1
|
Recent Advances in the Development of Adenovirus-Vectored Vaccines for Parasitic Infections. Pharmaceuticals (Basel) 2023; 16:ph16030334. [PMID: 36986434 PMCID: PMC10058461 DOI: 10.3390/ph16030334] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Vaccines against parasites have lagged centuries behind those against viral and bacterial infections, despite the devastating morbidity and widespread effects of parasitic diseases across the globe. One of the greatest hurdles to parasite vaccine development has been the lack of vaccine strategies able to elicit the complex and multifaceted immune responses needed to abrogate parasitic persistence. Viral vectors, especially adenovirus (AdV) vectors, have emerged as a potential solution for complex disease targets, including HIV, tuberculosis, and parasitic diseases, to name a few. AdVs are highly immunogenic and are uniquely able to drive CD8+ T cell responses, which are known to be correlates of immunity in infections with most protozoan and some helminthic parasites. This review presents recent developments in AdV-vectored vaccines targeting five major human parasitic diseases: malaria, Chagas disease, schistosomiasis, leishmaniasis, and toxoplasmosis. Many AdV-vectored vaccines have been developed for these diseases, utilizing a wide variety of vectors, antigens, and modes of delivery. AdV-vectored vaccines are a promising approach for the historically challenging target of human parasitic diseases.
Collapse
|
2
|
Xue Y, Zhang B, Wang N, Huang HB, Quan Y, Lu HN, Zhu ZY, Li JY, Pan TX, Tang Y, Jiang YL, Shi CW, Yang GL, Wang CF. Oral Vaccination of Mice With Trichinella spiralis Putative Serine Protease and Murine Interleukin-4 DNA Delivered by Invasive Lactiplantibacillus plantarum Elicits Protective Immunity. Front Microbiol 2022; 13:859243. [PMID: 35591986 PMCID: PMC9113538 DOI: 10.3389/fmicb.2022.859243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Trichinellosis is a serious zoonotic parasitic disease caused by Trichinella spiralis (T. spiralis) that causes considerable economic losses for the global pig breeding and food industries. As such, there is an urgent need for a vaccine that can prevent T. spiralis infection. Previous studies have reported that recombinant invasive Lactococcus lactis (LL) expressing Staphylococcus aureus fibronectin binding protein A (LL-FnBPA+) can transfer DNA vaccines directly to dendritic cells (DCs) across an epithelial cell monolayer, leading to significantly higher amounts of heterologous protein expression compared to non-invasive Lactococcus lactis. In this study, the invasive bacterium Lactiplantibacillus plantarum (L. plantarum) expressing FnBPA was used as a carrier to deliver a novel oral DNA vaccine consisting of T. spiralis adult putative serine protease (Ts-ADpsp) and murine interleukin (IL)-4 DNA to mouse intestinal epithelial cells. Experimental mice were orally immunized 3 times at 10-day intervals. At 10 days after the last vaccination, mice were challenged with 350 T. spiralis infective larvae by oral inoculation. Immunization with invasive L. plantarum harboring pValac-Ts-ADpsp/pSIP409-FnBPA induced the production of anti-Ts-ADpsp-specific IgG of serum, type 1 and 2 helper T cell cytokines of mesenteric lymph node (MLN) and spleen, secreted (s) IgA of intestinal lavage, and decreased T. spiralis burden and intestinal damage compared to immunization with non-invasive L. plantarum expressing Ts-ADpsp (pValac-Ts-ADpsp/pSIP409). Thus, invasive L. plantarum expressing FnBPA and IL-4 stimulates both mucosal and cellular immune response to protect against T. spiralis infection, highlighting its therapeutic potential as an effective DNA vaccine for trichinellosis.
Collapse
Affiliation(s)
- Ying Xue
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Bo Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yu Quan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hui-Nan Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Zhi-Yu Zhu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jun-Yi Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Tian-Xu Pan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yue Tang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
3
|
Xue Y, Yang KD, Quan Y, Jiang YL, Wang N, Huang HB, Lu HN, Zhu ZY, Zhang B, Li JY, Pan TX, Shi CW, Yang GL, Wang CF. Oral vaccination with invasive Lactobacillus plantarum delivered nucleic acid vaccine co-expressing SS1 and murine interleukin-4 elicits protective immunity against Trichinella spiralis in BALB/c mice. Int Immunopharmacol 2021; 101:108184. [PMID: 34601334 DOI: 10.1016/j.intimp.2021.108184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 12/01/2022]
Abstract
Trichinellosis is a foodborne zoonosis caused by Trichinella spiralis (T. spiralis) that not only causes considerable economic losses for the global pig breeding and food industries, but also seriously threats the health of human. Therefore, it is very necessary to develop an effective vaccine to prevent trichinellosis. In this study, the invasive Lactobacillus plantarum (L. plantarum) expressing fibronectin-binding protein A (FnBPA) was served as a live bacterial vector to deliver DNA to the host to produce a novel oral DNA vaccine. Co-expressing T. spiralis SS1 and murine interleukin-4 (mIL-4) of DNA vaccine were constructed and subsequently delivered to intestinal epithelial cells via invasive L. plantarum. At 10 days after the third immunization, the experimental mice were challenged with 350 T. spiralis infective larvae. The results found that the mice orally vaccinated with invasive L. plantarum harboring pValac-SS1/pSIP409-FnBPA not only stimulated the production of anti-SS1-specific IgG, Th1/Th2 cell cytokines, and secreted(s) IgA but also decreased worm burden and intestinal damage. However, the mice inoculated with invasive L. plantarum co-expressing SS1 and mIL-4 (pValac-SS1-IL-4/pSIP409-FnBPA) induced the highest protective immune response against T. spiralis infection. The DNA vaccine delivered by invasive L. plantarum provides a novel idea for the prevention of T. spiralis infection.
Collapse
Affiliation(s)
- Ying Xue
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Kai-Dian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yu Quan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hui-Nan Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Zhi-Yu Zhu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Bo Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jun-Yi Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Tian-Xu Pan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
4
|
Fan X, Zhang Y, Ouyang R, Luo B, Li L, He W, Liu M, Jiang N, Yang F, Wang L, Zhou B. Cysticercus cellulosae Regulates T-Cell Responses and Interacts With the Host Immune System by Excreting and Secreting Antigens. Front Cell Infect Microbiol 2021; 11:728222. [PMID: 34540719 PMCID: PMC8447960 DOI: 10.3389/fcimb.2021.728222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022] Open
Abstract
Cysticercus cellulosae (C. cellulosae) excretes and secretes antigens during the parasitic process to regulate the host immune response; however, resulting immune response and cytokine production in the host during infection still remains unclear. We used C. cellulosae crude antigens (CAs) as controls to explore the effect of excretory secretory antigens (ESAs) on T-cell immune responses in piglets. C. cellulosae ESAs induced imbalanced CD4+/CD8+ T-cell proportions, increased the CD4+Foxp3+ and CD8+Foxp3+ T-cell frequencies, and induced lymphocytes to produce interleukin-10, which was mainly attributed to CD4+ and CD4-CD8- T cells. The ESAs also induced Th2-type immune responses. The results showed that the ability of C. cellulosae to escape the host immune attacks and establish a persistent infection may be related to host immune response regulation by the ESAs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Biying Zhou
- Department of Parasitology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| |
Collapse
|
5
|
Immunoprotective effects of invasive Lactobacillus plantarum delivered nucleic acid vaccine coexpressing Trichinella spiralis CPF1 and murine interleukin-4. Vet Parasitol 2021; 298:109556. [PMID: 34419708 DOI: 10.1016/j.vetpar.2021.109556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trichinellosis is a very important food-borne parasitic disease, that seriously endangers animal husbandry and food safety. Therefore, it is necessary to develop a safe and effective vaccine against Trichinella spiralis infection. In this experiment, invasive Lactobacillus plantarum carrying the FnBPA gene served as a live bacterial vector to deliver nucleic acids to the host to produce a novel oral nucleic acid vaccine. Coexpression of the T. spiralis cathepsin F-like protease 1 gene (TsCPF1) and murine IL-4 (mIL-4) by the nucleic acid vaccine was constructed and subsequently delivered to intestinal epithelial cells via invasive L. plantarum. Thirty-seven days after the first immunization, the experimental mice were challenged with 350 T. spiralis infective larvae by oral gavage. The results showed that mice orally immune-stimulated with invasive L. plantarum pValac-TsCPF1/pSIP409-FnBPA not only produce anti-TsCPF1-specific IgG antibodies, sIgA, Th1/Th2 cytokine distinctly increased but also intestinal damage and worm burden relieved compare to non-invasive TsCPF1 group (pValac-TsCPF1/pSIP409). Most notably, experimental mice immunized with invasive L. plantarum coexpressing TsCPF1 and mIL-4 (pValac-TsCPF1-IL-4/pSIP409-FnBPA) exhibited the highest protection efficiency against T. spiralis infection. The above results reveal that invasive L. plantarum-expressing the FnBPA protein improved mucosal and cellular immunity and enhanced resistance to T. spiralis. The nucleic acid vaccine delivered by invasive L. plantarum described in this study offers a novel idea for the prevention of T. spiralis.
Collapse
|
6
|
Arora N, Prasad A. Taenia solium proteins: a beautiful kaleidoscope of pro and anti-inflammatory antigens. Expert Rev Proteomics 2020; 17:609-622. [PMID: 32985289 DOI: 10.1080/14789450.2020.1829486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: Neurocysticercosis (NCC) is an acquired infection of central nervous system associated with epileptic seizures. The parasite 'Taenia solium' causes this disease and has a complex life cycle and molts into various stages that influence the host-parasite interaction. The disease has a long asymptomatic phase with viable cyst and degeneration of cyst and leaking cyst fluid has been associated with symptomatic phase. The parasite proteome holds the answers and clues to this complex clinical presentation and hence unraveling of proteome of parasite antigens is needed for better understanding of host-parasite interactions. Objective: To understand the proteome make-up of T. solium cyst vesicular fluid (VF) and excretory secretory proteins (ESPs). Methodology: The VF and ESPs for the study were prepared from cyst harvested from naturally infected swine. The samples were prepared for nano LC-MS by in-tube digestion of proteins. The spectra obtained were annotated and enrichment analysis was performed and in silico analysis was done. Results: T. solium VF and ESPs have 206 and 247 proteins of varied make-up including pro-inflammatory and anti-inflammatory nature. Conclusions: Due to varied make-up of VF and ESPs it can generate complex humoral and cellular immune response.
Collapse
Affiliation(s)
- Naina Arora
- School of Basic Sciences, Indian Institute of Technology Mandi , Mandi, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology Mandi , Mandi, India
| |
Collapse
|
7
|
Abstract
Taenia solium cysticercosis and taeniasis (TSCT), caused by the tapeworm T. solium, is a foodborne and zoonotic disease classified since 2010 by WHO as a neglected tropical isease. It causes considerable impact on health and economy and is one of the leading causes of acquired epilepsy in most endemic countries of Latin America, Sub-Saharan Africa, and Asia. There is some evidence that the prevalence of TSCT in high-income countries has recently increased, mainly due to immigration from endemic areas. In regions endemic for TSCT, human cysticercosis can manifest clinically as neurocysticercosis (NCC), resulting in epileptic seizures and severe progressive headaches, amongst other neurological signs and/or symptoms. The development of these symptoms results from a complex interplay between anatomical cyst localization, environmental factors, parasite's infective potential, host genetics, and, especially, host immune responses. Treatment of individuals with active NCC (presence of viable cerebral cysts) with anthelmintic drugs together with steroids is usually effective and, in the majority, reduces the number and/or size of cerebral lesions as well as the neurological symptoms. However, in some cases, treatment may profoundly enhance anthelmintic inflammatory responses with ensuing symptoms, which, otherwise, would have remained silent as long as the cysts are viable. This intriguing silencing process is not yet fully understood but may involve active modulation of host responses by cyst-derived immunomodulatory components released directly into the surrounding brain tissue or by the induction of regulatory networks including regulatory T cells (Treg) or regulatory B cells (Breg). These processes might be disturbed once the cysts undergo treatment-induced apoptosis and necrosis or in a coinfection setting such as HIV. Herein, we review the current literature regarding the immunology and pathogenesis of NCC with a highlight on the mobilization of immune cells during human NCC and their interaction with viable and degenerating cysticerci. Moreover, the immunological parameters associated with NCC in people living with HIV/AIDS and treatments are discussed. Eventually, we propose open questions to understand the role of the immune system and its impact in this intriguing host-parasite crosstalk.
Collapse
|
8
|
New Optical Imaging Reporter-labeled Anaplastic Thyroid Cancer-Derived Extracellular Vesicles as a Platform for In Vivo Tumor Targeting in a Mouse Model. Sci Rep 2018; 8:13509. [PMID: 30201988 PMCID: PMC6131173 DOI: 10.1038/s41598-018-31998-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/28/2018] [Indexed: 01/02/2023] Open
Abstract
Extracellular vesicles (EVs), originating from multivesicular bodies by invagination of the endosomal membrane, are communication channels between distant cells. They are natural carriers of exogeneous cellular materials and have been exploited as drug delivery carriers in various diseases. Here, we found that tumor cell-derived EVs can be used as efficient targets in tumors by monitoring with an optical reporter system. Anaplastic thyroid cancer (CAL62) cell-derived EVs with Renilla luciferase (Rluc) were used to target CAL62 tumors in a mouse model. Optical imaging revealed that cancer cell-derived EVs (EV-CAL62/Rluc) targeted the original tumor (CAL62) in mice within 30 min after systemic injection. Furthermore, fluorescence imaging revealed that EV-CAL62/Rluc were internalized into CAL62 tumors in the mice. Ex vivo Optical imaging further confirmed the in vivo finding. Here, we successfully monitored the tumor targeting ability of tumor cell-derived EVs by optical imaging. Based on these results, tumor cell-derived EVs are highly effective natural carriers for drug delivery for cancer therapies.
Collapse
|
9
|
Fleury A, Alaez C, Dessein A, Rosetti M, Saenz B, Hernández M, Bobes RJ, Ramírez-Aquino R, Sciutto E, Gorodezky C, Fragoso G. No association of IL2, IL4, IL6, TNF, and IFNG gene polymorphisms was found with Taenia solium human infection or neurocysticercosis severity in a family-based study. Hum Immunol 2018; 79:578-582. [PMID: 29684412 DOI: 10.1016/j.humimm.2018.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 11/19/2022]
Abstract
Neurocysticercosis (NC) is caused by the establishment of the metacestode stage of Taenia solium in the human central nervous system. A great heterogeneity in the susceptibility to the infection and to the disease has been reported. While the factors involved in this heterogeneity are not completely understood, clearly different immune-inflammatory profiles have been associated to each condition. This study evaluated the association of cytokine single nucleotide polymorphisms (SNPs) with susceptibility to infection and disease severity in NC patients. Blood samples from 92 NC cases and their parents (trios) were genotyped for SNPs in five cytokines relevant for the immune response: IL4 (-589C/T), IL6 (-174C/G), IFNG (+874T/A), TNF (-238G/A), and IL2 (-330G/T). Specific DNA fragments were amplified by the polymerase chain reaction, using the 5'-nuclease Taqman assay on a 7500 platform, allowing the detection of the polymorphism genotypes. No association between the polymorphisms evaluated neither with susceptibility to infection nor with disease severity was found, although previous studies reported variations in the levels of these cytokines among different NC clinical pictures. These results, nevertheless, add new elements to our understanding of the complex pathogenic mechanisms involved in susceptibility to infection by T. solium cysticerci and the severity of the ensuing disease.
Collapse
Affiliation(s)
- A Fleury
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; Unidad Periférica del Instituto de Investigaciones Biomédicas en el Instituto Nacional de Neurología y Neurocirugía, Mexico.
| | - C Alaez
- Dept of Immunology & Immunogenetics, Instituto de Diagnóstico y Referencia Epidemiológicos-InDRE, Secretaria de Salud, Ciudad de México, Mexico; Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico.
| | - A Dessein
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR906, GIMP, Labex ParaFrap, Aix-Marseille Université, 13005 Marseille, France.
| | - M Rosetti
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - B Saenz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - M Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - R J Bobes
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - R Ramírez-Aquino
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - E Sciutto
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - C Gorodezky
- Dept of Immunology & Immunogenetics, Instituto de Diagnóstico y Referencia Epidemiológicos-InDRE, Secretaria de Salud, Ciudad de México, Mexico.
| | - G Fragoso
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| |
Collapse
|
10
|
Yang Z, Li W, Yang Z, Pan A, Liao W, Zhou X. A novel antigenic cathepsin B protease induces protective immunity in Trichinella-infected mice. Vaccine 2017; 36:248-255. [PMID: 29199042 DOI: 10.1016/j.vaccine.2017.11.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/27/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022]
Abstract
Trichinellosis is a foodborne disease that remains a public health hazard and an economic problem in food safety. Vaccines against the parasite can be an effective way to control this disease; however, commercial vaccines against Trichinella infection are not yet available. Trichinella cathepsin B proteins appear to be promising targets for vaccine development. Here, we reported for the first time the characterization of a novel cDNA that encodes Trichinella spiralis (T. spiralis) cathepsin B-like protease 2 gene (TsCPB2). The recombinant mature TsCPB2 protein was successfully expressed in E. coli system and purified with Ni-affinity chromatography. TsCPB2 expression was detected at all the developmental stages of T. spiralis and it was expressed as an excretory-secretory protein of T. spiralis muscle larvae. Immunization with TsCPB2 antigen induced a combination of humoral and cellular immune responses, which manifested as a mixed Th1/Th2 response, as well as remarkably elevated IgE level. Moreover, vaccination of mice with TsCPB2 that were subsequently challenged with T. spiralis larvae resulted in a 52.3% (P < .001) reduction in worm burden and a 51.2% (P < .001) reduction in muscle larval burden. Our results suggest that TsCPB2 induces protective immunity in Trichinella-infected mice and might be a novel vaccine candidate against trichinellosis.
Collapse
Affiliation(s)
- Zhaoshou Yang
- Sun Yat-sen University Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Wenjie Li
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zifan Yang
- Sun Yat-sen University Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Aihua Pan
- Sun Yat-sen University Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Wanqin Liao
- Sun Yat-sen University Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China.
| | - Xingwang Zhou
- Sun Yat-sen University Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China.
| |
Collapse
|
11
|
Evans EE, Siedner MJ. Tropical Parasitic Infections in Individuals Infected with HIV. CURRENT TROPICAL MEDICINE REPORTS 2017; 4:268-280. [PMID: 33842194 PMCID: PMC8034600 DOI: 10.1007/s40475-017-0130-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Neglected tropical diseases share both geographic and socio-behavioral epidemiological risk factors with HIV infection. In this literature review, we describe interactions between parasitic diseases and HIV infection, with a focus on the impact of parasitic infections on HIV infection risk and disease progression, and the impact of HIV infection on clinical characteristics of tropical parasitic infections. We limit our review to tropical parasitic infections of the greatest public health burden, and exclude discussion of classic HIV-associated opportunistic infections that have been well reviewed elsewhere. RECENT FINDINGS Tropical parasitic infections, HIV-infection, and treatment with antiretroviral therapy alter host immunity, which can impact susceptibility, transmissibility, diagnosis, and severity of both HIV and parasitic infections. These relationships have a broad range of consequences, from putatively increasing susceptibility to HIV acquisition, as in the case of schistosomiasis, to decreasing risk of protozoal infections through pharmacokinetic interactions between antiretroviral therapy and antiparasitic agents, as in the case of malaria. However, despite this intimate interplay in pathophysiology and a broad overlap in epidemiology, there is a general paucity of data on the interactions between HIV and tropical parasitic infections, particularly in the era of widespread antiretroviral therapy availability. SUMMARY Additional data are needed to motivate clinical recommendations for detection and management of parasitic infections in HIV-infected individuals, and to consider the implications of and potential opportunity granted by HIV treatment programs on parasitic disease control.
Collapse
Affiliation(s)
| | - Mark J Siedner
- Massachusetts General Hospital
- Harvard Medical School
- Mbarara University of Science and Technology
| |
Collapse
|
12
|
TNF-α blockade suppresses pericystic inflammation following anthelmintic treatment in porcine neurocysticercosis. PLoS Negl Trop Dis 2017; 11:e0006059. [PMID: 29190292 PMCID: PMC5708608 DOI: 10.1371/journal.pntd.0006059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023] Open
Abstract
Background Neurocysticercosis (NCC) is an infection of the brain with the larval cyst of the tapeworm, Taenia solium. Cysticidal treatment induces parasite killing resulting in a post inflammatory response and seizures, which generally requires corticosteroid treatment to control inflammation. The nature of this response and how to best control it is unclear. We investigated the anti-inflammatory effects of pretreatment with etanercept (ETN), an anti-tumor necrosis factor agent, or dexamethasone (DEX), a high potency corticosteroid, on the post treatment inflammatory response in naturally infected pigs with neurocysticercosis after a single dose of the cysticidal drug praziquantel (PZQ). Methodology/Principal findings We followed the methods from a previously developed treatment model of NCC in naturally infected swine. The four study groups of infected pigs included 3 groups treated with PZQ on day 0: PZQ-treated alone (100 mg/kg PO; n = 9), pretreated with dexamethasone (DEX, 0.2 mg/kg IM administered on days -1, +1 and +3; n = 6), and pretreated with etanercept (ETN, 25 mg IM per animal on days -7 and 0; n = 6). The fourth group remained untreated (n = 3). As measured by quantitative RT-PCR, ETN pretreatment depressed transcription of a wide range of proinflammatory, regulatory and matrix protease encoding genes at 120 hr post PZQ treatment in capsules of cysts that demonstrated extravasated Evans Blue (EB) (a measure of blood brain barrier dysfunction) compared to animals not receiving ETN. Transcription was significantly depressed for the proinflammatory genes tumor necrosis factor (TNF)-α, and interferon (IFN)-γ; the inflammation regulating genes cytotoxic T-lymphocyte-associated protein (CTLA)4, interleukin (IL)-13 and transforming growth factor (TGF)-β; the tissue remodeling genes matrix metalloprotease (MMP)1 and 9, tissue inhibitors of metalloproteases (TIMP)1 and 2, and the genes regulating endothelial function vascular endothelial growth factor (VEGF)1, angiopoietin (Ang)1, Ang 2, and platelet endothelial cell adhesion molecule (PECAM)-1. In contrast, transcription was only modestly decreased in the DEX pretreated pigs compared to PZQ alone, and only for TNF-α, IL-6, IFN-γ, TGF-β and Ang1. IL-10 was not affected by either ETN or DEX pretreatments. The degree of inflammation, assessed by semi-quantitative inflammatory scores, was modestly decreased in both ETN and DEX pretreated animals compared to PZQ treated pigs whereas cyst damage scores were moderately decreased only in cysts from DEX pretreated pigs. However, the proportion of cysts with EB extravasation was not significantly changed in ETN and DEX pretreated groups. Conclusions/Significance Overall, TNF-α blockade using ETN treatment modulated expression of a large variety of genes that play a role in induction and control of inflammation and structural changes. In contrast the number of inflammatory cells was only moderately decreased suggesting weaker effects on cell migration into the inflammatory capsules surrounding cysts than on release of modulatory molecules. Taken together, these data suggest that TNF-α blockade may provide a viable strategy to manage post-treatment pericystic inflammation that follows antiparasitic therapy for neurocysticercosis. Infection of the brain with larvae of the tapeworm Taenia solium is called neurocysticercosis (NCC), a disease with varied and serious neurological symptoms. Therapy requires antiparasitic drugs and corticosteroids to prevent seizures caused by treatment due to inflammation around dying parasites. The gene expression of the proinflammatory molecule tumor necrosis factor alpha (TNF-α) is increased in NCC. We treated three groups of naturally infected pigs with an antiparasitic drug: one group was also pretreated with an anti-TNF-α inhibitor, the second one with a corticosteroid, and the third was not pretreated. All pigs were infused with Evans blue dye (EB), which leaks where the blood brain barrier is damaged by inflammation around cysts. We compared the expression of several genes involved in inflammation, healing and fibrosis and regulation of vascular function in tissues surrounding cysts. In inflamed samples showing leaked EB, the inhibition of TNF-α suppressed nearly all the genes assessed, and this suppression was significantly stronger than the moderate decrease caused by corticosteroid pretreatment on most of the genes. On microscopic examination, the inflammation observed was slightly decreased with both pretreatments in relation to the group that was not pretreated. We believe that the inflammatory route that includes TNF-α should be further explored in the search for better management of inflammation directed to degenerating cysts.
Collapse
|
13
|
Molecular Neuro-Pathomechanism of Neurocysticercosis: How Host Genetic Factors Influence Disease Susceptibility. Mol Neurobiol 2017; 55:1019-1025. [DOI: 10.1007/s12035-016-0373-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/28/2016] [Indexed: 12/31/2022]
|