1
|
Li Y, Tu C, Chen Q, Lin Y, Li B, Lyu H. Enhanced red emission of upconversion nanoparticles via Li + and Tm 3+ codoping and active core-shell construction for sensitive detection of miRNAs. Anal Chim Acta 2025; 1335:343429. [PMID: 39643294 DOI: 10.1016/j.aca.2024.343429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
The overexpression of microRNA-222 (miRNA-222) is closely related to many human diseases, so the development of biosensors to detect this biomarker will contribute to the diagnosis of related diseases. Here, a simple, sensitive and specific fluorescence assay for the detection of miRNA-222 was developed using red-emitting upconversion nanoparticle (UCNP) as the donor and a DNA hairpin with black hole quencher-2 (BHQ-2) as the acceptor. Li+ and Tm3+-doped UCNP with a strong emission peak at 654 nm was obtained by changing the doped ion ratio and constructing core-shell structures. Under optimal conditions, the linear range for detecting miRNA-222 is 0.5-2.5 nM and the limit of detection is as low as 0.077 nM without any complicated amplification strategy. Finally, the proposed assay was applied for the detection of miRNA-222 in serum samples. The results obtained were similar to those of the standard method, and the spiked recoveries were in the range of 97.62%-102.14 %, suggesting that the proposed method has practical value in a complex biological sample matrix.
Collapse
Affiliation(s)
- Yingchao Li
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Canzhao Tu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Qianshun Chen
- Department of Thoracic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - Yingying Lin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Baoming Li
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Haixia Lyu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
2
|
Xu Z, Li X, Yang Z, Zhang Z, Zhang Y, Fan M, Zeng Y, Kang M, Shen Y, Wang D, Xu G, Tang BZ. An NIR-II Two-Photon Excitable AIE Photosensitizer for Precise and Efficient Treatment of Orthotopic Small-Size Glioblastoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413164. [PMID: 39726350 DOI: 10.1002/adma.202413164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/06/2024] [Indexed: 12/28/2024]
Abstract
The existence of residual small-size tumors after surgery is a major factor contributing to the high recurrence rate of glioblastoma (GBM). Conventional adjuvant therapeutics involving both chemotherapy and radiotherapy usually exhibit unsatisfactory efficacy and severe side effects. Recently, two-photon photodynamic therapy (TP-PDT), especially excited by the second near-infrared (NIR-II) light, offers an unprecedented opportunity to address this challenge, attributed to its combinational merits of PDT and TP excitation. However, this attempt has not been explored yet. On the other hand, the lack of high-performance photosensitizers (PSs) also hinders the progress of TP-PDT on GBM. Based on those, a robust TP-PS, termed MeTTh, is constructed intendedly through elaborately integrating multiple beneficial design strategies into a single molecule, which simultaneously achieves excellent NIR-II excitation, large absorption cross-section, aggregation-induced NIR-I emission, and prominent Type I/II reactive oxygen species generation. Aided by nanofabrication, an impressive brain structure imaging depth of 940 µm is realized. Moreover, MeTTh nanoparticles smoothly implement precise and efficient treatment of small-size GBM in vivo under a 1040 nm femtosecond laser irradiation. This study represents first-in-class using TP-PDT on GBM, offering new insights for the therapy of small-size tumors in complex and vital tissues.
Collapse
Affiliation(s)
- Zhourui Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Xue Li
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zengming Yang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhijun Zhang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yibin Zhang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Miaozhuang Fan
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Yuying Zeng
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Miaomiao Kang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yuanyuan Shen
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gaixia Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
3
|
Collins VG, Hutton D, Hossain-Ibrahim K, Joseph J, Banerjee S. The abscopal effects of sonodynamic therapy in cancer. Br J Cancer 2024:10.1038/s41416-024-02898-y. [PMID: 39537767 DOI: 10.1038/s41416-024-02898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The abscopal effect is a phenomenon wherein localised therapy on the primary tumour leads to regression of distal metastatic growths. Interestingly, various pre-clinical studies utilising sonodynamic therapy (SDT) have reported significant abscopal effects, however, the mechanism remains largely enigmatic. SDT is an emerging non-invasive cancer treatment that uses focussed ultrasound (FUS) and a sonosensitiser to induce tumour cell death. To expand our understanding of abscopal effects of SDT, we have summarised the preclinical studies that have found SDT-induced abscopal responses across various cancer models, using diverse combination strategies with nanomaterials, microbubbles, chemotherapy, and immune checkpoint inhibitors. Additionally, we shed light on the molecular and immunological mechanisms underpinning SDT-induced primary and metastatic tumour cell death, as well as the role and efficacy of different sonosensitisers. Notably, the observed abscopal effects underscore the need for continued investigation into the SDT-induced 'vaccine-effect' as a potential strategy for enhancing systemic anti-tumour immunity and combating metastatic disease. The results of the first SDT human clinical trials are much awaited and are hoped to enable the further evaluation of the safety and efficacy of SDT, paving the way for future studies specifically designed to explore the potential of translating SDT-induced abscopal effects into clinical reality.
Collapse
Affiliation(s)
- Victoria G Collins
- Department of Neurosurgery, Ninewells Hospital, Dundee, UK
- Department of Neurosurgery, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Dana Hutton
- The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | | | - James Joseph
- Department of Biomedical Engineering, School of Science and Engineering, University of Dundee, Dundee, UK.
| | - Sourav Banerjee
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK.
| |
Collapse
|
4
|
Kobzev D, Semenova O, Aviel-Ronen S, Kulyk O, Carmieli R, Mirzabekov T, Gellerman G, Patsenker L. Sonodynamic Therapy for HER2+ Breast Cancer with Iodinated Heptamethine Cyanine-Trastuzumab Conjugate. Int J Mol Sci 2024; 25:10137. [PMID: 39337633 PMCID: PMC11431973 DOI: 10.3390/ijms251810137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
The first example of sonodynamic therapy (SDT) with a cyanine dye-antibody conjugate is reported. The aim of this study was to evaluate the sonodynamic efficacy of a trastuzumab-guided diiodinated heptamethine cyanine-based sensitizer, 2ICy7-Ab, versus its non-iodinated counterpart, Cy7-Ab, in a human epidermal growth factor receptor 2-positive (HER2+) xenograft model. In addition, the combined sonodynamic and photodynamic (PDT) effects were investigated. A single intravenous injection of 2ICy7-Ab followed by sonication or combined sonication and photoirradiation in mice resulted in complete tumor growth suppression compared with the nontreated control and showed no detectable toxicity to off-target tissues. In contrast, Cy7-Ab provided only a moderate therapeutic effect (~1.4-1.6-fold suppression). SDT with 2ICy7-Ab resulted in a 3.5-fold reduction in tumor volume within 45 days and exhibited 13-fold greater tumor suppression than PDT alone. In addition, 2ICy7-Ab showed more durable sonostability than photostability. The sonotoxicity of the iodinated versus noniodinated counterparts is attributed to the increased generation of hydroxyl radicals, superoxide, and singlet oxygen. We observed no significant contribution of PDT to the efficacy of the combined SDT and PDT, indicating that SDT with 2ICy7-Ab is superior to PDT alone. These new findings set the stage for the application of cyanine-antibody conjugates for fluorescently monitored targeted sonodynamic treatment of cancer.
Collapse
Affiliation(s)
- Dmytro Kobzev
- Department of Chemical Sciences, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (D.K.); (O.S.); (O.K.); (G.G.)
| | - Olga Semenova
- Department of Chemical Sciences, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (D.K.); (O.S.); (O.K.); (G.G.)
| | - Sarit Aviel-Ronen
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel
| | - Olesia Kulyk
- Department of Chemical Sciences, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (D.K.); (O.S.); (O.K.); (G.G.)
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel;
| | | | - Gary Gellerman
- Department of Chemical Sciences, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (D.K.); (O.S.); (O.K.); (G.G.)
| | - Leonid Patsenker
- Department of Chemical Sciences, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (D.K.); (O.S.); (O.K.); (G.G.)
| |
Collapse
|
5
|
Kaur N, Gautam P, Nanda D, Meena AS, Shanavas A, Prasad R. Lipid Nanoparticles for Brain Tumor Theranostics: Challenges and Status. Bioconjug Chem 2024; 35:1283-1299. [PMID: 39207940 DOI: 10.1021/acs.bioconjchem.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Lipid nanoparticles have been recognized as a powerful weapon for delivering various imaging and therapeutic agents to the localized solid tumors, especially brain tumors individually or in combination. Promisingly, lipid-based nanosystems have been considered as safe delivery systems which are even approved by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA). One recent spotlight of lipid nanoparticles as COVID-19 mRNA vaccines where lipid nanoparticles play an important role in effectively protecting and delivering mRNA to the desired cells. As of now, successive progress in lipid-based nanocarriers, viz., nanoliposomes, solid lipid nanoparticles, ionizable lipid nanostructures, etc., with better biochemical and biophysical stabilities, has been noticed and reported. Moreover, lipid nanostructures have been considered as versatile therapeutics platforms for a variety of diseases due to their biocompatibility, ability to protect and deliver therapeutics to the localized site, and better reproducibility and reliability. However, lipid nanoparticles still face morphological and biochemical changes upon their in vivo administration. These changes alter the specific biological and pathological response of lipid nanoparticles during their personalized brain tumor theranostics. Second, lipid nanomedicine still faces major challenges of zero premature leakage of loaded cargo, long-term colloidal stability, and off targeting. Herein, various lipid-based nanomedicines for brain tumor imaging and therapeutics "theranostics" have been reviewed and summarized considering major aspects of preclinical and clinical studies. On the other hand, engineering and biological challenges of lipid theranostics systems with relevant advantages and guidelines for clinical practice for different brain tumors have also been discussed. This review provides in-depth knowledge of lipid nanoparticle-based theranostics agents for brain tumor imaging and therapeutics.
Collapse
Affiliation(s)
- Navneet Kaur
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Priyadarshi Gautam
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Dibyani Nanda
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Avtar Singh Meena
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Asifkhan Shanavas
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
6
|
Ballestín A, Armocida D, Ribecco V, Seano G. Peritumoral brain zone in glioblastoma: biological, clinical and mechanical features. Front Immunol 2024; 15:1347877. [PMID: 38487525 PMCID: PMC10937439 DOI: 10.3389/fimmu.2024.1347877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Glioblastoma is a highly aggressive and invasive tumor that affects the central nervous system (CNS). With a five-year survival rate of only 6.9% and a median survival time of eight months, it has the lowest survival rate among CNS tumors. Its treatment consists of surgical resection, subsequent fractionated radiotherapy and concomitant and adjuvant chemotherapy with temozolomide. Despite the implementation of clinical interventions, recurrence is a common occurrence, with over 80% of cases arising at the edge of the resection cavity a few months after treatment. The high recurrence rate and location of glioblastoma indicate the need for a better understanding of the peritumor brain zone (PBZ). In this review, we first describe the main radiological, cellular, molecular and biomechanical tissue features of PBZ; and subsequently, we discuss its current clinical management, potential local therapeutic approaches and future prospects.
Collapse
Affiliation(s)
- Alberto Ballestín
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| | - Daniele Armocida
- Human Neurosciences Department, Neurosurgery Division, Sapienza University, Rome, Italy
| | - Valentino Ribecco
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| | - Giorgio Seano
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| |
Collapse
|
7
|
Sakamoto DM, Tamura I, Yi B, Hasegawa S, Saito Y, Yamada N, Takakusagi Y, Kubota SI, Kobayashi M, Harada H, Hanaoka K, Taki M, Nangaku M, Tainaka K, Sando S. Whole-Body and Whole-Organ 3D Imaging of Hypoxia Using an Activatable Covalent Fluorescent Probe Compatible with Tissue Clearing. ACS NANO 2024; 18:5167-5179. [PMID: 38301048 DOI: 10.1021/acsnano.3c12716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Elucidation of biological phenomena requires imaging of microenvironments in vivo. Although the seamless visualization of in vivo hypoxia from the level of whole-body to single-cell has great potential to discover unknown phenomena in biological and medical fields, no methodology for achieving it has been established thus far. Here, we report the whole-body and whole-organ imaging of hypoxia, an important microenvironment, at single-cell resolution using activatable covalent fluorescent probes compatible with tissue clearing. We initially focused on overcoming the incompatibility of fluorescent dyes and refractive index matching solutions (RIMSs), which has greatly hindered the development of fluorescent molecular probes in the field of tissue clearing. The fluorescent dyes compatible with RIMS were then incorporated into the development of activatable covalent fluorescent probes for hypoxia. We combined the probes with tissue clearing, achieving comprehensive single-cell-resolution imaging of hypoxia in a whole mouse body and whole organs.
Collapse
Affiliation(s)
- Daichi M Sakamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Iori Tamura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Bo Yi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sho Hasegawa
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Yutaro Saito
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoki Yamada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yoichi Takakusagi
- Quantum Hyperpolarized MRI Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city 263-8555, Japan
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city 263-8555, Japan
| | - Shimpei I Kubota
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0815, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kenjiro Hanaoka
- Division of Analytical Chemistry for Drug Discovery, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Masayasu Taki
- Institute of Transformative Bio-Molecules, Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan
- Gftd DeSci, Gftd DAO, Nishikawa Building, 20 Kikuicho, Shinjuku-ku, Tokyo 162-0044, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
8
|
Zou P, Lin R, Fang Z, Chen J, Guan H, Yin J, Chang Z, Xing L, Lang J, Xue X, Chen M. Implanted, Wireless, Self-Powered Photodynamic Therapeutic Tablet Synergizes with Ferroptosis Inducer for Effective Cancer Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302731. [PMID: 37957541 PMCID: PMC10754143 DOI: 10.1002/advs.202302731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/13/2023] [Indexed: 11/15/2023]
Abstract
The effective and targeted treatment of resistant cancer cells presents a significant challenge. Targeting cell ferroptosis has shown remarkable efficacy against apoptosis-resistant tumors due to their elevated iron metabolism and oxidative stress levels. However, various obstacles have limited its effectiveness. To overcome these challenges and enhance ferroptosis in cancer cells, we have developed a self-powered photodynamic therapeutic tablet that integrates a ferroptosis inducer (FIN), imidazole ketone erastin (IKE). FINs augment the sensitivity of photodynamic therapy (PDT) by increasing oxidative stress and lipid peroxidation. Furthermore, they utilize the Fenton reaction to supplement oxygen, generating a greater amount of reactive oxygen species (ROS) during PDT. Additionally, PDT facilitates the release of iron ions from the labile iron pool (LIP), accelerating lipid peroxidation and inducing ferroptosis. In vitro and in vivo experiments have demonstrated a more than 85% tumor inhibition rate. This synergistic treatment approach not only addresses the limitations of inadequate penetration and tumor hypoxia associated with PDT but also reduces the required medication dosage. Its high efficiency and specificity towards targeted cells minimize adverse effects, presenting a novel approach to combat clinical resistance in cancer treatment.
Collapse
Affiliation(s)
- Pingjin Zou
- School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
- Department of Radiation OncologyRadiation Oncology Key Laboratory of Sichuan ProvinceSichuan Clinical Research Center for CancerSichuan Cancer CenterSichuan Cancer Hospital & InstituteAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengdu610042China
| | - Rui Lin
- School of PhysicsUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Zengyi Fang
- School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
- Department of Radiation OncologyRadiation Oncology Key Laboratory of Sichuan ProvinceSichuan Clinical Research Center for CancerSichuan Cancer CenterSichuan Cancer Hospital & InstituteAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengdu610042China
| | - Junyang Chen
- Department of Radiation OncologyRadiation Oncology Key Laboratory of Sichuan ProvinceSichuan Clinical Research Center for CancerSichuan Cancer CenterSichuan Cancer Hospital & InstituteAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengdu610042China
- Chengdu University of Traditional Chinese MedicineChengdu611137China
| | - Hongye Guan
- School of PhysicsUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Jie Yin
- School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
- Department of Radiation OncologyRadiation Oncology Key Laboratory of Sichuan ProvinceSichuan Clinical Research Center for CancerSichuan Cancer CenterSichuan Cancer Hospital & InstituteAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengdu610042China
| | - Zhiheng Chang
- School of Computer Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Lili Xing
- School of PhysicsUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Jinyi Lang
- School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
- Department of Radiation OncologyRadiation Oncology Key Laboratory of Sichuan ProvinceSichuan Clinical Research Center for CancerSichuan Cancer CenterSichuan Cancer Hospital & InstituteAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengdu610042China
| | - Xinyu Xue
- School of PhysicsUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Meihua Chen
- Department of Radiation OncologyRadiation Oncology Key Laboratory of Sichuan ProvinceSichuan Clinical Research Center for CancerSichuan Cancer CenterSichuan Cancer Hospital & InstituteAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengdu610042China
| |
Collapse
|
9
|
Durrani FA, Cacaccio J, Turowski SG, Dukh M, Bshara W, Curtin L, Sexton S, Spernyak JA, Pandey RK. Photobac derived from bacteriochlorophyll-a shows potential for treating brain tumor in animal models by photodynamic therapy with desired pharmacokinetics and limited toxicity in rats and dogs. Biomed Pharmacother 2023; 168:115731. [PMID: 37857248 PMCID: PMC10842770 DOI: 10.1016/j.biopha.2023.115731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023] Open
Abstract
Photobac is a near infrared photosensitizer (PS) derived from naturally occurring bacteriochlorophyll- a, with a potential for treating a variety of cancer types (U87, F98 and C6 tumor cells in vitro). The main objective of the studies presented herein was to evaluate the efficacy, toxicity and pharmacokinetic profile of Photobac in animals (mice, rats and dogs) and submit these results to the United States Food and Drug Administration (US FDA) for its approval to initiate Phase I human clinical trials of glioblastoma, a deadly cancer disease with no long term cure. The photodynamic therapy (PDT) efficacy of Photobac was evaluated in mice subcutaneously implanted with U87 tumors, and in rats bearing C6 tumors implanted in brain. In both tumor types, the Photobac-PDT was quite effective. The long-term cure in rats was monitored by magnetic resonance imaging (MRI) and histopathology analysis. A detailed pharmacology, pharmacokinetics and toxicokinetic study of Photobac was investigated in both non-GLP and GLP facilities at variable doses following the US FDA parameters. Safety Pharmacology studies suggest that there is no phototoxicity, cerebral or retinal toxicity with Photobac. No metabolites of Photobac were observed following incubation in rat, dog, mini-pig and human hepatocytes. Based on current biological data, Photobac-IND received the approval for Phase-I human clinical trials to treat Glioblastoma (brain cancer), which is currently underway at our institute. Photobac has also received an orphan drug status from the US FDA, because of its potential for treating Glioblastoma as no effective treatment is currently available for this deadly disease.
Collapse
Affiliation(s)
- Farukh A Durrani
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Photolitec, LLC, 73 High Street, Buffalo, NY 14223, USA
| | - Joseph Cacaccio
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Photolitec, LLC, 73 High Street, Buffalo, NY 14223, USA
| | - Steven G Turowski
- Translational Imaging Shared Resources, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mykhaylo Dukh
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Photolitec, LLC, 73 High Street, Buffalo, NY 14223, USA
| | - Wiam Bshara
- Department of Pathology, Pathology Network Shared Resources, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Leslie Curtin
- Comparative Oncology Shared Resources, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Sandra Sexton
- Comparative Oncology Shared Resources, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Joseph A Spernyak
- Translational Imaging Shared Resources, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Ravindra K Pandey
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
10
|
Jo J, Kim JY, Yun JJ, Lee YJ, Jeong YIL. β-Cyclodextrin Nanophotosensitizers for Redox-Sensitive Delivery of Chlorin e6. Molecules 2023; 28:7398. [PMID: 37959817 PMCID: PMC10648776 DOI: 10.3390/molecules28217398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of this study is to prepare redox-sensitive nanophotosensitizers for the targeted delivery of chlorin e6 (Ce6) against cervical cancer. For this purpose, Ce6 was conjugated with β-cyclodextrin (bCD) via a disulfide bond, creating nanophotosensitizers that were fabricated for the redox-sensitive delivery of Ce6 against cancer cells. bCD was treated with succinic anhydride to synthesize succinylated bCD (bCDsu). After that, cystamine was attached to the carboxylic end of bCDsu (bCDsu-ss), and the amine end group of bCDsu-ss was conjugated with Ce6 (bCDsu-ss-Ce6). The chemical composition of bCDsu-ss-Ce6 was confirmed with 1H and 13C NMR spectra. bCDsu-ss-Ce6 nanophotosensitizers were fabricated by a dialysis procedure. They formed small particles with an average particle size of 152.0 ± 23.2 nm. The Ce6 release rate from the bCDsu-ss-Ce6 nanophotosensitizers was accelerated by the addition of glutathione (GSH), indicating that the bCDsu-ss-Ce6 nanophotosensitizers have a redox-sensitive photosensitizer delivery capacity. The bCDsu-ss-Ce6 nanophotosensitizers have a low intrinsic cytotoxicity against CCD986Sk human skin fibroblast cells as well as Ce6 alone. However, the bCDsu-ss-Ce6 nanophotosensitizers showed an improved Ce6 uptake ratio, higher reactive oxygen species (ROS) production, and phototoxicity compared to those of Ce6 alone. GSH addition resulted in a higher Ce6 uptake ratio, ROS generation, and phototoxicity than Ce6 alone, indicating that the bCDsu-ss-Ce6 nanophotosensitizers have a redox-sensitive biological activity in vitro against HeLa human cervical cancer cells. In a tumor xenograft model using HeLa cells, the bCDsu-ss-Ce6 nanophotosensitizers efficiently accumulated in the tumor rather than in normal organs. In other words, the fluorescence intensity in tumor tissues was significantly higher than that of other organs, while Ce6 alone did not specifically target tumor tissue. These results indicated a higher anticancer activity of bCDsu-ss-Ce6 nanophotosensitizers, as demonstrated by their efficient inhibition of the growth of tumors in an in vivo animal tumor xenograft study.
Collapse
Affiliation(s)
- Jaewon Jo
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea; (J.J.); (J.Y.K.)
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ji Yoon Kim
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea; (J.J.); (J.Y.K.)
| | - Je-Jung Yun
- Research Center for Environmentally Friendly Agricultural Life Sciences, Jeonnam Bioindustry Foundation, Jeonnam 58275, Republic of Korea;
| | - Young Ju Lee
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea; (J.J.); (J.Y.K.)
| | - Young-IL Jeong
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
- Tyros Biotechnology Inc., 75 Kneeland St. 14 Floors, Boston, MA 02111, USA
| |
Collapse
|
11
|
Wang Y, Staudinger JN, Mindt TL, Gasser G. Theranostics with photodynamic therapy for personalized medicine: to see and to treat. Theranostics 2023; 13:5501-5544. [PMID: 37908729 PMCID: PMC10614685 DOI: 10.7150/thno.87363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/26/2023] [Indexed: 11/02/2023] Open
Abstract
Photodynamic Therapy (PDT) is an approved treatment modality, which is presently receiving great attention due to its limited invasiveness, high selectivity and limited susceptibility to drug resistance. Another related research area currently expanding rapidly is the development of novel theranostic agents based on the combination of PDT with different imaging technologies, which allows for both therapy and diagnosis. This combination can help to address issues of suboptimal biodistribution and selectivity through regional imaging, while therapeutic agents enable an effective and personalized therapy. In this review, we describe compounds, whose structures combine PDT photosensitizers with different imaging probes - including examples for near-infrared optical imaging, magnetic resonance imaging (MRI) and nuclear imaging (PET or SPECT), generating novel theranostic drug candidates. We have intentionally focused our attention on novel compounds, which have already been investigated preclinically in vivo in order to demonstrate the potential of such theranostic agents for clinical applications.
Collapse
Affiliation(s)
- Youchao Wang
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Johannes Nikodemus Staudinger
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna, Austria
| | - Thomas L. Mindt
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility, University of Vienna, Währingerstraße 42, and Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| |
Collapse
|
12
|
Development of an Endoscopic Auto-Fluorescent Sensing Device to Aid in the Detection of Breast Cancer and Inform Photodynamic Therapy. Metabolites 2022; 12:metabo12111097. [PMID: 36422237 PMCID: PMC9697641 DOI: 10.3390/metabo12111097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most diagnosed cancer type in women, with it being the second most deadly cancer in terms of total yearly mortality. Due to the prevalence of this disease, better methods are needed for both detection and treatment. Reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are autofluorescent biomarkers that lend insight into cell and tissue metabolism. As such, we developed an endoscopic device to measure these metabolites in tissue to differentiate between malignant tumors and normal tissue. We performed initial validations in liquid phantoms as well as compared to a previously validated redox imaging system. We also imaged ex vivo tissue samples after modulation with carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) and a combination of rotenone and antimycin A. We then imaged the rim and the core of MDA-MB-231 breast cancer tumors, with our results showing that the core of a cancerous lesion has a significantly higher optical redox ratio ([FAD]/([FAD] + [NADH])) than the rim, which agrees with previously published results. The mouse muscle tissues exhibited a significantly lower FAD, higher NADH, and lower redox ratio compared to the tumor core or rim. We also used the endoscope to measure NADH and FAD after photodynamic therapy treatment, a light-activated treatment methodology. Our results found that the NADH signal increases in the malignancy rim and core, while the core of cancers demonstrated a significant increase in the FAD signal.
Collapse
|
13
|
Hong SO, Kook MS, Jeong YIL, Park MJ, Yang SW, Kim BH. Nanophotosensitizers Composed of Phenyl Boronic Acid Pinacol Ester-Conjugated Chitosan Oligosaccharide via Thioketal Linker for Reactive Oxygen Species-Sensitive Delivery of Chlorin e6 against Oral Cancer Cells. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7057. [PMID: 36295132 PMCID: PMC9604738 DOI: 10.3390/ma15207057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Chlorin E6 (Ce6)-incorporated nanophotosensitizers were fabricated for application in photodynamic therapy (PDT) of oral cancer cells. For this purpose, chitosan oligosaccharide (COS) was conjugated with hydrophobic and reactive oxygen species (ROS)-sensitive moieties, such as phenyl boronic acid pinacol ester (PBAP) via a thioketal linker (COSthPBAP). ThdCOOH was conjugated with PBAP to produce ThdCOOH-PBAP conjugates and then attached to amine groups of COS to produce a COSthPBAP copolymer. Ce6-incorporated nanophotosensitizers using the COSthPBAP copolymer were fabricated through the nanoprecipitation and dialysis methods. The Ce6-incorporated COSthPBAP nanophotosensitizers had a small diameter of less than 200 nm with a mono-modal distribution pattern. However, it became a multimodal and/or irregular distribution pattern when H2O2 was added. In a morphological observation using TEM, the nanophotosensitizers were disintegrated by the addition of H2O2, indicating that the COSthPBAP nanophotosensitizers had ROS sensitivity. In addition, the Ce6 release rate from the COSthPBAP nanophotosensitizers accelerated in the presence of H2O2. The SO generation was also higher in the nanophotosensitizers than in the free Ce6. Furthermore, the COSthPBAP nanophotosensitizers showed a higher intracellular Ce6 uptake ratio and ROS generation in all types of oral cancer cells. They efficiently inhibited the viability of oral cancer cells under light irradiation, but they did not significantly affect the viability of either normal cells or cancer cells in the absence of light irradiation. The COSthPBAP nanophotosensitizers showed a tumor-specific delivery capacity and fluorescence imaging of KB tumors in an in vivo animal tumor imaging study. We suggest that COSthPBAP nanophotosensitizers are promising candidates for the imaging and treatment of oral cancers.
Collapse
Affiliation(s)
- Sung-Ok Hong
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
- Department of Oral and Maxillofacial Surgery, Kyung Hee University Dental Hospital at Gangdong, Seoul 05278, Korea
| | - Min-Suk Kook
- Department of Maxillofacial Oral Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Young-IL Jeong
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Korea
| | - Min-Ju Park
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Korea
| | - Seong-Won Yang
- Department of Ophthalmology, College of Medicine, Chosun University, Gwangju 61453, Korea
| | - Byung-Hoon Kim
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Korea
| |
Collapse
|
14
|
Poot E, Maguregui A, Brunton VG, Sieger D, Hulme AN. Targeting Glioblastoma through Nano- and Micro-particle-Mediated Immune Modulation. Bioorg Med Chem 2022; 72:116913. [DOI: 10.1016/j.bmc.2022.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/02/2022]
|
15
|
Chen C, Wu C, Yu J, Zhu X, Wu Y, Liu J, Zhang Y. Photodynamic-based combinatorial cancer therapy strategies: Tuning the properties of nanoplatform according to oncotherapy needs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Shim MK, Song SK, Jeon SI, Hwang KY, Kim K. Nano-sized drug delivery systems to potentiate the immune checkpoint blockade therapy. Expert Opin Drug Deliv 2022; 19:641-652. [DOI: 10.1080/17425247.2022.2081683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Man Kyu Shim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Su Kyung Song
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Biosystems & Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Seong Ik Jeon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Kwang Yeon Hwang
- Department of Biosystems & Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
17
|
Gaitan B, Frankel L, Vig S, Oskoui E, Adwan M, Chen Y, Elespuru R, Huang HC, Pfefer TJ. Quantifying the Photochemical Damage Potential of Contrast-Enhanced Fluorescence Imaging Products: Singlet Oxygen Production. Photochem Photobiol 2022; 98:736-747. [PMID: 35442536 PMCID: PMC9540578 DOI: 10.1111/php.13638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
The benefits of contrast‐enhancing imaging probes have become apparent over the past decade. However, there is a gap in the literature when it comes to the assessment of the phototoxic potential of imaging probes and systems emitting visible and/or near‐infrared radiation. The primary mechanism of fluorescent agent phototoxicity is thought to involve the production of reactive molecular species (RMS), yet little has been published on the best practices for safety evaluation of RMS production levels for clinical products. We have proposed methods involving a cell‐free assay to quantify singlet oxygen [(SO) a known RMS] generation of imaging probes, and performed testing of Indocyanine Green (ICG), Proflavine, Methylene Blue, IR700 and IR800 at clinically relevant concentrations and radiant exposures. Results indicated that SO production from IR800 and ICG were more than two orders of magnitude below that of the known SO generator Rose Bengal. Methylene Blue and IR700 produced much higher SO levels than ICG and IR800. These results were in good agreement with data from the literature. While agents that exhibit spectral overlap with the assay may be more prone to errors, our tests for one of these agents (Proflavine) appeared robust. Overall, our results indicate that this methodology shows promise for assessing the phototoxic potential of fluorophores due to SO production.
Collapse
Affiliation(s)
- Brandon Gaitan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Lucas Frankel
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Shruti Vig
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Ellen Oskoui
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, MD, USA
| | - Miriam Adwan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Yu Chen
- Department of Biomedical Engineering, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Rosalie Elespuru
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, MD, USA
| | - Huang Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - T Joshua Pfefer
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, MD, USA
| |
Collapse
|
18
|
Algorri JF, Ochoa M, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM. Light Technology for Efficient and Effective Photodynamic Therapy: A Critical Review. Cancers (Basel) 2021; 13:3484. [PMID: 34298707 PMCID: PMC8307713 DOI: 10.3390/cancers13143484] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Photodynamic therapy (PDT) is a cancer treatment with strong potential over well-established standard therapies in certain cases. Non-ionising radiation, localisation, possible repeated treatments, and stimulation of immunological response are some of the main beneficial features of PDT. Despite the great potential, its application remains challenging. Limited light penetration depth, non-ideal photosensitisers, complex dosimetry, and complicated implementations in the clinic are some limiting factors hindering the extended use of PDT. To surpass actual technological paradigms, radically new sources, light-based devices, advanced photosensitisers, measurement devices, and innovative application strategies are under extensive investigation. The main aim of this review is to highlight the advantages/pitfalls, technical challenges and opportunities of PDT, with a focus on technologies for light activation of photosensitisers, such as light sources, delivery devices, and systems. In this vein, a broad overview of the current status of superficial, interstitial, and deep PDT modalities-and a critical review of light sources and their effects on the PDT process-are presented. Insight into the technical advancements and remaining challenges of optical sources and light devices is provided from a physical and bioengineering perspective.
Collapse
Affiliation(s)
- José Francisco Algorri
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Mario Ochoa
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Pablo Roldán-Varona
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
| | | | - José Miguel López-Higuera
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
19
|
Inglut CT, Gray KM, Vig S, Jung JW, Stabile J, Zhang Y, Stroka KM, Huang HC. Photodynamic Priming Modulates Endothelial Cell-Cell Junction Phenotype for Light-activated Remote Control of Drug Delivery. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2021; 27:7200311. [PMID: 33519171 PMCID: PMC7839980 DOI: 10.1109/jstqe.2020.3024014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The blood-brain barrier (BBB) remains a major obstacle for drug delivery to the central nervous system. In particular, the tight and adherens junctions that join the brain capillary endothelial cells limit the diffusion of various molecules from the bloodstream into the brain. Photodynamic priming (PDP) is a non-cytotoxic modality that involves light activation of photosensitizers to photochemically modulate nearby molecules without killing the cells. Here we investigate the effects of sub-lethal photochemistry on junction phenotype (i.e., continuous, punctate, or perpendicular), as well as the BBB permeability in a transwell model of human brain microvascular endothelial cells (HBMECs). We showed that PDP decreases the continuous junction architecture by ~20%, increases the perpendicular junction architecture by ~40%, and has minimal impact on cell morphology in HBMECs. Furthermore, transwell permeability assay revealed that PDP improves the HBMEC permeability to dextran or nanoliposomes by up to 30-fold for 6-9 days. These results suggest that PDP could safely reverse the mature brain endothelial junctions without killing the HBMECs. This study not only emphasizes the critical roles of PDP in the modulation junction phenotype, but also highlights the opportunity to further develop PDP-based combinations that opens the cerebrum endothelium for enhanced drug transporter across the BBB.
Collapse
Affiliation(s)
- Collin T Inglut
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Kelsey M Gray
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Shruti Vig
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jae W Jung
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jillian Stabile
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Yuji Zhang
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
20
|
Nonoshita D, Kashihara W, Tanabe K, Isozaki T, Xu YZ, Suzuki T. Excited States of Thio-2'-deoxyuridine Bearing an Extended π-Conjugated System: 3',5'-Di- O-acetyl-5-phenylethynyl-4-thio-2'-deoxyuridine. J Phys Chem A 2021; 125:597-606. [PMID: 33307688 DOI: 10.1021/acs.jpca.0c09343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new thio-2'-deoxyuridine with an extended π-conjugated group was successfully synthesized: 3',5'-di-O-acetyl-5-phenylethynyl-4-thio-2'-deoxyuridine. The thio-2'-deoxyuridine derivative has a large red-shifted absorption band in the UVA region and also shows fluorescence, a rare photo-property among thionucleobases/thionucleosides. The triplet-triplet absorption spectrum and the rate constants (the intrinsic decay rate constant of the triplet state, the self-quenching rate constant, and the quenching rate constant of the triplet state by an oxygen molecule) of the thio-2'-deoxyuridine were obtained by transient absorption spectroscopy. The quantum yield of intersystem crossing and the quantum yield of singlet molecular oxygen formation (ϕΔ) under an oxygen atmosphere were also determined. The ϕΔ value of the new thio-2'-deoxyuridine was found to be substantially higher than all reported values of other thio-2'-deoxyribonucleosides in low oxygen concentrations similar to cancer cell environments. The fluorescence quantum yield depended on the excitation wavelength, revealing certain photochemical reactions in the higher excited singlet states. However, when excited into the higher excited state with non-resonant two-photon absorption, the ϕΔ of the thio-2'-deoxyuridine derivative was found to remain sufficiently large. These findings should be very useful for the development of thio-2'-deoxyribonucleoside-based pharmaceuticals as DNA-specific photosensitizers for photochemotherapy.
Collapse
Affiliation(s)
- Daiki Nonoshita
- Department of Chemistry and Biological Science, Aoyama Gakuin University, Fuchinobe, Chuo-ku, Sagamihara 252-5258, Kanagawa, Japan
| | - Wataru Kashihara
- Department of Chemistry and Biological Science, Aoyama Gakuin University, Fuchinobe, Chuo-ku, Sagamihara 252-5258, Kanagawa, Japan
| | - Kazuhito Tanabe
- Department of Chemistry and Biological Science, Aoyama Gakuin University, Fuchinobe, Chuo-ku, Sagamihara 252-5258, Kanagawa, Japan
| | - Tasuku Isozaki
- Division of Natural Sciences, College of Arts and Sciences, J. F. Oberlin University, Tokiwa-machi, Machida 194-0294, Tokyo, Japan
| | - Yao Zhong Xu
- School of Life, Health and Chemical Sciences, The Open University, Keynes MK7 6AA, U.K
| | - Tadashi Suzuki
- Department of Chemistry and Biological Science, Aoyama Gakuin University, Fuchinobe, Chuo-ku, Sagamihara 252-5258, Kanagawa, Japan
| |
Collapse
|
21
|
Gaitan B, Inglut CT, Liu Y, Chen Y, Huang HC. Depth-resolved imaging of photosensitizer in the rodent brain using fluorescence laminar optical tomography. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200139R. [PMID: 32981239 PMCID: PMC7519352 DOI: 10.1117/1.jbo.25.9.096007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/27/2020] [Indexed: 05/06/2023]
Abstract
SIGNIFICANCE Previous studies have been performed to image photosensitizers in certain organs and tumors using fluorescence laminar optical tomography. Currently, no work has yet been published to quantitatively compare the signal compensation of fluorescence laminar optical tomography with two-dimensional (2-D) imaging in tissues. AIM The purpose of this study is to quantify the benefit that fluorescence laminar optical tomography holds over 2-D imaging. We compared fluorescence laminar optical tomography with maximum intensity projection imaging to simulate 2-D imaging, as this would be the most similar and stringent comparison. APPROACH A capillary filled with a photosensitizer was placed in a phantom and ex vivo rodent brains, with fluorescence laminar optical tomography and maximum intensity projection images obtained. The signal loss in the Z direction was quantified and compared to see which methodology could compensate better for signal loss caused by tissue attenuation. RESULTS The results demonstrated that we can reconstruct a capillary filled with benzoporphyrin derivative photosensitizers faithfully in phantoms and in ex vivo rodent brain tissues using fluorescence laminar optical tomography. We further demonstrated that we can better compensate for signal loss when compared with maximum intensity projection imaging. CONCLUSIONS Using fluorescence laminar optical tomography (FLOT), one can compensate for signal loss in deeper parts of tissue when imaging in ex vivo rodent brain tissue compared with maximum intensity projection imaging.
Collapse
Affiliation(s)
- Brandon Gaitan
- University of Maryland College Park, Fischell Department of Bioengineering, College Park, Maryland, United States
| | - Collin T. Inglut
- University of Maryland College Park, Fischell Department of Bioengineering, College Park, Maryland, United States
| | - Yi Liu
- University of Maryland College Park, College of Computer Science, College Park, Maryland, United States
| | - Yu Chen
- University of Massachusetts-Amherst, S617 Life Science Laboratories, Department of Biomedical Engineering, Amherst, Massachusetts, United States
- Address all correspondence to Yu Chen, E-mail: ; Huang-Chiao Huang, E-mail:
| | - Huang-Chiao Huang
- University of Maryland College Park, Fischell Department of Bioengineering, College Park, Maryland, United States
- University of Maryland, Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, United States
- Address all correspondence to Yu Chen, E-mail: ; Huang-Chiao Huang, E-mail:
| |
Collapse
|
22
|
Shen Z, Xia J, Ma Q, Zhu W, Gao Z, Han S, Liang Y, Cao J, Sun Y. Tumor Microenvironment-triggered Nanosystems as dual-relief Tumor Hypoxia Immunomodulators for enhanced Phototherapy. Theranostics 2020; 10:9132-9152. [PMID: 32802183 PMCID: PMC7415819 DOI: 10.7150/thno.46076] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/18/2020] [Indexed: 12/23/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising strategy in cancer treatment that utilizes photosensitizers (PSs) to produce reactive oxygen species (ROS) and eliminate cancer cells under specific wavelength light irradiation. However, special tumor environments, such as those with overexpression of glutathione (GSH), which will consume PDT-mediated ROS, as well as hypoxia in the tumor microenvironment (TME) could lead to ineffective treatment. Moreover, PDT is highly light-dependent and therefore can be hindered in deep tumor cells where light cannot easily penetrate. To solve these problems, we designed oxygen-dual-generating nanosystems MnO2@Chitosan-CyI (MCC) for enhanced phototherapy. Methods: The TME-sensitive nanosystems MCC were easily prepared through the self-assembly of iodinated indocyanine green (ICG) derivative CyI and chitosan, after which the MnO2 nanoparticles were formed as a shell by electrostatic interaction and Mn-N coordinate bonding. Results: When subjected to NIR irradiation, MCC offered enhanced ROS production and heat generation. Furthermore, once endocytosed, MnO2 could not only decrease the level of GSH but also serve as a highly efficient in situ oxygen generator. Meanwhile, heat generation-induced temperature increase accelerated in vivo blood flow, which effectively relieved the environmental tumor hypoxia. Furthermore, enhanced PDT triggered an acute immune response, leading to NIR-guided, synergistic PDT/photothermal/immunotherapy capable of eliminating tumors and reducing tumor metastasis. Conclusion: The proposed novel nanosystems represent an important advance in altering TME for improved clinical PDT efficacy, as well as their potential as effective theranostic agents in cancer treatment.
Collapse
Affiliation(s)
- Zijun Shen
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Junfei Xia
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA, 02155, USA
| | - Qingming Ma
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Zhen Gao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Shangcong Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
23
|
Yu JR, Janssen M, Liang BJ, Huang HC, Fisher JP. A liposome/gelatin methacrylate nanocomposite hydrogel system for delivery of stromal cell-derived factor-1α and stimulation of cell migration. Acta Biomater 2020; 108:67-76. [PMID: 32194261 PMCID: PMC7198368 DOI: 10.1016/j.actbio.2020.03.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 11/29/2022]
Abstract
Chronic, non-healing skin and soft tissue wounds are susceptible to infection, difficult to treat clinically, and can severely reduce a patient's quality of life. A key aspect of this issue is the impaired recruitment of mesenchymal stem cells (MSCs), which secrete regenerative cytokines and modulate the phenotypes of other effector cells that promote healing. We have engineered a therapeutic delivery system that can controllably release the pro-healing chemokine stromal cell derived factor-1α (SDF-1α) to induce the migration of MSCs. In order to protect the protein cargo from hydrolytic degradation and control its release, we have loaded SDF-1α in anionic liposomes (lipoSDF) and embedded them in gelatin methacrylate (GelMA) to form a nanocomposite hydrogel. In this study, we quantify the release of SDF-1α from our hydrogel system and measure the induced migration of MSCs in vitro via a transwell assay. Lastly, we evaluate the ability of this system to activate intracellular signaling in MSCs by using Western blots to probe for the phosphorylation of key proteins in the mTOR pathway. To our knowledge, this is the first study to report the delivery of liposomal SDF-1α using a nanocomposite approach. The results of this study expand on our current understanding of factors that can be modified to affect MSC behavior and phenotype. Furthermore, our findings contribute to the development of new hydrogel-based therapeutic delivery strategies for clinical wound healing applications. STATEMENT OF SIGNIFICANCE: Chronic, non-healing wounds promote an inflammatory environment that inhibits the migration of mesenchymal stem cells (MSCs), which secrete pro-healing and regenerative cytokines. The goal of this project is to apply principles of tissue engineering to achieve controllable release of the pro-healing chemokine SDF-1α to modulate the intracellular signaling and migratory behavior of MSCs. In this work, we introduce a nanocomposite strategy to tailor the release of SDF-1α using a liposome/gelatin methacrylate hydrogel approach. We are the first group to report the delivery of liposomal SDF-1α using this strategy. Our findings aim to further elucidate the role of MSCs in directing wound healing and guide the development of immunomodulatory and therapeutic delivery strategies for clinical wound healing applications.
Collapse
Affiliation(s)
- Justine R Yu
- Fischell Department of Bioengineering, University of Maryland - College Park, 3121 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD 20742, United States; NIH/NBIB Center for Engineering Complex Tissues, University of Maryland - College Park, 3121 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD 20742, United States; University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Miriam Janssen
- Fischell Department of Bioengineering, University of Maryland - College Park, 3121 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD 20742, United States
| | - Barry J Liang
- Fischell Department of Bioengineering, University of Maryland - College Park, 3121 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD 20742, United States
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland - College Park, 3121 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD 20742, United States; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland - College Park, 3121 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD 20742, United States; NIH/NBIB Center for Engineering Complex Tissues, University of Maryland - College Park, 3121 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD 20742, United States.
| |
Collapse
|
24
|
Baglo Y, Sorrin AJ, Liang BJ, Huang HC. Harnessing the Potential Synergistic Interplay Between Photosensitizer Dark Toxicity and Chemotherapy. Photochem Photobiol 2020; 96:636-645. [PMID: 31856423 DOI: 10.1111/php.13196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022]
Abstract
The combination of photodynamic therapy and taxol- or platinum-based chemotherapy (photochemotherapy) is an effective and promising cancer treatment. While the mechanisms of action of photochemotherapy are actively studied, relatively little is known about the cytotoxicity and molecular alterations induced by the combination of chemotherapy and photosensitizers without light activation in cancer cells. This study investigates the interplay between the photosensitizer benzoporphyrin derivative (BPD) without light activation and cisplatin or paclitaxel in two glioblastoma lines, U87 and U251. The combination effect of BPD and cisplatin in U87 cells is slightly synergistic (combination index, CI = 0.93), showing 1.8- to 2.6-fold lower half-maximal inhibitory concentrations (IC50 ) compared to those of individual drugs. In contrast, combining BPD and paclitaxel is slightly antagonistic (CI = 1.14) in U87 cells. In U251 cells, the combinations of BPD and cisplatin or paclitaxel are both antagonistic (CI = 1.24 and 1.34, respectively). Western blotting was performed to investigate changes in the expression levels of YAP, TAZ, Bcl-2 and EGFR in U87 and U251 cells treated with BPD, cisplatin and paclitaxel, both as monotherapies and in combination. Our study provides insights into the molecular alterations in two glioma lines caused by each monotherapy and the combinations, in order to inform the design of effective treatments.
Collapse
Affiliation(s)
- Yan Baglo
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| | - Aaron J Sorrin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| | - Barry J Liang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
25
|
Liang BJ, Pigula M, Baglo Y, Najafali D, Hasan T, Huang HC. Breaking the selectivity-uptake trade-off of photoimmunoconjugates with nanoliposomal irinotecan for synergistic multi-tier cancer targeting. J Nanobiotechnology 2020; 18:1. [PMID: 31898555 PMCID: PMC6939330 DOI: 10.1186/s12951-019-0560-5] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Photoimmunotherapy involves targeted delivery of photosensitizers via an antibody conjugate (i.e., photoimmunoconjugate, PIC) followed by light activation for selective tumor killing. The trade-off between PIC selectivity and PIC uptake is a major drawback limiting the efficacy of photoimmunotherapy. Despite ample evidence showing that photoimmunotherapy is most effective when combined with chemotherapy, the design of nanocarriers to co-deliver PICs and chemotherapy drugs remains an unmet need. To overcome these challenges, we developed a novel photoimmunoconjugate-nanoliposome (PIC-Nal) comprising of three clinically used agents: anti-epidermal growth factor receptor (anti-EGFR) monoclonal antibody cetuximab (Cet), benzoporphyrin derivative (BPD) photosensitizer, and irinotecan (IRI) chemotherapy. RESULTS The BPD photosensitizers were first tethered to Cet at a molar ratio of 6:1 using carbodiimide chemistry to form PICs. Conjugation of PICs onto nanoliposome irinotecan (Nal-IRI) was facilitated by copper-free click chemistry, which resulted in monodispersed PIC-Nal-IRI with an average size of 158.8 ± 15.6 nm. PIC-Nal-IRI is highly selective against EGFR-overexpressing epithelial ovarian cancer cells with 2- to 6-fold less accumulation in low EGFR expressing cells. Successful coupling of PIC onto Nal-IRI enhanced PIC uptake and photoimmunotherapy efficacy by up to 30% in OVCAR-5 cells. Furthermore, PIC-Nal-IRI synergistically reduced cancer viability via a unique three-way mechanism (i.e., EGFR downregulation, mitochondrial depolarization, and DNA damage). CONCLUSION It is increasingly evident that the most effective therapies for cancer will involve combination treatments that target multiple non-overlapping pathways while minimizing side effects. Nanotechnology combined with photochemistry provides a unique opportunity to simultaneously deliver and activate multiple drugs that target all major regions of a cancer cell-plasma membrane, cytoplasm, and nucleus. PIC-Nal-IRI offers a promising strategy to overcome the selectivity-uptake trade-off, improve photoimmunotherapy efficacy, and enable multi-tier cancer targeting. Controllable drug compartmentalization, easy surface modification, and high clinical relevance collectively make PIC-Nal-IRI extremely valuable and merits further investigations in living animals.
Collapse
Affiliation(s)
- Barry J Liang
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Michael Pigula
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Yan Baglo
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Daniel Najafali
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA.
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|