1
|
Jhulki S, Bhowmik B, Pal A. Enlightening the promising role of nanoparticle-based treatments against Naegleria fowleri-induced primary amoebic meningoencephalitis: A brain-eating disease. Microb Pathog 2025; 199:107234. [PMID: 39701479 DOI: 10.1016/j.micpath.2024.107234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/02/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Naegleria fowleri, is the causative agent of Primary Amoebic Meningoencephalitis (PAM), a lethal acute brain inflammation with high mortality. The virulent and reproductively active trophozoite stage of N. fowleri migrates to central nervous system (CNS) by entering through nasal passage and causes severe neural infection, brain disease and inflammation with high mortality. In this review we present the current available information about N. fowleri, including its case reports, pathogenesis and the mechanism of host neuroinflammation associated with PAM. Various case reports reveal that the survival rate of patients with PAM is very low. Several anti-microbial, anti-parasitic and anti-inflammatory compounds such as doxycycline, amphotericin, acyclovir, miltefosine, ampicillin, ceftriaxone, azithromycin are widely used to treat PAM. Nanoparticles conjugated drug has now attracted better attention in dealing with free-living amoeba community. Conventional drugs are being conjugated with nanomaterials like gold (Au), sliver (Ag) etc. which have elicited better amoebicidal effect against N. fowleri than unconjugated drugs. This targeted strategy may prove helpful and possibly may reduce neural damage.
Collapse
Affiliation(s)
- Sunita Jhulki
- Diamond Harbour Women's University, Department of Zoology, Sarisha, West Bengal, 743368, India.
| | - Biplab Bhowmik
- Diamond Harbour Women's University, Department of Zoology, Sarisha, West Bengal, 743368, India.
| | - Aparajita Pal
- Diamond Harbour Women's University, Department of Zoology, Sarisha, West Bengal, 743368, India.
| |
Collapse
|
2
|
Sarfraz A, Wara TU, Sheheryar, Chen K, Ansari SH, Zaman A, Nishan U, Iqbal A, Ullah R, Ali EA, Shah M, Ojha SC. Structural informatics approach for designing an epitope-based vaccine against the brain-eating Naegleria fowleri. Front Immunol 2023; 14:1284621. [PMID: 37965306 PMCID: PMC10642955 DOI: 10.3389/fimmu.2023.1284621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Primary Amoebic Meningoencephalitis (PAM), a severe lethal brain disease, is caused by a parasite, Naegleria fowleri, also known as the "brain-eating amoeba". The chances of a patient's recovery after being affected by this parasite are very low. Only 5% of people are known to survive this life-threatening infection. Despite the fact that N. fowleri causes a severe, fatal infection, there is no proper treatment available to prevent or cure it. In this context, it is necessary to formulate a potential vaccine that could be able to combat N. fowleri infection. The current study aimed at developing a multi-epitope subunit vaccine against N. fowleri by utilizing immunoinformatics techniques and reverse vaccinology approaches. The T- and B-cell epitopes were predicted by various tools. In order to choose epitopes with the ability to trigger both T- and B-cell-mediated immune responses, the epitopes were put through a screening pipeline including toxicity, antigenicity, cytokine-inductivity, and allergenicity analysis. Three vaccine constructs were designed from the generated epitopes linked with linkers and adjuvants. The modeled vaccines were docked with the immune receptors, where vaccine-1 showed the highest binding affinity. Binding affinity and stability of the docked complex were confirmed through normal mode analysis and molecular dynamic simulations. Immune simulations developed the immune profile, and in silico cloning affirmed the expression probability of the vaccine construct in Escherichia coli (E. coli) strain K12. This study demonstrates an innovative preventative strategy for the brain-eating amoeba by developing a potential vaccine through immunoinformatics and reverse vaccinology approaches. This study has great preventive potential for Primary Amoebic Meningoencephalitis, and further research is required to assess the efficacy of the designed vaccine.
Collapse
Affiliation(s)
- Asifa Sarfraz
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Tehreem Ul Wara
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Sheheryar
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
| | - Ke Chen
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | | | - Aqal Zaman
- Department of Microbiology & Molecular Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Anwar Iqbal
- Department of Chemical Sciences, University of Lakki Marwat, Khyber Pakhtunkhwa, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Essam A. Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Carvalho-Kelly LF, Freitas-Mesquita AL, Nascimento MTC, Dick CF, de Souza-Maciel E, Rochael NC, Saraiva EM, Meyer-Fernandes JR. Acanthamoeba castellanii trophozoites escape killing by neutrophil extracellular traps using their 3'-nucleotidase/nuclease activity. Eur J Protistol 2023; 91:126032. [PMID: 37948889 DOI: 10.1016/j.ejop.2023.126032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Acanthamoeba castellanii is a free-living amoeba that acts as an opportunistic pathogen for humans and is the pathogenic agent of Acanthamoeba keratitis (AK). A. castellanii may present as proliferative and infective trophozoites or as resistant cysts during their life cycle. The immune response against AK is still poorly explored; however, it is well established that macrophages and neutrophils play essential roles in controlling corneal infection during the disease outcome. The release of NETs is one of the innate immune strategies to prevent parasite infection, especially when neutrophils interact with microorganisms that are too large to be phagocytosed, which is the case for amoeba species. The present work demonstrated that A. castellanii trophozoites can trigger NET formation upon in vitro interaction with neutrophils. Using DNase as a control, we observed increased parasite survival after coinciding with neutrophils, which may be correlated with NET degradation. Indeed, A. castellanii trophozoites degrade the NET DNA scaffold. Molecular analysis confirmed the occurrence of a 3'-nucleotidase/nuclease (3'-NT/NU) in the A. castellanii genome. We also demonstrated that trophozoites exhibit significantly higher 3'-NT/NU activity than cysts, which cannot trigger NET release. Considering that previous studies indicated the pathological role of 3'-NT-/NU in parasite infection, we suggest that this enzyme may act as the mechanism of escape of A. castellanii trophozoites from NETs.
Collapse
Affiliation(s)
| | | | - Michelle T C Nascimento
- Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), UFRJ, Rio de Janeiro, RJ, Brazil; Instituto de Microbiologia Paulo de Góes (IMPG), UFRJ, Rio de Janeiro, RJ, Brazil
| | - Claudia F Dick
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), UFRJ, Rio de Janeiro, RJ, Brazil
| | | | - Natalia C Rochael
- Instituto de Microbiologia Paulo de Góes (IMPG), UFRJ, Rio de Janeiro, RJ, Brazil
| | - Elvira M Saraiva
- Instituto de Microbiologia Paulo de Góes (IMPG), UFRJ, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
4
|
Gajula SN, Nalla LV. Fighting with brain-eating amoeba: challenges and new insights to open a road for the treatment of Naegleria fowleri infection. Expert Rev Anti Infect Ther 2023; 21:1277-1279. [PMID: 37750324 DOI: 10.1080/14787210.2023.2263644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Affiliation(s)
- Siva Nageswararao Gajula
- Department of Pharmaceutical Analysis, GITAM School of Pharmacy, GITAM (Deemed to be University), Rushikonda, Visakhapatnam, Andhra Pradesh, India
| | - Lakshmi Vineela Nalla
- Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| |
Collapse
|
5
|
Rojas-Ortega DA, Rojas-Hernández S, Sánchez-Mendoza ME, Gómez-López M, Sánchez-Camacho JV, Rosales-Cruz E, Yépez MMC. Role of FcγRIII in the nasal cavity of BALB/c mice in the primary amebic meningoencephalitis protection model. Parasitol Res 2023; 122:1087-1105. [PMID: 36913025 PMCID: PMC10009362 DOI: 10.1007/s00436-023-07810-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/01/2023] [Indexed: 03/14/2023]
Abstract
Different mechanisms of the host immune response against the primary amebic meningoencephalitis (PAM) in the mouse protection model have been described. It has been proposed that antibodies opsonize Naegleria fowleri trophozoites; subsequently, the polymorphonuclear cells (PMNs) surround the trophozoites to avoid the infection. FcγRs activate signaling pathways of adapter proteins such as Syk and Hck on PMNs to promote different effector cell functions which are induced by the Fc portion of the antibody-antigen complexes. In this work, we analyzed the activation of PMNs, epithelial cells, and nasal passage cells via the expression of Syk and Hck genes. Our results showed an increment of the FcγRIII and IgG subclasses in the nasal cavity from immunized mice as well as Syk and Hck expression was increased, whereas in the in vitro assay, we observed that when the trophozoites of N. fowleri were opsonized with IgG anti-N. fowleri and interacted with PMN, the expression of Syk and Hck was also increased. We suggest that PMNs are activated via their FcγRIII, which leads to the elimination of the trophozoites in vitro, while in the nasal cavity, the adhesion and consequently infection are avoided.
Collapse
Affiliation(s)
- Diego Alexander Rojas-Ortega
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Diaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de Mexico, México
| | - Saúl Rojas-Hernández
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Diaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de Mexico, México
| | - María Elena Sánchez-Mendoza
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Diaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de Mexico, México
| | - Modesto Gómez-López
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Diaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de Mexico, México
| | - Jennifer Viridiana Sánchez-Camacho
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Diaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de Mexico, México
| | - Erika Rosales-Cruz
- Laboratorio de Investigación en Hematopatología, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Ciudad de Mexico, México
| | | |
Collapse
|
6
|
A novel methodology for NETs visualization under light microscopy. Biochem Biophys Rep 2023; 34:101437. [PMID: 36817094 PMCID: PMC9932730 DOI: 10.1016/j.bbrep.2023.101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Neutrophils are the most abundant leukocytes in the bloodstream and are very important for the resolution of infection. One of the strategies used by neutrophils to eliminate a microorganism is the formation of extracellular traps. Different methods for neutrophil extracellular traps (NETs) visualization have been described along the years, usually requiring the use of a fluorescent, confocal or scanning electron microscope. This research aimed to visualize NETs using light microscopy as another way to study NETs prior to using the more expensive techniques, making NETs research more cost effective. We evaluated neutrophil purity, viability and function by analyzing the formation of NETs comparing DAPI with safranin. When evaluating NETs formation, neutrophils that were not stimulated did not form NETs and when neutrophils were exposed to PMA or S. aureus NETs were formed and visualized with safranin under light microscopy and DAPI under fluorescence microscopy. Our method demonstrates another way to visualize NETs that can be added to the standard methods of visualization of NETs, increasing the opportunities to generate knowledge in the topic in any lab around the world.
Collapse
|
7
|
Chen CW, Moseman EA. Pro-inflammatory cytokine responses to Naegleria fowleri infection. FRONTIERS IN TROPICAL DISEASES 2023; 3. [PMID: 37065537 PMCID: PMC10104475 DOI: 10.3389/fitd.2022.1082334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Naegleria fowleri, or the “brain-eating amoeba,” is responsible for a rare, but lethal, infection known as primary amoebic meningoencephalitis (PAM). Confirmed PAM cases have seen both a rise in numbers, as well as expansion of geographic range over the past several decades. There is no effective therapy for PAM and the clinical prognosis remains grim with a mortality rate over 95%. The role of the immune response in disease prevention and disease severity remains unclear. In this review, we explore potential roles of inflammatory immune responses to N. fowleri in disease pathogenesis with a primary focus on pro-inflammatory cytokines IL-1, IL-6, and TNFα. We also discuss modulating proinflammatory cytokines as an additional immune therapy in PAM treatment.
Collapse
|
8
|
de Jesus Gonzalez-Contreras F, Zarate X. Neutrophil extracellular traps: Modulation mechanisms by pathogens. Cell Immunol 2022; 382:104640. [PMID: 36413806 DOI: 10.1016/j.cellimm.2022.104640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
Abstract
Neutrophils, as innate effector cells, play an essential role in the containment and elimination of pathogens. Among the main neutrophil mechanisms use for these processes is the release of neutrophil extracellular traps (NETs), which consist of decondensed DNA decorated with various cytoplasmic proteins. NETs' principal role is the trapping and elimination of infectious agents; therefore, the formation of NETs is regulated by bacteria, fungi, parasites, and viruses through different mechanisms: the presence of virulence factors (adhered or secreted), microbial load, size of the microorganism, and even due to other immune cells activation (mainly platelets). This review summarizes the significant aspects that contribute to NETs modulation by pathogens and their components, and the effect NETs have on these pathogens as a cellular defense mechanism.
Collapse
Affiliation(s)
| | - Xristo Zarate
- Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n, San Nicolas de los Garza 66455, NL, Mexico
| |
Collapse
|
9
|
Zhang J, Sun Y, Zheng J. The State of Art of Extracellular Traps in Protozoan Infections (Review). Front Immunol 2022; 12:770246. [PMID: 34970259 PMCID: PMC8712655 DOI: 10.3389/fimmu.2021.770246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
Protozoan parasite infection causes severe diseases in humans and animals, leading to tremendous economic and medical pressure. Natural immunity is the first line of defence against parasitic infection. Currently, the role of natural host immunity in combatting parasitic infection is unclear, so further research on natural host immunity against parasites will provide a theoretical basis for the prevention and treatment of related parasitic diseases. Extracellular traps (ETs) are an important natural mechanism of immunity involving resistance to pathogens. When immune cells such as neutrophils and macrophages are stimulated by external pathogens, they release a fibrous network structure, consisting mainly of DNA and protein, that can capture and kill a variety of extracellular pathogenic microorganisms. In this review, we discuss the relevant recently reported data on ET formation induced by protozoan parasite infection, including the molecular mechanisms involved, and discuss the role of ETs in the occurrence and development of parasitic diseases.
Collapse
Affiliation(s)
- Jing Zhang
- Intensive Care Unit, First Hospital of Jilin University, Changchun, China.,Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Ying Sun
- Department of Respiratory and Critical Care Medicine, First Hospital of Jilin University, Changchun, China
| | - Jingtong Zheng
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
10
|
Various brain-eating amoebae: the protozoa, the pathogenesis, and the disease. Front Med 2021; 15:842-866. [PMID: 34825341 DOI: 10.1007/s11684-021-0865-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/25/2021] [Indexed: 10/19/2022]
Abstract
Among various genera of free-living amoebae prevalent in nature, some members are identified as causative agents of human encephalitis, in which Naegleria fowleri followed by Acanthamoeba spp. and Balamuthia mandrillaris have been successively discovered. As the three dominant genera responsible for infections, Acanthamoeba and Balamuthia work as opportunistic pathogens of granulomatous amoebic encephalitis in immunocompetent and immunocompromised individuals, whereas Naegleria induces primary amoebic meningoencephalitis mostly in healthy children and young adults as a more violent and deadly disease. Due to the lack of typical symptoms and laboratory findings, all these amoebic encephalitic diseases are difficult to diagnose. Considering that subsequent therapies are also affected, all these brain infections cause significant mortality worldwide, with more than 90% of the cases being fatal. Along with global warming and population explosion, expanding areas of human and amoebae activity in some regions lead to increased contact, resulting in more serious infections and drawing increased public attention. In this review, we summarize the present information of these pathogenic free-living amoebae, including their phylogeny, classification, biology, and ecology. The mechanisms of pathogenesis, immunology, pathophysiology, clinical manifestations, epidemiology, diagnosis, and therapies are also discussed.
Collapse
|
11
|
Sarink MJ, van der Meijs NL, Denzer K, Koenderman L, Tielens AGM, van Hellemond JJ. Three encephalitis-causing amoebae and their distinct interactions with the host. Trends Parasitol 2021; 38:230-245. [PMID: 34758928 DOI: 10.1016/j.pt.2021.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 01/21/2023]
Abstract
Naegleria fowleri, Balamuthia mandrillaris, and Acanthamoeba spp. can cause devastating brain infections in humans which almost always result in death. The symptoms of the three infections overlap, but brain inflammation and the course of the disease differ, depending on the amoeba that is responsible. Understanding the differences between these amoebae can result in the development of strategies to prevent and treat these infections. Recently, numerous scientific advancements have been made in the understanding of pathogenicity mechanisms in general, and the basic biology, epidemiology, and the human immune response towards these amoebae in particular. In this review, we combine this knowledge and aim to identify which factors can explain the differences between the lethal brain infections caused by N. fowleri, B. mandrillaris, and Acanthamoeba spp.
Collapse
Affiliation(s)
- Maarten J Sarink
- Erasmus MC, University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| | - Nadia L van der Meijs
- Erasmus MC, University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| | - Kristin Denzer
- Center for Translational Immunology (CTI), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leo Koenderman
- Center for Translational Immunology (CTI), University Medical Center Utrecht, Utrecht, The Netherlands; Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aloysius G M Tielens
- Erasmus MC, University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| | - Jaap J van Hellemond
- Erasmus MC, University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands.
| |
Collapse
|
12
|
Güémez A, García E. Primary Amoebic Meningoencephalitis by Naegleria fowleri: Pathogenesis and Treatments. Biomolecules 2021; 11:biom11091320. [PMID: 34572533 PMCID: PMC8469197 DOI: 10.3390/biom11091320] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/29/2022] Open
Abstract
Naegleria fowleri is a free-living amoeba (FLA) that is commonly known as the "brain-eating amoeba." This parasite can invade the central nervous system (CNS), causing an acute and fulminating infection known as primary amoebic meningoencephalitis (PAM). Even though PAM is characterized by low morbidity, it has shown a mortality rate of 98%, usually causing death in less than two weeks after the initial exposure. This review summarizes the most recent information about N. fowleri, its pathogenic molecular mechanisms, and the neuropathological processes implicated. Additionally, this review includes the main therapeutic strategies described in case reports and preclinical studies, including the possible use of immunomodulatory agents to decrease neurological damage.
Collapse
|
13
|
Flores-Huerta N, Pacheco-Yépez J, Sánchez-Monroy V, Rosales-Hernández MC, Silva-Olivares A, Serrano-Luna J, Shibayama M. The MPO system participates actively in the formation of an oxidative environment produced by neutrophils and activates the antioxidant mechanism of Naegleria fowleri. J Leukoc Biol 2020; 108:895-908. [PMID: 32531828 DOI: 10.1002/jlb.4ma0520-565rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/13/2020] [Accepted: 05/24/2020] [Indexed: 12/23/2022] Open
Abstract
Naegleria fowleri produces a fatal disease called primary amebic meningoencephalitis (PAM), which is characterized by an extensive inflammatory reaction in the CNS. It is known that the immune response is orchestrated mainly by neutrophils, which activate several defense mechanisms in the host, including phagocytosis, the release of different enzymes such as myeloperoxidase (MPO), and the production of neutrophil extracellular traps. However, the mechanisms by which amoebas evade the neutrophil response are still unknown. In this study, we analyzed the ability of N. fowleri to respond to the stress exerted by MPO. Interestingly, after the interaction of trophozoites with neutrophils, the amoeba viability was not altered; however, ultrastructural changes were observed. To analyze the influence of MPO against N. fowleri and its participation in free radical production, we evaluated its enzymatic activity, expression, and localization with and without the specific 4-aminobenzoic acid hydrazide inhibitor. The production of oxidizing molecules is the principal mechanism used by neutrophils to eliminate pathogens. In this context, we demonstrated an increase in the production of NO, superoxide anion, and reactive oxygen species; in addition, the overexpression of several antioxidant enzymes present in the trophozoites was quantified. The findings strongly suggest that N. fowleri possesses antioxidant machinery that is activated in response to an oxidative environment, allowing it to evade the neutrophil-mediated immune response, which may contribute to the establishment of PAM.
Collapse
Affiliation(s)
- Nadia Flores-Huerta
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Judith Pacheco-Yépez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Virginia Sánchez-Monroy
- Laboratorio de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, México
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Angélica Silva-Olivares
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| |
Collapse
|
14
|
Affiliation(s)
- E. Ashley Moseman
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
15
|
Contis Montes de Oca A, Cruz Baquero A, Campos Rodríguez R, Cárdenas Jaramillo LM, Aguayo Flores JE, Rojas Hernández S, Olivos García A, Pacheco Yepez J. Neutrophil extracellular traps and MPO in models of susceptibility and resistance against Entamoeba histolytica. Parasite Immunol 2020; 42:e12714. [PMID: 32187688 DOI: 10.1111/pim.12714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 11/28/2022]
Abstract
The main effector mechanisms of neutrophils are the release of neutrophil extracellular traps (NETs) and myeloperoxidase (MPO). In this work, we evaluated the role of NETs and the activity of MPO in the interactions of rodent neutrophils with amoebae and in amoebic liver abscess (ALA)-resistant and ALA-susceptible models. We showed with in vitro assays that mice produced greater amounts of NETs and MPO than did hamsters, and the elastase activity was high in both models. However, the inhibition of NETs and MPO promoted an increase in amoeba viability in the mice. The mouse ALAs showed a more profound presence of NETs and MPO than did the hamster ALAs. We concluded that both effector mechanisms were essential for the amoebic damage and could prevent the formation of ALAs in the resistant model.
Collapse
Affiliation(s)
- Arturo Contis Montes de Oca
- Sección de Estudios de Posgrado e investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, México
| | - Andrea Cruz Baquero
- Sección de Estudios de Posgrado e investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, México.,Bacteriología, Facultad de Ciencias de la Salud, Universidad Colegio Mayor de Cundinamarca, Bogotá, Colombia
| | - Rafael Campos Rodríguez
- Sección de Estudios de Posgrado e investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, México
| | - Luz María Cárdenas Jaramillo
- Coordinación de Ciencias Morfológicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, México
| | - José Eduardo Aguayo Flores
- Sección de Estudios de Posgrado e investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, México
| | - Saúl Rojas Hernández
- Laboratorio de Inmunología Celular y Molecular, Sección de Estudios de Posgrado e investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, México
| | - Alfonso Olivos García
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México
| | - Judith Pacheco Yepez
- Sección de Estudios de Posgrado e investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, México
| |
Collapse
|
16
|
Ramírez-Salinas GL, García-Machorro J, Rojas-Hernández S, Campos-Rodríguez R, de Oca ACM, Gomez MM, Luciano R, Zimic M, Correa-Basurto J. Bioinformatics design and experimental validation of influenza A virus multi-epitopes that induce neutralizing antibodies. Arch Virol 2020; 165:891-911. [PMID: 32060794 PMCID: PMC7222995 DOI: 10.1007/s00705-020-04537-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/11/2019] [Indexed: 02/01/2023]
Abstract
Pandemics caused by influenza A virus (IAV) are responsible for the deaths of millions of humans around the world. One of these pandemics occurred in Mexico in 2009. Despite the impact of IAV on human health, there is no effective vaccine. Gene mutations and translocation of genome segments of different IAV subtypes infecting a single host cell make the development of a universal vaccine difficult. The design of immunogenic peptides using bioinformatics tools could be an interesting strategy to increase the success of vaccines. In this work, we used the predicted amino acid sequences of the neuraminidase (NA) and hemagglutinin (HA) proteins of different IAV subtypes to perform multiple alignments, epitope predictions, molecular dynamics simulations, and experimental validation. Peptide selection was based on the following criteria: promiscuity, protein surface exposure, and the degree of conservation among different medically relevant IAV strains. These peptides were tested using immunological assays to test their ability to induce production of antibodies against IAV. We immunized rabbits and mice and measured the levels of IgG and IgA antibodies in serum samples and nasal washes. Rabbit antibodies against the peptides P11 and P14 (both of which are hybrids of NA and HA) recognized HA from both group 1 (H1, H2, and H5) and group 2 (H3 and H7) IAV and also recognized the purified NA protein from the viral stock (influenza A Puerto Rico/916/34). IgG antibodies from rabbits immunized with P11 and P14 were capable of recognizing viral particles and inhibited virus hemagglutination. Additionally, intranasal immunization of mice with P11 and P14 induced specific IgG and IgA antibodies in serum and nasal mucosa, respectively. Interestingly, the IgG antibodies were found to have neutralizing capability. In conclusion, the peptides designed through in silico studies were validated in experimental assays.
Collapse
Affiliation(s)
- G Lizbeth Ramírez-Salinas
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, 11340, México
| | - Jazmín García-Machorro
- Laboratorio de medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, 11340, México.
| | - Saúl Rojas-Hernández
- Laboratorio de Inmunología celular, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, 11340, México
| | - Rafael Campos-Rodríguez
- Laboratorio de Bioquímica. Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, 11340, México
| | - Arturo Contis-Montes de Oca
- Laboratorio de Inmunología celular, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, 11340, México
| | - Miguel Medina Gomez
- Laboratorio de medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, 11340, México
| | - Rocío Luciano
- Laboratorio de medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, 11340, México
| | - Mirko Zimic
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, 11340, México.
| |
Collapse
|
17
|
Jahangeer M, Mahmood Z, Munir N, Waraich U, Tahir IM, Akram M, Ali Shah SM, Zulfqar A, Zainab R. Naegleria fowleri: Sources of infection, pathophysiology, diagnosis, and management; a review. Clin Exp Pharmacol Physiol 2019; 47:199-212. [DOI: 10.1111/1440-1681.13192] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Muhammad Jahangeer
- Department of Biochemistry Government College University Faisalabad Faisalabad Pakistan
| | - Zahed Mahmood
- Department of Biochemistry Government College University Faisalabad Faisalabad Pakistan
| | - Naveed Munir
- Department of Biochemistry Government College University Faisalabad Faisalabad Pakistan
- College of Allied Health Professionals Directorate of Medical Sciences Government College University Faisalabad Faisalabad Pakistan
| | | | - Imtiaz Mahmood Tahir
- College of Allied Health Professionals Directorate of Medical Sciences Government College University Faisalabad Faisalabad Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine Directorate of Medical Sciences Government College University Faisalabad Faisalabad Pakistan
| | - Syed Muhammad Ali Shah
- Department of Eastern Medicine Directorate of Medical Sciences Government College University Faisalabad Faisalabad Pakistan
| | - Ayesha Zulfqar
- Department of Biochemistry Government College University Faisalabad Faisalabad Pakistan
| | - Rida Zainab
- Department of Eastern Medicine Directorate of Medical Sciences Government College University Faisalabad Faisalabad Pakistan
| |
Collapse
|
18
|
Carrasco-Yepez MM, Contis-Montes de Oca A, Campos-Rodriguez R, Falcon-Acosta D, Pacheco-Yepez J, Rodriguez-Mera IB, Bonilla-Lemus P, Rosales-Cruz E, Lopez-Reyes I, Rojas-Hernandez S. Mouse neutrophils release extracellular traps in response to Naegleria fowleri. Parasite Immunol 2019; 41:e12610. [PMID: 30525201 DOI: 10.1111/pim.12610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/27/2018] [Indexed: 01/09/2023]
Abstract
Naegleria fowleri is a free-living amoeba, which is able to infect humans through the nasal mucosa causing a disease in the central nervous system known as primary amoebic meningoencephalitis (PAM). Polymorphonuclear cells (PMNs) play a critical role in the early phase of N fowleri infection. Recently, a new biological defence mechanism called neutrophil extracellular traps (NETs) has been attracting attention. These structures represent an important strategy to immobilize and kill invading microorganisms. In this work, we evaluate the capacity of N fowleri to induce the NETs release by PMNs cells in mice in vitro and in vivo. In vitro: Neutrophils from bone marrow were cocultured with N fowleri trophozoites. In vivo: we employed a mouse model of PAM. We evaluated DNA, histone and myeloperoxidase (MPO) and the formation of NETs by confocal microscopy. Our results showed N fowleri induce both NETs and MPO release by PMNs cells in mice after trophozoite exposure, which increased through time, in vitro and in vivo. These results demonstrate that NETs are somehow associated with the amoebas. We suggest PMNs release their traps trying to avoid N fowleri attachment at the apical side of the nasal epithelium.
Collapse
Affiliation(s)
| | - Arturo Contis-Montes de Oca
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Rafael Campos-Rodriguez
- Laboratorio de Bioquímica, Departamento de Bioquímica, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Diana Falcon-Acosta
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Judith Pacheco-Yepez
- Laboratorio de Bioquímica, Departamento de Bioquímica, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Itzel Berenice Rodriguez-Mera
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Patricia Bonilla-Lemus
- Laboratorio de Microbiología, Proyecto CyMA, UIICSE, UNAM FES Iztacala, Tlalnepantla, México
| | - Erika Rosales-Cruz
- Laboratorio de Investigación en Hematopatología, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, México City, México
| | - Israel Lopez-Reyes
- Universidad de la Ciudad de México, Plantel Cuautepec, Mexico City, Mexico
| | - Saul Rojas-Hernandez
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| |
Collapse
|
19
|
Bellini NK, Santos TM, da Silva MTA, Thiemann OH. The therapeutic strategies against Naegleria fowleri. Exp Parasitol 2018; 187:1-11. [DOI: 10.1016/j.exppara.2018.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 02/07/2018] [Accepted: 02/28/2018] [Indexed: 12/13/2022]
|
20
|
Shultz ZP, Lawrence GA, Jacobson JM, Cruz EJ, Leahy JW. Enantioselective Total Synthesis of Cannabinoids-A Route for Analogue Development. Org Lett 2018; 20:381-384. [PMID: 29293352 DOI: 10.1021/acs.orglett.7b03668] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A practical synthetic approach to Δ9-tetrahydrocannabinol (1) and cannabidiol (2) that provides scalable access to these natural products and should enable the generation of novel synthetic analogues is reported.
Collapse
Affiliation(s)
- Zachary P Shultz
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, United States
| | - Grant A Lawrence
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, United States
| | - Jeffrey M Jacobson
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, United States
| | - Emmanuel J Cruz
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, United States
| | - James W Leahy
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, United States.,Center for Drug Discovery and Innovation, University of South Florida , 3720 Spectrum Boulevard, Suite 303, Tampa, Florida 33612, United States.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , MDC 7, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| |
Collapse
|
21
|
Villagra-Blanco R, Silva L, Aguilella-Segura A, Arcenillas-Hernández I, Martínez-Carrasco C, Seipp A, Gärtner U, Ruiz de Ybañez R, Taubert A, Hermosilla C. Bottlenose dolphins ( Tursiops truncatus) do also cast neutrophil extracellular traps against the apicomplexan parasite Neospora caninum. Int J Parasitol Parasites Wildl 2017; 6:287-294. [PMID: 28951834 PMCID: PMC5607148 DOI: 10.1016/j.ijppaw.2017.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/24/2017] [Accepted: 09/01/2017] [Indexed: 01/07/2023]
Abstract
Neutrophil extracellular traps (NETs) are web-like structures composed of nuclear DNA decorated with histones and cytoplasmic peptides which antiparasitic properties have not previously been investigated in cetaceans. Polymorphonuclear neutrophils (PMN) were isolated from healthy bottlenose dolphins (Tursiops truncatus), and stimulated with Neospora caninum tachyzoites and the NETs-agonist zymosan. In vitro interactions of PMN with the tachyzoites resulted in rapid extrusion of NETs. For the demonstration and quantification of cetacean NETs, extracellular DNA was stained by using either Sytox Orange® or Pico Green®. Scanning electron microscopy (SEM) and fluorescence analyses demonstrated PMN-derived release of NETs upon exposure to tachyzoites of N. caninum. Co-localization studies of N. caninum induced cetacean NETs proved the presence of DNA adorned with histones (H1, H2A/H2B, H3, H4), neutrophil elastase (NE), myeloperoxidase (MPO) and pentraxin (PTX) confirming the molecular properties of mammalian NETosis. Dolphin-derived N. caninum-NETosis were efficiently suppressed by DNase I and diphenyleneiodonium (DPI) treatments. Our results indicate that cetacean-derived NETs represent an ancient, conserved and relevant defense effector mechanism of the host innate immune system against N. caninum and probably other related neozoan parasites circulating in the marine environment.
Collapse
Affiliation(s)
- R. Villagra-Blanco
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - L.M.R. Silva
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - A. Aguilella-Segura
- Department of Animal Health, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - I. Arcenillas-Hernández
- Department of Animal Health, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - C. Martínez-Carrasco
- Department of Animal Health, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - A. Seipp
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - U. Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - R. Ruiz de Ybañez
- Department of Animal Health, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - A. Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - C. Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|