zhao J, Yang C, Zhang C, Shi J, Wu X. Erythroblast transformation-specific 2 correlates with vascular smooth muscle cell apoptosis in rat heterotopic heart transplantation model. J Thorac Dis 2016; 8:2027-37. [PMID: 27621856 DOI: 10.21037/jtd.2016.07.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Cardiac allograft vasculopathy (CAV) decreases the long-term survival of heart transplantation recipients. Vascular smooth muscle cell (VSMC) apoptosis is an important pathological feature of CAV. Erythroblast transformation-specific 2 (Ets-2), as a transcription factor, participates in cell apoptosis and plays an important role in organ transplantation. METHODS Hearts from Wistar-Furth (WF:RT1u) rats were heterotopically transplanted into Lewis (Lew:RT1(l)) rats without immunosuppression. Additional syngeneic heterotopic cardiac transplantations were performed in Lewis rats. HE staining was used to identify CAV. Ets-2 expression was examined by western blot. Ets-2 tissue location was examined by immunohistochemical assay and double immunostaining. Cleaved caspase 3 expression was detected by western blot. Co-localization of Ets-2 and cleaved caspase 3 was detected by double immunostaining. Ets-2, p53, cleaved caspase 3 and Bcl-xl expression in rat VSMC line A7R5 was examined after Ets-2 siRNA transfection. TUNEL assay was applied to detect A7R5 apoptosis with or without ETS-2 siRNA transfection. Immunoprecipitation was performed to explore the interaction between Ets-2 and p53. RESULTS Ets-2 expression decreased in the allograft group but had no obvious change in the isograft group. Meanwhile, the phenomenon of CAV was observed in the allograft group and there is neointima formation in the isograft group which is not obvious compared with allograft group. Additionally, Ets-2 expression was opposite to VSMC apoptosis in the allograft group. In vitro, Ets-2 siRNA transfection in A7R5cells resulted in enhanced cell apoptosis. Finally, Ets-2 interacted with p53. CONCLUSIONS Ets-2 might inhibit VSMC apoptosis via p53 pathway. The results further elucidate the molecular mechanism of VSMC apoptosis after heart transplantation during CAV and provide theoretical basis for seeking new specific drug targets for CAV prevention and treatment.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, China;; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China
| | - Daliang Yan
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China;; Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yangcheng Li
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China;; Department of Thoracic Surgery, Affiliated Cancer Hospital of Nantong University, Nantong 226361, China
| | - Xilin Sha
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China;; Department of Thoracic Surgery, Rugao People's Hospital, Rugao 226500, China
| | - Kunpeng Wu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China;; Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jianhua Zhao
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China;; Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Chen Yang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China;; Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Chao Zhang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China;; Department of Vasculocardiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jiahai Shi
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China;; Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiang Wu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China;; Department of Vasculocardiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
6
|
Haque A, Ray SK, Cox A, Banik NL. Neuron specific enolase: a promising therapeutic target in acute spinal cord injury. Metab Brain Dis 2016; 31:487-95. [PMID: 26847611 PMCID: PMC4864119 DOI: 10.1007/s11011-016-9801-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/26/2016] [Indexed: 12/11/2022]
Abstract
Enolase is a multifunctional protein, which is expressed abundantly in the cytosol. Upon stimulatory signals, enolase can traffic to cell surface and contribute to different pathologies including injury, autoimmunity, infection, inflammation, and cancer. Cell-surface expression of enolase is often detected on activated macrophages, microglia/macrophages, microglia, and astrocytes, promoting extracellular matrix degradation, production of pro-inflammatory cytokines/chemokines, and invasion of inflammatory cells in the sites of injury and inflammation. Inflammatory stimulation also induces translocation of enolase from the cytosolic pool to the cell surface where it can act as a plasminogen receptor and promote extracellular matrix degradation and tissue damage. Spinal cord injury (SCI) is a devastating debilitating condition characterized by progressive pathological changes including complex and evolving molecular cascades, and insights into the role of enolase in multiple inflammatory events have not yet been fully elucidated. Neuronal damage following SCI is associated with an elevation of neuron specific enolase (NSE), which is also known to play a role in the pathogenesis of hypoxic-ischemic brain injury. Thus, NSE is now considered as a biomarker in ischemic brain damage, and it has recently been suggested to be a biomarker in traumatic brain injury (TBI), stroke and anoxic encephalopathy after cardiac arrest and acute SCI as well. This review article gives an overview of the current basic research and clinical studies on the role of multifunctional enolase in neurotrauma, with a special emphasis on NSE in acute SCI.
Collapse
Affiliation(s)
- Azizul Haque
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, BSB-201, Charleston, SC, 29425, USA.
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - April Cox
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Naren L Banik
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC, 29401, USA
| |
Collapse
|
7
|
Nur77 is involved in graft infiltrating T lymphocyte apoptosis in rat cardiac transplantation model. Pathol Res Pract 2015; 211:633-40. [DOI: 10.1016/j.prp.2015.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 04/05/2015] [Accepted: 04/17/2015] [Indexed: 12/12/2022]
|