1
|
Sourvanos D, Sun H, Zhu TC, Dimofte A, Byrd B, Busch TM, Cengel KA, Neiva R, Fiorellini JP. Three-dimensional printing of the human lung pleural cavity model for PDT malignant mesothelioma. Photodiagnosis Photodyn Ther 2024; 46:104014. [PMID: 38346466 DOI: 10.1016/j.pdpdt.2024.104014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE The primary aim was to investigate emerging 3D printing and optical acquisition technologies to refine and enhance photodynamic therapy (PDT) dosimetry in the management of malignant pleural mesothelioma (MPM). MATERIALS AND METHODS A rigorous digital reconstruction of the pleural lung cavity was conducted utilizing 3D printing and optical scanning methodologies. These reconstructions were systematically assessed against CT-derived data to ascertain their accuracy in representing critical anatomic features and post-resection topographical variations. RESULTS The resulting reconstructions excelled in their anatomical precision, proving instrumental translation for precise dosimetry calculations for PDT. Validation against CT data confirmed the utility of these models not only for enhancing therapeutic planning but also as critical tools for educational and calibration purposes. CONCLUSION The research outlined a successful protocol for the precise calculation of light distribution within the complex environment of the pleural cavity, marking a substantive advance in the application of PDT for MPM. This work holds significant promise for individualizing patient care, minimizing collateral radiation exposure, and improving the overall efficiency of MPM treatments.
Collapse
Affiliation(s)
- Dennis Sourvanos
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, USA; Center for Innovation and Precision Dentistry (CiPD), School of Dental Medicine, School of Engineering, University of Pennsylvania, PA, USA.
| | - Hongjing Sun
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Timothy C Zhu
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Andreea Dimofte
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Brook Byrd
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Keith A Cengel
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Rodrigo Neiva
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, USA
| | - Joseph P Fiorellini
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, USA
| |
Collapse
|
2
|
Li Z, Hannan MN, Sharma AK, Baran TM. Treatment planning for photodynamic therapy of abscess cavities using patient-specific optical properties measured prior to illumination. Phys Med Biol 2024; 69:055031. [PMID: 38316055 PMCID: PMC10900070 DOI: 10.1088/1361-6560/ad2635] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Photodynamic therapy (PDT) is an effective antimicrobial therapy that we used to treat human abscess cavities in a Phase 1 clinical trial. This trial included pre-PDT measurements of abscess optical properties, which affect light dose (light fluence) at the abscess wall and PDT response. This study simulated PDT treatment planning for 13 subjects that received optical spectroscopy prior to clinical PDT, to determine the impact of measured optical properties on ability to achieve fluence rate targets in 95% of the abscess wall. Retrospective treatment plans were evaluated for 3 conditions: (1) clinically delivered laser power and assumed, homogeneous optical properties, (2) clinically delivered laser power and measured, homogeneous optical properties, and (3) with patient-specific treatment planning using measured, homogeneous optical properties. Treatment plans modified delivered laser power, intra-cavity Intralipid (scatterer) concentration, and laser fiber type. Using flat-cleaved laser fibers, the proportion of subjects achieving 95% abscess wall coverage decreased significantly relative to assumed optical properties when using measured values for 4 mW cm-2(92% versus 38%,p= 0.01) and 20 mW cm-2(62% versus 15%,p= 0.04) thresholds. When measured optical properties were incorporated into treatment planning, the 4 mW cm-2target was achieved for all cases. After treatment planning, optimal Intralipid concentration across subjects was 0.14 ± 0.09%, whereas 1% was used clinically. Required laser power to achieve the 4 mW cm-2target was significantly correlated with measured abscess wall absorption (ρ= 0.7,p= 0.008), but not abscess surface area (ρ= 0.2,p= 0.53). When using spherical diffuser fibers for illumination, both optimal Intralipid concentration (p= 0.0005) and required laser power (p= 0.0002) decreased compared to flat cleaved fibers. At 0% Intralipid concentration, the 4 mW cm-2target could only be achieved for 69% of subjects for flat-cleaved fibers, compared to 100% for spherical diffusers. Based on large inter-subject variations in optical properties, individualized treatment planning is essential for abscess photodynamic therapy. (Clinical Trial Registration: The parent clinical trial from which these data were acquired is registered on ClinicalTrials.gov as 'Safety and Feasibility Study of Methylene Blue Photodynamic Therapy to Sterilize Deep Tissue Abscess Cavities,' with ClinicalTrials.gov identifier NCT02240498).
Collapse
Affiliation(s)
- Zihao Li
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States of America
| | - Md Nafiz Hannan
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States of America
| | - Ashwani K Sharma
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Timothy M Baran
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States of America
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, United States of America
- The Institute of Optics, University of Rochester, Rochester, NY, United States of America
| |
Collapse
|
3
|
Sun H, Ong Y, Yang W, Sourvanos D, Dimofte A, Busch TM, Singhal S, Cengel KA, Zhu TC. Clinical PDT dose dosimetry for pleural Photofrin-mediated photodynamic therapy. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:018001. [PMID: 38223299 PMCID: PMC10787190 DOI: 10.1117/1.jbo.29.1.018001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
Significance Photodynamic therapy (PDT) is an established cancer treatment utilizing light-activated photosensitizers (PS). Effective treatment hinges on the PDT dose-dependent on PS concentration and light fluence-delivered over time. We introduce an innovative eight-channel PDT dose dosimetry system capable of concurrently measuring light fluence and PS concentration during treatment. Aim We aim to develop and evaluate an eight-channel PDT dose dosimetry system for simultaneous measurement of light fluence and PS concentration. By addressing uncertainties due to tissue variations, the system enhances accurate PDT dosimetry for improved treatment outcomes. Approach The study positions eight isotropic detectors strategically within the pleural cavity before PDT. These detectors are linked to bifurcated fibers, distributing signals to both a photodiode and a spectrometer. Calibration techniques are applied to counter tissue-related variations and improve measurement accuracy. The fluorescence signal is normalized using the measured light fluence, compensating for variations in tissue properties. Measurements were taken in 78 sites in the pleural cavities of 20 patients. Results Observations reveal minimal Photofrin concentration variation during PDT at each site, juxtaposed with significant intra- and inter-patient heterogeneities. Across 78 treated sites in 20 patients, the average Photofrin concentration for all 78 sites is 4.98 μ M , with a median concentration of 4.47 μ M . The average PDT dose for all 78 sites is 493.17 μ MJ / cm 2 , with a median dose of 442.79 μ MJ / cm 2 . A significant variation in PDT doses is observed, with a maximum difference of 3.1 times among all sites within one patient and a maximum difference of 9.8 times across all patients. Conclusions The introduced eight-channel PDT dose dosimetry system serves as a valuable real-time monitoring tool for light fluence and PS concentration during PDT. Its ability to mitigate uncertainties arising from tissue properties enhances dosimetry accuracy, thus optimizing treatment outcomes and bolstering the effectiveness of PDT in cancer therapy.
Collapse
Affiliation(s)
- Hongjing Sun
- University of Pennsylvania, Department of Radiation Oncology, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Department of Bioengineering, Philadelphia, Pennsylvania, United States
| | - Yihong Ong
- University of Pennsylvania, Department of Radiation Oncology, Philadelphia, Pennsylvania, United States
| | - Weibing Yang
- University of Pennsylvania, Department of Radiation Oncology, Philadelphia, Pennsylvania, United States
| | - Dennis Sourvanos
- University of Pennsylvania, School of Dental Medicine, Department of Periodontics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Schools of Engineering and Dental Medicine, Center for Innovation and Precision Dentistry, Philadelphia, Pennsylvania, United States
| | - Andreea Dimofte
- University of Pennsylvania, Department of Radiation Oncology, Philadelphia, Pennsylvania, United States
| | - Theresa M. Busch
- University of Pennsylvania, Department of Radiation Oncology, Philadelphia, Pennsylvania, United States
| | - Sunil Singhal
- University of Pennsylvania, Department of Surgery, Philadelphia, Pennsylvania, United States
| | - Keith A. Cengel
- University of Pennsylvania, Department of Radiation Oncology, Philadelphia, Pennsylvania, United States
| | - Timothy C. Zhu
- University of Pennsylvania, Department of Radiation Oncology, Philadelphia, Pennsylvania, United States
| |
Collapse
|
4
|
Li Z, Hannan MN, Sharma AK, Baran TM. Treatment planning for photodynamic therapy of abscess cavities using patient-specific optical properties measured prior to illumination. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.23.23297420. [PMID: 37961683 PMCID: PMC10635177 DOI: 10.1101/2023.10.23.23297420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Photodynamic therapy (PDT) is an effective antimicrobial therapy that we used to treat human abscess cavities in a recently completed Phase 1 clinical trial. This trial included pre-PDT measurements of abscess optical properties, which affect the expected light dose to the abscess wall and eventual PDT response. Purpose The objective of this study was to simulate PDT treatment planning for the 13 subjects that received optical spectroscopy prior to clinical abscess PDT. Our goal was to determine the impact of these measured optical properties on our ability to achieve fluence rate targets in 95% of the abscess wall. Methods During a Phase 1 clinical trial, 13 subjects received diffuse reflectance spectroscopy prior to PDT in order to determine the optical properties of their abscess wall. Retrospective treatment plans seeking to achieve fluence rate targets in 95% of the abscess wall were evaluated for all subjects for 3 conditions: (1) at the laser power delivered clinically with assumed optical properties, (2) at the laser power delivered clinically with measured optical properties, and (3) with patient-specific treatment planning using these measured optical properties. Factors modified in treatment planning included delivered laser power and intra-cavity Intralipid (scatterer) concentration. The effects of laser fiber type were also simulated. Results Using a flat-cleaved laser fiber, the proportion of subjects that achieved 95% abscess wall coverage decreased significantly when incorporating measured optical properties for both the 4 mW/cm 2 (92% vs. 38%, p=0.01) and 20 mW/cm 2 (62% vs. 15%, p=0.04) fluence rate thresholds. However, when measured optical properties were incorporated into treatment planning, a fluence rate of 4 mW/cm 2 was achieved in 95% of the abscess wall for all cases. In treatment planning, the optimal Intralipid concentration across subjects was found to be 0.14 ± 0.09% and the optimal laser power varied from that delivered clinically but with no clear trend (p=0.79). The required laser power to achieve 4 mW/cm 2 in 95% of the abscess wall was significantly correlated with measured µ a at the abscess wall (ρ=0.7, p=0.008), but not abscess surface area (ρ=0.2, p=0.53). When using spherical diffuser fibers as the illumination source, the optimal intralipid concentration decreased to 0.028 ± 0.026% (p=0.0005), and the required laser power decreased also (p=0.0002), compared to flat cleaved fibers. If the intra-cavity lipid emulsion (Intralipid) was replaced with a non-scattering fluid, all subjects could achieve the 4 mW/cm 2 fluence rate threshold in 95% of the abscess wall using a spherical diffuser, while only 69% of subjects could reach the same criterion using a flat cleaved fiber. Conclusions The range of optical properties measured in human abscesses reduced coverage of the abscess wall at desirable fluence rates. Patient-specific treatment planning including these measured optical properties could bring the coverage back to desirable levels by altering the Intralipid concentration and delivered optical power. These results motivate a future Phase 2 clinical trial to directly compare the efficacy of patient-specific-treatment planning with fixed doses of Intralipid and light.Clinical Trial Registration: The parent clinical trial from which these data were acquired is registered on ClinicalTrials.gov as "Safety and Feasibility Study of Methylene Blue Photodynamic Therapy to Sterilize Deep Tissue Abscess Cavities," with ClinicalTrials.gov identifier NCT02240498 .
Collapse
|
5
|
Sun H, Kim MM, Ong YH, Dimoft A, Singhal S, Busch TM, Cengel KA, Zhu TC. Evaluation of Detector Position and Light Fluence Distribution Using an Infrared Navigation System during Pleural Photodynamic Therapy †. Photochem Photobiol 2023; 99:814-825. [PMID: 35996976 PMCID: PMC9947188 DOI: 10.1111/php.13697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022]
Abstract
Photodynamic therapy (PDT) has been used to treat malignant pleural mesothelioma. Current practice involves delivering light to a prescribed light fluence with a point source, monitored by eight isotropic detectors inside the pleural cavity. An infrared (IR) navigation system was used to track the location of the point source throughout the treatment. The recorded data were used to reconstruct the pleural cavity and calculate the light fluence to the whole cavity. An automatic algorithm was developed recently to calculate the detector positions based on recorded data within an hour. This algorithm was applied to patient case studies and the calculated results were compared to the measured positions, with an average difference of 2.5 cm. Calculated light fluence at calculated positions were compared to measured values. The differences between the calculated and measured light fluence were within 14% for all cases, with a fixed scattering constant and a dual correction method. Fluence-surface histogram (FSH) was calculated for photofrin-mediated PDT to be able to cover 80% of pleural surface area to 50 J cm-2 (83.3% of 60 J cm-2 ). The study demonstrates that it will be possible to eliminate the manual measurement of the detector positions, reducing the patient's time under anesthesia.
Collapse
Affiliation(s)
- Hongjing Sun
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Yi Hong Ong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Andreea Dimoft
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Sunil Singhal
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Theresa M. Busch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Keith A Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Timothy C Zhu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
6
|
Wang X, Jin T, Xiong J, Zhao H, Hu X, Li Q, Ren J, Zhao Y. Three-dimensional image-guided topical photodynamic therapy system with light dosimetry dynamic planning and monitoring. BIOMEDICAL OPTICS EXPRESS 2023; 14:453-466. [PMID: 36698654 PMCID: PMC9842015 DOI: 10.1364/boe.481248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 05/02/2023]
Abstract
Photodynamic therapy (PDT) has shown significant potential for skin disease treatment. As a key element, light is critical to influencing its treatment outcome, and light dosimetry is an issue of much concern for researchers. However, because of three-dimensional irregularity in shape and patient's movement during the therapy, irradiance hardly keeps uniform on the lesion and flux measurement remains a challenge. In this work, we report the development of a three-dimensional image-guided PDT system, and the method of dynamic irradiance planning and flux monitoring for lesions in different poses. This system comprises a three-dimensional camera for monitoring patients' movement during therapy, a computer for data analysis and processing, and a homemade LED array for forming uniform irradiance on lesions. Simulations on lesions of the face and arm show that the proposed system significantly increases effective therapy area, enhances irradiance uniformity, is able to visualize flux on the lesion, and reduces risks of burns during PDT. The developed PDT system is promising for optimizing procedures of PDT and providing better treatment outcomes by delivering controllable irradiance and flux on lesions even when a patient is moving.
Collapse
Affiliation(s)
- Xu Wang
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Teng Jin
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jiyuan Xiong
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Huiting Zhao
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xiaoming Hu
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Qin Li
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jie Ren
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Photomedicine Laboratory, Institute of Precision Medicine, Tsinghua University, Beijing, China
| | - Yi Zhao
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Photomedicine Laboratory, Institute of Precision Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
7
|
Bonsall S, Hubbard S, Jithin U, Anslow J, Todd D, Rowding C, Filarowski T, Duly G, Wilson R, Porter J, Turega S, Haywood-Small S. Water-Soluble Truncated Fatty Acid-Porphyrin Conjugates Provide Photo-Sensitizer Activity for Photodynamic Therapy in Malignant Mesothelioma. Cancers (Basel) 2022; 14:5446. [PMID: 36358864 PMCID: PMC9654571 DOI: 10.3390/cancers14215446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 03/07/2024] Open
Abstract
Clinical trials evaluating intrapleural photodynamic therapy (PDT) are ongoing for mesothelioma. Several issues still hinder the development of PDT, such as those related to the inherent properties of photosensitizers. Herein, we report the synthesis, photophysical, and photobiological properties of three porphyrin-based photosensitizers conjugated to truncated fatty acids (C5SHU to C7SHU). Our photosensitizers exhibited excellent water solubility and high PDT efficiency in mesothelioma. As expected, absorption spectroscopy confirmed an increased aggregation as a consequence of extending the fatty acid chain length. In vitro PDT activity was studied using human mesothelioma cell lines (biphasic MSTO-211H cells and epithelioid NCI-H28 cells) alongside a non-malignant mesothelial cell line (MET-5A). The PDT effect of these photosensitizers was initially assessed using the colorimetric WST-8 cell viability assay and the mode of cell death was determined via flow cytometry of Annexin V-FITC/PI-stained cells. Photosensitizers appeared to selectively localize within the non-nuclear compartments of cells before exhibiting high phototoxicity. Both apoptosis and necrosis were induced at 24 and 48 h. As our pentanoic acid-derivatized porphyrin (C5SHU) induced the largest anti-tumor effect in this study, we put this forward as an anti-tumor drug candidate in PDT and photo-imaging diagnosis in mesothelioma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Sarah Haywood-Small
- Biomolecular Sciences Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB, UK
| |
Collapse
|
8
|
Beeson K, Parilov E, Potasek M, Zhu T, Sun H, Sourvanos D. Photodynamic therapy in a pleural cavity using monte carlo simulations with 2D/3D Graphical Visualization. GLOBAL JOURNAL OF CANCER THERAPY 2022; 8:34-35. [PMID: 37337581 PMCID: PMC10278094 DOI: 10.17352/2581-5407.000045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Cancer therapy using Photodynamic Therapy (PDT) has been investigated for some time [1,2] and now it is a growing area of interest in clinical trials [3]. Monte Carlo (MC) simulations were used for early laboratory studies [4,5] for analysis in PDT. Various improvements in the MC method have advanced the field in recent years.
Collapse
Affiliation(s)
- K Beeson
- Simphotek, Inc, 211 Warren St, Newark, NJ 07103, USA
| | - E Parilov
- Simphotek, Inc, 211 Warren St, Newark, NJ 07103, USA
| | - Mary Potasek
- Simphotek, Inc, 211 Warren St, Newark, NJ 07103, USA
| | - T Zhu
- Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - H Sun
- Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - D Sourvanos
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Chiou SY, Zhang ZY, Liu HL, Yan JL, Wei KC, Chen PY. Augmented Reality Surgical Navigation System for External Ventricular Drain. Healthcare (Basel) 2022; 10:healthcare10101815. [PMID: 36292263 PMCID: PMC9601392 DOI: 10.3390/healthcare10101815] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
Augmented reality surgery systems are playing an increasing role in the operating room, but applying such systems to neurosurgery presents particular challenges. In addition to using augmented reality technology to display the position of the surgical target position in 3D in real time, the application must also display the scalpel entry point and scalpel orientation, with accurate superposition on the patient. To improve the intuitiveness, efficiency, and accuracy of extra-ventricular drain surgery, this paper proposes an augmented reality surgical navigation system which accurately superimposes the surgical target position, scalpel entry point, and scalpel direction on a patient’s head and displays this data on a tablet. The accuracy of the optical measurement system (NDI Polaris Vicra) was first independently tested, and then complemented by the design of functions to help the surgeon quickly identify the surgical target position and determine the preferred entry point. A tablet PC was used to display the superimposed images of the surgical target, entry point, and scalpel on top of the patient, allowing for correct scalpel orientation. Digital imaging and communications in medicine (DICOM) results for the patient’s computed tomography were used to create a phantom and its associated AR model. This model was then imported into the application, which was then executed on the tablet. In the preoperative phase, the technician first spent 5–7 min to superimpose the virtual image of the head and the scalpel. The surgeon then took 2 min to identify the intended target position and entry point position on the tablet, which then dynamically displayed the superimposed image of the head, target position, entry point position, and scalpel (including the scalpel tip and scalpel orientation). Multiple experiments were successfully conducted on the phantom, along with six practical trials of clinical neurosurgical EVD. In the 2D-plane-superposition model, the optical measurement system (NDI Polaris Vicra) provided highly accurate visualization (2.01 ± 1.12 mm). In hospital-based clinical trials, the average technician preparation time was 6 min, while the surgeon required an average of 3.5 min to set the target and entry-point positions and accurately overlay the orientation with an NDI surgical stick. In the preparation phase, the average time required for the DICOM-formatted image processing and program import was 120 ± 30 min. The accuracy of the designed augmented reality optical surgical navigation system met clinical requirements, and can provide a visual and intuitive guide for neurosurgeons. The surgeon can use the tablet application to obtain real-time DICOM-formatted images of the patient, change the position of the surgical entry point, and instantly obtain an updated surgical path and surgical angle. The proposed design can be used as the basis for various augmented reality brain surgery navigation systems in the future.
Collapse
Affiliation(s)
- Shin-Yan Chiou
- Department of Electrical Engineering, College of Engineering, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
- Department of Nuclear Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Zhi-Yue Zhang
- Department of Electrical Engineering, College of Engineering, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Jiun-Lin Yan
- Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, New Taipei City TuCheng Hospital, New Taipei City 236, Taiwan
| | - Pin-Yuan Chen
- Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan
- School of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-2-2431-3131
| |
Collapse
|
10
|
Li Z, Nguyen L, Bass DA, Baran TM. Effects of patient-specific treatment planning on eligibility for photodynamic therapy of deep tissue abscess cavities: retrospective Monte Carlo simulation study. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:083007. [PMID: 35146973 PMCID: PMC8831513 DOI: 10.1117/1.jbo.27.8.083007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
SIGNIFICANCE Antimicrobial photodynamic therapy (PDT) effectively kills bacterial strains found in deep tissue abscess cavities. PDT response hinges on multiple factors, including light dose, which depends on patient optical properties. AIM Computed tomography images for 60 abscess drainage subjects were segmented and used for Monte Carlo (MC) simulation. We evaluated effects of optical properties and abscess morphology on PDT eligibility and generated treatment plans. APPROACH A range of abscess wall absorptions (μa , wall) and intra-cavity Intralipid concentrations were simulated. At each combination, the threshold optical power and optimal Intralipid concentration were found for a fluence rate target, with subjects being eligible for PDT if the target was attainable with <2000 mW of source light. Further simulations were performed with absorption within the cavity (μa , cavity). RESULTS Patient-specific treatment planning substantially increased the number of subjects expected to achieve an efficacious light dose for antimicrobial PDT, especially with Intralipid modification. The threshold optical power and optimal Intralipid concentration increased with increasing μa , wall (p < 0.001). PDT eligibility improved with patient-specific treatment planning (p < 0.0001). With μa , wall = 0.2 cm - 1, eligibility increased from 42% to 92%. Increasing μa , cavity reduced PDT eligibility (p < 0.0001); modifying the delivered optical power had the greatest impact in this case. CONCLUSIONS MC-based treatment planning greatly increases eligibility for PDT of abscess cavities.
Collapse
Affiliation(s)
- Zihao Li
- University of Rochester, The Institute of Optics, Rochester, New York, United States
| | - Lam Nguyen
- University of Rochester, Department of Biomedical Engineering, Rochester, New York, United States
| | - David A. Bass
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester, New York, United States
| | - Timothy M. Baran
- University of Rochester, Department of Biomedical Engineering, Rochester, New York, United States
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester, New York, United States
| |
Collapse
|
11
|
Kim MM, Zhu TC, Ong YH, Finlay JC, Dimofte A, Singhal S, Glatstein E, Cengel KA. Infrared navigation system for light dosimetry during pleural photodynamic therapy. Phys Med Biol 2020; 65:075006. [PMID: 32053799 DOI: 10.1088/1361-6560/ab7632] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pleural photodynamic therapy (PDT) is performed intraoperatively for the treatment of microscopic disease in patients with malignant pleural mesothelioma. Accurate delivery of light dose is critical to PDT efficiency. As a standard of care, light fluence is delivered to the prescribed fluence using eight isotropic detectors in pre-determined discrete locations inside the pleural cavity that is filled with a dilute Intralipid solution. An optical infrared (IR) navigation system was used to monitor reflective passive markers on a modified and improved treatment delivery wand to track the position of the light source within the treatment cavity during light delivery. This information was used to calculate the light dose, incorporating a constant scattered light dose and using a dual correction method. Calculation methods were extensively compared for eight detector locations and seven patient case studies. The light fluence uniformity was also quantified by representing the unraveled three-dimensional geometry on a two-dimensional plane. Calculated light fluence at the end of treatment delivery was compared to measured values from isotropic detectors. Using a constant scattered dose for all detector locations along with a dual correction method, the difference between calculated and measured values for each detector was within 15%. Primary light dose alone does not fully account for the light delivered inside the cavity. This is useful in determining the light dose delivered to areas of the pleural cavity between detector locations, and can serve to improve treatment delivery with implementation in real-time in the surgical setting. We concluded that the standard deviation of light fluence uniformity for this method of pleural PDT is 10%.
Collapse
Affiliation(s)
- Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hamblin MR. Photodynamic Therapy for Cancer: What's Past is Prologue. Photochem Photobiol 2020; 96:506-516. [PMID: 31820824 DOI: 10.1111/php.13190] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/03/2019] [Indexed: 12/25/2022]
Abstract
Thomas J Dougherty from Roswell Park Cancer Center played a major role in the progress of photodynamic therapy (PDT) from a laboratory science into a real-world clinical therapy to treat patients with cancer. Nevertheless over the succeeding 45 years, it is fair to say that the overall progress of clinical PDT for cancer has been somewhat disappointing. The goal of this perspective article is to summarize some of the clinical trials run by various companies using photosensitizers with different structures that have been conducted for different types of cancer. While some have been successful, others have failed, and several are now ongoing. I will attempt to touch on some factors, which have influenced this checkered history and look forward to the future of clinical PDT for cancer.
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA.,Department of Dermatology, Harvard Medical School, Boston, MA.,Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|