1
|
Ljaljević Grbić M, Dimkić I, Janakiev T, Kosel J, Tavzes Č, Popović S, Knežević A, Legan L, Retko K, Ropret P, Unković N. Uncovering the Role of Autochthonous Deteriogenic Biofilm Community: Rožanec Mithraeum Monument (Slovenia). MICROBIAL ECOLOGY 2024; 87:87. [PMID: 38940862 PMCID: PMC11213730 DOI: 10.1007/s00248-024-02404-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
The primary purpose of the study, as part of the planned conservation work, was to uncover all aspects of autochthonous biofilm pertaining to the formation of numerous deterioration symptoms occurring on the limestone Rožanec Mithraeum monument in Slovenia. Using state-of-the-art sequencing technologies combining mycobiome data with observations made via numerous light and spectroscopic (FTIR and Raman) microscopy analyses pointed out to epilithic lichen Gyalecta jenensis and its photobiont, carotenoid-rich Trentepohlia aurea, as the origin of salmon-hued pigmented alterations of limestone surface. Furthermore, the development of the main deterioration symptom on the monument, i.e., biopitting, was instigated by the formation of typical endolithic thalli and ascomata of representative Verrucariaceae family (Verrucaria sp.) in conjunction with the oxalic acid-mediated dissolution of limestone. The domination of lichenized fungi, as the main deterioration agents, both on the relief and surrounding limestone, was additionally supported by the high relative abundance of lichenized and symbiotroph groups in FUNGuild analysis. Obtained results not only upgraded knowledge of this frequently occurring but often overlooked group of extremophilic stone heritage deteriogens but also provided a necessary groundwork for the development of efficient biocontrol formulation applicable in situ for the preservation of similarly affected limestone monuments.
Collapse
Grants
- 451-03-47/2023-01/200178 Ministry of Education, Science, and Technological Development of the Republic of Serbia
- 451-03-47/2023-01/200178 Ministry of Education, Science, and Technological Development of the Republic of Serbia
- 451-03-47/2023-01/200178 Ministry of Education, Science, and Technological Development of the Republic of Serbia
- 451-03-47/2023-01/200178 Ministry of Education, Science, and Technological Development of the Republic of Serbia
- 451-03-47/2023-01/200178 Ministry of Education, Science, and Technological Development of the Republic of Serbia
- 451-03-47/2023-01/200178 Ministry of Education, Science, and Technological Development of the Republic of Serbia
- 451-03-47/2023-01/200178 Ministry of Education, Science, and Technological Development of the Republic of Serbia
- 451-03-47/2023-01/200178 Ministry of Education, Science, and Technological Development of the Republic of Serbia
- 451-03-47/2023-01/200178 Ministry of Education, Science, and Technological Development of the Republic of Serbia
- 451-03-47/2023-01/200178 Ministry of Education, Science, and Technological Development of the Republic of Serbia
- 451-03-47/2023-01/200178 Ministry of Education, Science, and Technological Development of the Republic of Serbia
- BI-RS/20-21-013 and J7-3147 Slovenian Research Agency (ARRS)
- BI-RS/20-21-013 and J7-3147 Slovenian Research Agency (ARRS)
- BI-RS/20-21-013 and J7-3147 Slovenian Research Agency (ARRS)
- BI-RS/20-21-013 and J7-3147 Slovenian Research Agency (ARRS)
- BI-RS/20-21-013 and J7-3147 Slovenian Research Agency (ARRS)
- BI-RS/20-21-013 and J7-3147 Slovenian Research Agency (ARRS)
- BI-RS/20-21-013 and J7-3147 Slovenian Research Agency (ARRS)
- BI-RS/20-21-013 and J7-3147 Slovenian Research Agency (ARRS)
- BI-RS/20-21-013 and J7-3147 Slovenian Research Agency (ARRS)
- BI-RS/20-21-013 and J7-3147 Slovenian Research Agency (ARRS)
- BI-RS/20-21-013 and J7-3147 Slovenian Research Agency (ARRS)
Collapse
Affiliation(s)
- M Ljaljević Grbić
- University of Belgrade-Faculty of Biology, Studentski Trg 16, 11 000, Belgrade, Serbia
| | - Ivica Dimkić
- University of Belgrade-Faculty of Biology, Studentski Trg 16, 11 000, Belgrade, Serbia
| | - Tamara Janakiev
- University of Belgrade-Faculty of Biology, Studentski Trg 16, 11 000, Belgrade, Serbia
| | - Janez Kosel
- The Institute for the Protection of Cultural Heritage of Slovenia, Poljanska Cesta 40, 1000, Ljubljana, Slovenia
| | - Črtomir Tavzes
- The Institute for the Protection of Cultural Heritage of Slovenia, Poljanska Cesta 40, 1000, Ljubljana, Slovenia
| | - Slađana Popović
- University of Belgrade-Faculty of Biology, Studentski Trg 16, 11 000, Belgrade, Serbia
| | - Aleksandar Knežević
- University of Belgrade-Faculty of Biology, Studentski Trg 16, 11 000, Belgrade, Serbia
| | - Lea Legan
- The Institute for the Protection of Cultural Heritage of Slovenia, Poljanska Cesta 40, 1000, Ljubljana, Slovenia
| | - Klara Retko
- The Institute for the Protection of Cultural Heritage of Slovenia, Poljanska Cesta 40, 1000, Ljubljana, Slovenia
| | - Polonca Ropret
- The Institute for the Protection of Cultural Heritage of Slovenia, Poljanska Cesta 40, 1000, Ljubljana, Slovenia
| | - Nikola Unković
- University of Belgrade-Faculty of Biology, Studentski Trg 16, 11 000, Belgrade, Serbia.
| |
Collapse
|
2
|
Meng S, Qian Y, Liu X, Wang Y, Wu F, Wang W, Gu JD. Community structures and biodeterioration processes of epilithic biofilms imply the significance of micro-environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162665. [PMID: 36894084 DOI: 10.1016/j.scitotenv.2023.162665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Epilithic biofilms colonising outdoor stone monuments can intensify the deterioration processes of the stone materials and pose great challenges to their protection. In this study, biodiversity and community structures of the epilithic biofilms colonising the surfaces of five outdoor stone dog sculptures were characterised by high-throughput sequencing. Although they are exposed to the same envrionment in a small yard, the analysis of their biofilm populations revealed high biodiversity and species richness as well as great differences in community compostions. Interestingly, populations responsible for pigment production (e.g., Pseudomonas, Deinococcus, Sphingomonas and Leptolyngbya) and for nitrogen (e.g., Pseudomonas, Bacillus, and Beijerinckia) and sulfur cycling (e.g., Acidiphilium) were the core common taxa in the epilithic biofilms, suggesting the potential biodeterioration processes. Furthermore, significant positive corrolections of metal elements rich in stone with biofilm communities showed that epilithic biofilms could take in minerals of stone. Importantly, geochemical properties of soluble ions (higher concentration of SO42- than NO3-) and slightly acidic micro-environments on the surfaces suggest corrosion of biogenic sulfuric acids as a main mechanism of biodeterioration of the sculptures. Interestingly, relative abundacne of Acidiphilium showed a positive correlation with acidic micro-environments and SO42- concentrations, implying they could be an indicator of sulfuric acid corrosion. Together, our findings support that micro-environments are inportant to community assembly of epilithic biofilms and the biodeterioration processes involved.
Collapse
Affiliation(s)
- Shanshan Meng
- Environmental Engineering Program, Guangdong Technion-Israel Institute of Technology (GTIIT), 142 Daxue Road, Shantou, Guangdong 515063, China
| | - Youfen Qian
- Environmental Engineering Program, Guangdong Technion-Israel Institute of Technology (GTIIT), 142 Daxue Road, Shantou, Guangdong 515063, China
| | - Xiaobo Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Yali Wang
- Guangdong Conservation Centre, Guangdong Museum, 2 Zhujiang East Road, Guangzhou, Guangdong 510623, China
| | - Fasi Wu
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Department of Conservation Research, Dunhuang Academy, Dunhuang, Gansu 736200, China
| | - Wanfu Wang
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Department of Conservation Research, Dunhuang Academy, Dunhuang, Gansu 736200, China
| | - Ji-Dong Gu
- Environmental Engineering Program, Guangdong Technion-Israel Institute of Technology (GTIIT), 142 Daxue Road, Shantou, Guangdong 515063, China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China.
| |
Collapse
|
3
|
Senavirathna MDHJ, Jayasekara MADD. Temporal variation of 2-MIB and geosmin production by Pseudanabaena galeata and Phormidium ambiguum exposed to high-intensity light. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10834. [PMID: 36635233 DOI: 10.1002/wer.10834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/14/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
This study demonstrated the temporal variation of 2-methylisoborneol (2-MIB) and geosmin (GSM) production of two filamentous cyanobacteria species Pseudanabaena galeata (NIES-512; planktonic) and Phormidium ambiguum (NIES-2119; benthic) exposed to high light intensity (950-1000 μmol m-2 s-1 photosynthetically active radiation). The production of 2-MIB and GSM was quantified together with oxidative stress, chlorophyll content, and cellular protein content. The relative chlorophyll bleaching and cell degradations were compared through microscopic images. The 2-MIB production of P. galeata increased by over 42 ± 17% on the second day of exposure and remained leveled through the exposure period. P. ambiguum showed a continuous increase of 2-MIB until the 10th day, recording a 95 ± 4% increment. The GSM production was elevated until the fourth day of exposure by 46 ± 10% for P. galeata and by 74 ± 21% on the second day for P. ambiguum and reduced with prolonged exposure for both species. The chlorophyll content of P. galeata was reduced by 62 ± 7% on the second day, and that of P. ambiguum was reduced by 52 ± 9% on the fourth day and remained low. Protein and H2 O2 contents of both species were changed inconsistently. Exposure to high-intensity light can photobleach and deteriorate cells of both species, but elevations in odorous compounds can be expected.
Collapse
|
4
|
Identification of Microorganisms Dwelling on the 19th Century Lanna Mural Paintings from Northern Thailand Using Culture-Dependent and -Independent Approaches. BIOLOGY 2022; 11:biology11020228. [PMID: 35205094 PMCID: PMC8869426 DOI: 10.3390/biology11020228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/04/2023]
Abstract
Simple Summary In this study, we compared microbial communities in Lanna mural paintings in temples with different numbers of visitors using culture-dependent and culture independent approaches. The results showed that microorganisms could damage the colors that are used on murals. The process of degradation involved the production of organic acids and formation of the calcium crystal. Furthermore, we found that the site with higher number of visitors is associated with microbial contamination from humans while the site with lower number of visitors had higher saprotroph population. Further research into these microorganisms, their activities and functional roles may provide crucial information to aid the preservation of mural paintings. Abstract Lanna painting is a unique type of painting in many temples in the Northern Thai region. Similar to most mural paintings, they usually decay over time partly due to the activity of microbes. This study aimed to investigate the microorganisms from two Lanna masterpiece paintings in two temples that differ in the numbers of visitors using both culture-dependent and -independent approaches. The microorganisms isolated from the murals were also tested for the biodeterioration activities including discoloration, acid production and calcium precipitation. Most microorganisms extracted from the paintings were able to discolor the paints, but only fungi were able to discolor, produce acids and precipitate calcium. The microorganism communities, diversity and functional prediction were also investigated using the culture-independent method. The diversity of microorganisms and functional prediction were different between the two temples. Gammaproteobacteria was the predominant group of bacteria in both temples. However, the fungal communities were different between the two temples as Aspergillus was the most abundant genus in the site with higher number of visitors [Buak Krok Luang temple (BK)]. Conversely, mural paintings at Tha Kham temple (TK) were dominated by the Neodevriesia genera. We noticed that a high number of visitors (Buak Krok Luang) was correlated with microbial contamination from humans while the microbial community at Tha Kham temple had a higher proportion of saprotrophs. These results could be applied to formulate a strategy to mitigate the amount of tourists as well as manage microorganism to slow down the biodeterioration process.
Collapse
|
5
|
Yu King Hing N, Aryal UK, Morgan JA. Probing Light-Dependent Regulation of the Calvin Cycle Using a Multi-Omics Approach. FRONTIERS IN PLANT SCIENCE 2021; 12:733122. [PMID: 34671374 PMCID: PMC8521058 DOI: 10.3389/fpls.2021.733122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Photoautotrophic microorganisms are increasingly explored for the conversion of atmospheric carbon dioxide into biomass and valuable products. The Calvin-Benson-Bassham (CBB) cycle is the primary metabolic pathway for net CO2 fixation within oxygenic photosynthetic organisms. The cyanobacteria, Synechocystis sp. PCC 6803, is a model organism for the study of photosynthesis and a platform for many metabolic engineering efforts. The CBB cycle is regulated by complex mechanisms including enzymatic abundance, intracellular metabolite concentrations, energetic cofactors and post-translational enzymatic modifications that depend on the external conditions such as the intensity and quality of light. However, the extent to which each of these mechanisms play a role under different light intensities remains unclear. In this work, we conducted non-targeted proteomics in tandem with isotopically non-stationary metabolic flux analysis (INST-MFA) at four different light intensities to determine the extent to which fluxes within the CBB cycle are controlled by enzymatic abundance. The correlation between specific enzyme abundances and their corresponding reaction fluxes is examined, revealing several enzymes with uncorrelated enzyme abundance and their corresponding flux, suggesting flux regulation by mechanisms other than enzyme abundance. Additionally, the kinetics of 13C labeling of CBB cycle intermediates and estimated inactive pool sizes varied significantly as a function of light intensity suggesting the presence of metabolite channeling, an additional method of flux regulation. These results highlight the importance of the diverse methods of regulation of CBB enzyme activity as a function of light intensity, and highlights the importance of considering these effects in future kinetic models.
Collapse
Affiliation(s)
- Nathaphon Yu King Hing
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
| | - Uma K. Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN, United States
| | - John A. Morgan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
6
|
The Efficiency of Biocidal Silica Nanosystems for the Conservation of Stone Monuments: Comparative In Vitro Tests against Epilithic Green Algae. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the last decade, worldwide research has focused on innovative natural biocides and the development of organic and inorganic nanomaterials for long-lasting reliability. In this work, the biocide effects of two different biocides encapsulated in two different silica nanosystems for a multifunctional coating have been performed through in vitro tests, by using Chlorococcum sp. as a common stone biodeteriogen. Zosteric sodium salt (ZS), a green biocide, was compared with the commercial biocide, 2-mercaptobenzothiazole (MBT), widely used in the treatment of cultural heritage. The analyzed systems are the following: silica nanocapsules (NC) and silica nanoparticles (MNP) not loaded with biocides, two nanosystems loaded with ZS and MBT, and free biocides. The qualitative and quantitative evaluations of biocide efficiency were performed periodically, analyzing pigment autofluorescence to discriminate between active and inactive/dead cells. The analyses showed multiple differences. All the nanocontainers presented an initial reduction in chlorophyll’s autofluorescence. For the free biocide, the results highlighted higher efficiency for MBT than ZS. Finally, the nanosystems loaded with the different biocides highlighted a higher activity for nanocontainers loaded with the commercial biocide than the green product, and better efficiency for MNP in comparison with NC.
Collapse
|
7
|
Biocidal Activity of Phyto-Derivative Products Used on Phototrophic Biofilms Growing on Stone Surfaces of the Domus Aurea in Rome (Italy). APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hypogean or enclosed monuments are important cultural heritage sites that can suffer biodegradation. Many of the stone walls of the prestigious Domus Aurea are overwhelmed by dense biofilms and so need intervention. Room 93 was chosen as a study site with the aim to test the efficacy of phyto-derivatives as new biocides. Laboratory studies were performed comparing the effects of liquorice leaf extract (Glycyrrhiza glabra L.), lavender essential oil (Lavandula angustifolia Mill.) and a combination of both. In situ studies were also performed to test the effect of liquorice. The results were compared with those of the commonly used synthetic biocide benzalkonium chloride. The effects on the biofilms were assessed by microscopy along with chlorophyll fluorescence analysis. The phototrophs in the biofilms were identified morphologically, while the heterotrophs were identified with culture analysis and 16S gene sequencing. Results showed that the mixed solution liquorice/lavender was the most effective in inhibiting the photosynthetic activities of biofilms in the laboratory tests; while, in situ, the effect of liquorice was particularly encouraging as an efficient and low-invasive biocide. The results demonstrate a high potential biocidal efficacy of the phyto-derivatives, but also highlight the need to develop an efficient application regime.
Collapse
|
8
|
Hillman KM, Sims RC. Struvite formation associated with the microalgae biofilm matrix of a rotating algal biofilm reactor (RABR) during nutrient removal from municipal wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:644-655. [PMID: 32460269 DOI: 10.2166/wst.2020.133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Struvite was observed within the microalgae biofilm matrix of an outdoor, pilot-scale rotating algal biofilm reactor (RABR) designed to remove nitrogen and phosphorus from municipal anaerobic digester filtrate. The bottom layer of cells (2.5-month growth) and two top layers of cells (1-week and 2.5-month growth) were evaluated on east- and west-facing sides of the RABR. Sun orientation and shading effects of upper biofilm layers impacted the species composition and microalgae content of the bottom biofilm layers. Struvite formed within the microalgae biofilm matrix, and a higher struvite content appeared to be correlated with a higher microalgae content. The highest struvite content (expressed as %wt. of total solids) was observed in the east- and west-facing bottom layers of growth and west-facing 1-week growth (5.0%, 4.3%, and 4.1%, respectively). The lowest struvite content was observed in east- and west-facing 2.5-month growth and east-facing 1-week growth (1.1%, 1.5%, and 1.1%, respectively). Despite RABR influent component ion molar ratios with potential for various magnesium and calcium precipitates, microalgae biofilm provided pH and nucleation sites favorable to struvite precipitation. This evaluation is the first in the refereed literature the authors are aware of that reports on the association of struvite formation in the presence of a microalgae biofilm.
Collapse
Affiliation(s)
- Kyle M Hillman
- Biological Engineering Department, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA E-mail:
| | - Ronald C Sims
- Biological Engineering Department, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA E-mail:
| |
Collapse
|
9
|
Wessendorf RL, Lu Y. Introducing an Arabidopsis thaliana Thylakoid Thiol/Disulfide-Modulating Protein Into Synechocystis Increases the Efficiency of Photosystem II Photochemistry. FRONTIERS IN PLANT SCIENCE 2019; 10:1284. [PMID: 31681379 PMCID: PMC6805722 DOI: 10.3389/fpls.2019.01284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Photosynthetic species are subjected to a variety of environmental stresses, including suboptimal irradiance. In oxygenic photosynthetic organisms, a major effect of high light exposure is damage to the Photosystem II (PSII) reaction-center protein D1. This process even happens under low or moderate light. To cope with photodamage to D1, photosynthetic organisms evolved an intricate PSII repair and reassembly cycle, which requires the participation of different auxiliary proteins, including thiol/disulfide-modulating proteins. Most of these auxiliary proteins exist ubiquitously in oxygenic photosynthetic organisms. Due to differences in mobility and environmental conditions, land plants are subject to more extensive high light stress than algae and cyanobacteria. Therefore, land plants evolved additional thiol/disulfide-modulating proteins, such as Low Quantum Yield of PSII 1 (LQY1), to aid in the repair and reassembly cycle of PSII. In this study, we introduced an Arabidopsis thaliana homolog of LQY1 (AtLQY1) into the cyanobacterium Synechocystis sp. PCC6803 and performed a series of biochemical and physiological assays on AtLQY1-expressing Synechocystis. At a moderate growth light intensity (50 µmol photons m-2 s-1), AtLQY1-expressing Synechocystis was found to have significantly higher F v /F m , and lower nonphotochemical quenching and reactive oxygen species levels than the empty-vector control, which is opposite from the loss-of-function Atlqy1 mutant phenotype. Light response curve analysis of PSII operating efficiency and electron transport rate showed that AtLQY1-expressing Synechocystis also outperform the empty-vector control under higher light intensities. The increases in F v /F m , PSII operating efficiency, and PSII electron transport rate in AtLQY1-expressing Synechocystis under such growth conditions most likely come from an increased amount of PSII, because the level of D1 protein was found to be higher in AtLQY1-expressing Synechocystis. These results suggest that introducing AtLQY1 is beneficial to Synechocystis.
Collapse
Affiliation(s)
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| |
Collapse
|
10
|
Ekhtari S, Razeghi J, Hasanpur K, Kianianmomeni A. Different regulations of cell-type transcription by UV-B in multicellular green alga Volvox carteri. PLANT SIGNALING & BEHAVIOR 2019; 14:1657339. [PMID: 31446835 PMCID: PMC6804692 DOI: 10.1080/15592324.2019.1657339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 06/03/2023]
Abstract
There is a scarcity of research reports on the effect of ultraviolet (UV)-B radiation on genome-wide transcriptional regulation in the multicellular green microalga including Volvox carteri (V. carteri). This microalga possesses only two cell types including mortal and motile somatic cells, as well as immortal and immotile reproductive cells. Therefore, the present study evaluated the effect of low-dose UV-B radiation on the cell-type-specific gene expression pattern of reproductive and somatic cells in an asexual life cycle of V. carteri using RNA sequence method. To this end, the separated reproductive and somatic cells were treated for 1 hour at an intensity of 0.056 mW/cm-2 UV-B radiation. Then, a transcriptome analysis was conducted between the UV-B and white light treated groups in either of the cell types. Based on differential gene expression analyses, no differentially expressed genes were found in reproductive cells under the treatment as compared to the control group. This type of cell maintained its steady state. However, treating the somatic cells with UV-B radiation led to at least 126 differentially expressed genes compared to the untreated control group. In addition, the results of a direct comparison demonstrated a restricted and wide response to UV-B radiation in somatic cells as compared to reproductive cells. Based on the results, UV-B radiation could be involved in cell-type-specific regulation of biological pathways.
Collapse
Affiliation(s)
- S. Ekhtari
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - J. Razeghi
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - K. Hasanpur
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - A. Kianianmomeni
- Department of Cellular and Developmental Biology of Plants, Faculty of Natural Sciences, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
11
|
Biodeterioration of Roman hypogea: the case study of the Catacombs of SS. Marcellino and Pietro (Rome, Italy). ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01460-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
Sanmartín P, DeAraujo A, Vasanthakumar A. Melding the Old with the New: Trends in Methods Used to Identify, Monitor, and Control Microorganisms on Cultural Heritage Materials. MICROBIAL ECOLOGY 2018; 76:64-80. [PMID: 27117796 DOI: 10.1007/s00248-016-0770-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Microbial activity has an important impact on the maintenance of cultural heritage materials, owing to the key role of microorganisms in many deterioration processes. In order to minimize such deleterious effects, there is a need to fine-tune methods that detect and characterize microorganisms. Trends in microbiology indicate that this need can be met by incorporating modern techniques. All of the methods considered in this review paper are employed in the identification, surveillance, and control of microorganisms, and they have two points in common: They are currently used in microbial ecology (only literature from 2009 to 2015 is included), and they are often applied in the cultural heritage sector. More than 75 peer-reviewed journal articles addressing three different approaches were considered: molecular, sensory and morphological, and biocontrol methods. The goal of this review is to highlight the usefulness of the traditional as well as the modern methods. The general theme in the literature cited suggests using an integrated approach.
Collapse
Affiliation(s)
- Patricia Sanmartín
- Laboratory of Applied Microbiology, School of Engineering and Applied Sciences, Harvard University, 58 Oxford St., Room 301, Cambridge, MA, 02138, USA
- Departamento de Edafología y Química Agrícola, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Alice DeAraujo
- Laboratory of Applied Microbiology, School of Engineering and Applied Sciences, Harvard University, 58 Oxford St., Room 301, Cambridge, MA, 02138, USA
| | - Archana Vasanthakumar
- Laboratory of Applied Microbiology, School of Engineering and Applied Sciences, Harvard University, 58 Oxford St., Room 301, Cambridge, MA, 02138, USA.
| |
Collapse
|
13
|
Rodriguez IB, Ho TY. Interactive effects of spectral quality and trace metal availability on the growth of Trichodesmium and Symbiodinium. PLoS One 2017; 12:e0188777. [PMID: 29190820 PMCID: PMC5708828 DOI: 10.1371/journal.pone.0188777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/13/2017] [Indexed: 01/01/2023] Open
Abstract
Light and trace metals are critical growth factors for algae but how the interdependence of light quality and metal availability affects algal growth remains largely unknown. Our previous studies have demonstrated the importance of Ni and Fe on the growth of Trichodesmium and Symbiodinium, respectively, two important marine primary producers inhabiting environments with high light intensities. Here, we investigated the effects of light quality and intensity with availability of either Ni or Fe on their growth. For Trichodesmium, we found that specific growth rates for high Ni treatments were all significantly higher than in corresponding low Ni treatments with varying light quality and intensity. The inhibitory effect of low intensity red light was also countered by sufficient Ni supply. For Symbiodinium, we found that growth rates and biomass were reduced by 75% under low intensity red light and the stress can only be partially relieved by sufficient Fe supply. The results show that trace metal availability plays an important role in relieving the stress induced by low red light condition for both Trichodesmium and Symbiodinium although the cyanobacterium performs better in this growth condition. The difference may be attributed to the presence of phycocyanin, a unique pigment attuned to absorption of red light, in Trichodesmium. Our study shows that the concerted effects of light intensity and quality compounded with trace metal availability may influence the growth of photosynthetic organisms in the ocean.
Collapse
Affiliation(s)
- Irene B. Rodriguez
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Tung-Yuan Ho
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
14
|
Sarnaik A, Pandit R, Lali A. Growth engineering ofSynechococcus elongatusPCC 7942 for mixotrophy under natural light conditions for improved feedstock production. Biotechnol Prog 2017; 33:1182-1192. [DOI: 10.1002/btpr.2490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/22/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Aditya Sarnaik
- DBT-ICT Centre for Energy Biosciences, Inst. of Chemical Technology; Mumbai Maharashtra 400019 India
| | - Reena Pandit
- DBT-ICT Centre for Energy Biosciences, Inst. of Chemical Technology; Mumbai Maharashtra 400019 India
| | - Arvind Lali
- DBT-ICT Centre for Energy Biosciences, Inst. of Chemical Technology; Mumbai Maharashtra 400019 India
- Department of Chemical Engineering; Inst. of Chemical Technology; Mumbai Maharashtra 400019 India
| |
Collapse
|
15
|
Distribution and Diversity of Bacteria and Fungi Colonization in Stone Monuments Analyzed by High-Throughput Sequencing. PLoS One 2016; 11:e0163287. [PMID: 27658256 PMCID: PMC5033376 DOI: 10.1371/journal.pone.0163287] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/05/2016] [Indexed: 11/19/2022] Open
Abstract
The historical and cultural heritage of Qingxing palace and Lingyin and Kaihua temple, located in Hangzhou of China, include a large number of exquisite Buddhist statues and ancient stone sculptures which date back to the Northern Song (960-1219 A.D.) and Qing dynasties (1636-1912 A.D.) and are considered to be some of the best examples of ancient stone sculpting techniques. They were added to the World Heritage List in 2011 because of their unique craftsmanship and importance to the study of ancient Chinese Buddhist culture. However, biodeterioration of the surface of the ancient Buddhist statues and white marble pillars not only severely impairs their aesthetic value but also alters their material structure and thermo-hygric properties. In this study, high-throughput sequencing was utilized to identify the microbial communities colonizing the stone monuments. The diversity and distribution of the microbial communities in six samples collected from three different environmental conditions with signs of deterioration were analyzed by means of bioinformatics software and diversity indices. In addition, the impact of environmental factors, including temperature, light intensity, air humidity, and the concentration of NO2 and SO2, on the microbial communities' diversity and distribution was evaluated. The results indicate that the presence of predominantly phototrophic microorganisms was correlated with light and humidity, while nitrifying bacteria and Thiobacillus were associated with NO2 and SO2 from air pollution.
Collapse
|
16
|
Agostoni M, Lucker BF, Smith MA, Kanazawa A, Blanchard GJ, Kramer DM, Montgomery BL. Competition-based phenotyping reveals a fitness cost for maintaining phycobilisomes under fluctuating light in the cyanobacterium Fremyella diplosiphon. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Agostoni M, Waters CM, Montgomery BL. Regulation of biofilm formation and cellular buoyancy through modulating intracellular cyclic di-GMP levels in engineered cyanobacteria. Biotechnol Bioeng 2015; 113:311-9. [PMID: 26192200 DOI: 10.1002/bit.25712] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/10/2015] [Accepted: 07/16/2015] [Indexed: 12/16/2022]
Abstract
The second messenger cyclic dimeric (3'→5') GMP (cyclic di-GMP or c-di-GMP) has been implicated in the transition between motile and sessile lifestyles in bacteria. In this study, we demonstrate that biofilm formation, cellular aggregation or flocculation, and cellular buoyancy are under the control of c-di-GMP in Synechocystis sp. PCC 6803 (Synechocystis) and Fremyella diplosiphon. Synechocystis is a unicellular cyanobacterium and displays lower levels of c-di-GMP; F. diplosiphon is filamentous and displays higher intracellular c-di-GMP levels. We transformed Synechocystis and F. diplosiphon with a plasmid for constitutive expression of genes encoding diguanylate cylase (DGC) and phosphodiesterase (PDE) proteins from Vibrio cholerae or Escherichia coli, respectively. These engineered strains allowed us to modulate intracellular c-di-GMP levels. Biofilm formation and cellular deposition were induced in the DGC-expressing Synechocystis strain which exhibited high intracellular levels of c-di-GMP; whereas strains expressing PDE in Synechocystis and F. diplosiphon to drive low intracellular levels of c-di-GMP exhibited enhanced cellular buoyancy. In addition, the PDE-expressing F. diplosiphon strain showed elevated chlorophyll levels. These results imply roles for coordinating c-di-GMP homeostasis in regulating native cyanobacterial phenotypes. Engineering exogenous DGC or PDE proteins to regulate intracellular c-di-GMP levels represents an effective tool for uncovering cryptic phenotypes or modulating phenotypes in cyanobacteria for practical applications in biotechnology applicable in photobioreactors and in green biotechnologies, such as energy-efficient harvesting of cellular biomass or the treatment of metal-containing wastewaters.
Collapse
Affiliation(s)
- Marco Agostoni
- Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, Michigan.,Department of Energy Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, 612 Wilson Road, East Lansing, Michigan, 48824
| | - Christopher M Waters
- Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, Michigan.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Beronda L Montgomery
- Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, Michigan. .,Department of Energy Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, 612 Wilson Road, East Lansing, Michigan, 48824. .,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan.
| |
Collapse
|
18
|
Busch AW, Montgomery BL. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response. Redox Biol 2015; 4:260-71. [PMID: 25618582 PMCID: PMC4315935 DOI: 10.1016/j.redox.2015.01.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 01/01/2023] Open
Abstract
Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS) associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms. Tetrapyrroles are involved in light sensing and oxidative stress mitigation. Reactive oxygen species (ROS) can form upon light exposure of free tetrapyrroles. Tetrapyrrole homeostasis must be tightly regulated to avoid oxidative stress. ROS can result in cellular damage or oxidative stress signaling in cells.
Collapse
|
19
|
Ma Y, Zhang H, Du Y, Tian T, Xiang T, Liu X, Wu F, An L, Wang W, Gu JD, Feng H. The community distribution of bacteria and fungi on ancient wall paintings of the Mogao Grottoes. Sci Rep 2015; 5:7752. [PMID: 25583346 PMCID: PMC4291566 DOI: 10.1038/srep07752] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 11/21/2014] [Indexed: 11/30/2022] Open
Abstract
In this study, we compared the microbial communities colonising ancient cave wall paintings of the Mogao Grottoes exhibiting signs of biodeterioration. Ten samples were collected from five different caves built during different time periods and analysed using culture-independent and culture-dependent methods. The clone library results revealed high microbial diversity, including the bacterial groups Firmicutes, Proteobacteria, Actinobacteria, Acidobacteria, Cyanobacteria, Bacteroidetes, Gemmatimonadetes, Planctomycetes, and Chloroflexi and the fungal groups Euascomycetes, Dothideomycetes, Eurotiomycetes, Sordariomycetes, Saccharomycetes, Plectomycetes, Pezizomycetes, Zygomycota, and Basidiomycota. The bacterial community structures differed among the samples, with no consistent temporal or spatial trends. However, the fungal community diversity index correlated with the building time of the caves independent of environmental factors (e.g., temperature or relative humidity). The enrichment cultures revealed that many culturable strains were highly resistant to various stresses and thus may be responsible for the damage to cave paintings in the Mogao Grottoes.
Collapse
Affiliation(s)
- Yantian Ma
- School of Life Sciences, MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - He Zhang
- School of Life Sciences, MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Ye Du
- School of Life Sciences, MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Tian Tian
- School of Life Sciences, MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Ting Xiang
- School of Life Sciences, MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Xiande Liu
- School of Life Sciences, MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Fasi Wu
- The Conservation Research Institute of Dunhuang Academy, Dunhuang, Gansu 736200, People's Republic of China
| | - Lizhe An
- School of Life Sciences, MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Wanfu Wang
- The Conservation Research Institute of Dunhuang Academy, Dunhuang, Gansu 736200, People's Republic of China
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Huyuan Feng
- School of Life Sciences, MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| |
Collapse
|