1
|
Bauwe H. Photorespiration - Rubisco's repair crew. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153899. [PMID: 36566670 DOI: 10.1016/j.jplph.2022.153899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The photorespiratory repair pathway (photorespiration in short) was set up from ancient metabolic modules about three billion years ago in cyanobacteria, the later ancestors of chloroplasts. These prokaryotes developed the capacity for oxygenic photosynthesis, i.e. the use of water as a source of electrons and protons (with O2 as a by-product) for the sunlight-driven synthesis of ATP and NADPH for CO2 fixation in the Calvin cycle. However, the CO2-binding enzyme, ribulose 1,5-bisphosphate carboxylase (known under the acronym Rubisco), is not absolutely selective for CO2 and can also use O2 in a side reaction. It then produces 2-phosphoglycolate (2PG), the accumulation of which would inhibit and potentially stop the Calvin cycle and subsequently photosynthetic electron transport. Photorespiration removes the 2-PG and in this way prevents oxygenic photosynthesis from poisoning itself. In plants, the core of photorespiration consists of ten enzymes distributed over three different types of organelles, requiring interorganellar transport and interaction with several auxiliary enzymes. It goes together with the release and to some extent loss of freshly fixed CO2. This disadvantageous feature can be suppressed by CO2-concentrating mechanisms, such as those that evolved in C4 plants thirty million years ago, which enhance CO2 fixation and reduce 2PG synthesis. Photorespiration itself provided a pioneer variant of such mechanisms in the predecessors of C4 plants, C3-C4 intermediate plants. This article is a review and update particularly on the enzyme components of plant photorespiration and their catalytic mechanisms, on the interaction of photorespiration with other metabolism and on its impact on the evolution of photosynthesis. This focus was chosen because a better knowledge of the enzymes involved and how they are embedded in overall plant metabolism can facilitate the targeted use of the now highly advanced methods of metabolic network modelling and flux analysis. Understanding photorespiration more than before as a process that enables, rather than reduces, plant photosynthesis, will help develop rational strategies for crop improvement.
Collapse
Affiliation(s)
- Hermann Bauwe
- University of Rostock, Plant Physiology, Albert-Einstein-Straße 3, D-18051, Rostock, Germany.
| |
Collapse
|
2
|
Evolution of Photorespiratory Glycolate Oxidase among Archaeplastida. PLANTS 2020; 9:plants9010106. [PMID: 31952152 PMCID: PMC7020209 DOI: 10.3390/plants9010106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/17/2022]
Abstract
Photorespiration has been shown to be essential for all oxygenic phototrophs in the present-day oxygen-containing atmosphere. The strong similarity of the photorespiratory cycle in cyanobacteria and plants led to the hypothesis that oxygenic photosynthesis and photorespiration co-evolved in cyanobacteria, and then entered the eukaryotic algal lineages up to land plants via endosymbiosis. However, the evolutionary origin of the photorespiratory enzyme glycolate oxidase (GOX) is controversial, which challenges the common origin hypothesis. Here, we tested this hypothesis using phylogenetic and biochemical approaches with broad taxon sampling. Phylogenetic analysis supported the view that a cyanobacterial GOX-like protein of the 2-hydroxy-acid oxidase family most likely served as an ancestor for GOX in all eukaryotes. Furthermore, our results strongly indicate that GOX was recruited to the photorespiratory metabolism at the origin of Archaeplastida, because we verified that Glaucophyta, Rhodophyta, and Streptophyta all express GOX enzymes with preference for the substrate glycolate. Moreover, an “ancestral” protein synthetically derived from the node separating all prokaryotic from eukaryotic GOX-like proteins also preferred glycolate over l-lactate. These results support the notion that a cyanobacterial ancestral protein laid the foundation for the evolution of photorespiratory GOX enzymes in modern eukaryotic phototrophs.
Collapse
|
3
|
Raven JA, Beardall J, Quigg A. Light-Driven Oxygen Consumption in the Water-Water Cycles and Photorespiration, and Light Stimulated Mitochondrial Respiration. PHOTOSYNTHESIS IN ALGAE: BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS 2020. [DOI: 10.1007/978-3-030-33397-3_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
4
|
Guo L, Wang P, Gu Z, Jin X, Yang R. Proteomic analysis of broccoli sprouts by iTRAQ in response to jasmonic acid. JOURNAL OF PLANT PHYSIOLOGY 2017; 218:16-25. [PMID: 28763705 DOI: 10.1016/j.jplph.2017.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 05/02/2023]
Abstract
Jasmonic acid (JA) is well known as a linolenic acid-derived signal molecule related to the plant response to biotic and abiotic stresses. JA can regulate various plant metabolisms, such as glucosinolate metabolism. In this study, the proteome profiles of broccoli sprouts under JA treatment were analyzed using the iTRAQ-based quantitative proteome approach. A total of 122 differentially expressed proteins participating in a wide range of physiological processes were confidently identified in broccoli sprouts treated with JA. Functional classification analysis showed that photosynthesis and protein synthesis were inhibited by JA treatment, thereby inhibiting sprout growth, while proteins related to carbohydrate catabolism and amino acid metabolism showed an increased expression. Additionally, proteins involved in defense and secondary metabolism were also up-regulated. Proteins related to glucosinolate biosynthesis and degradation were mediated by JA, leading to the accumulation of glucosinolates and sulforaphane. These results indicate that JA stimulated a defense response at the proteome level by redirecting metabolism of growth and physiology in broccoli sprouts.
Collapse
Affiliation(s)
- Liping Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Pei Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiaolin Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
5
|
Photorespiration: origins and metabolic integration in interacting compartments. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67. [PMCID: PMC4867902 DOI: 10.1093/jxb/erw178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
6
|
Hagemann M, Kern R, Maurino VG, Hanson DT, Weber APM, Sage RF, Bauwe H. Evolution of photorespiration from cyanobacteria to land plants, considering protein phylogenies and acquisition of carbon concentrating mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2963-76. [PMID: 26931168 DOI: 10.1093/jxb/erw063] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Photorespiration and oxygenic photosynthesis are intimately linked processes. It has been shown that under the present day atmospheric conditions cyanobacteria and all eukaryotic phototrophs need functional photorespiration to grow autotrophically. The question arises as to when this essential partnership evolved, i.e. can we assume a coevolution of both processes from the beginning or did photorespiration evolve later to compensate for the generation of 2-phosphoglycolate (2PG) due to Rubisco's oxygenase reaction? This question is mainly discussed here using phylogenetic analysis of proteins involved in the 2PG metabolism and the acquisition of different carbon concentrating mechanisms (CCMs). The phylogenies revealed that the enzymes involved in the photorespiration of vascular plants have diverse origins, with some proteins acquired from cyanobacteria as ancestors of the chloroplasts and others from heterotrophic bacteria as ancestors of mitochondria in the plant cell. Only phosphoglycolate phosphatase was found to originate from Archaea. Notably glaucophyte algae, the earliest branching lineage of Archaeplastida, contain more photorespiratory enzymes of cyanobacterial origin than other algal lineages or land plants indicating a larger initial contribution of cyanobacterial-derived proteins to eukaryotic photorespiration. The acquisition of CCMs is discussed as a proxy for assessing the timing of periods when photorespiratory activity may have been enhanced. The existence of CCMs also had marked influence on the structure and function of photorespiration. Here, we discuss evidence for an early and continuous coevolution of photorespiration, CCMs and photosynthesis starting from cyanobacteria via algae, to land plants.
Collapse
Affiliation(s)
- Martin Hagemann
- Universität Rostock, Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, A.- Einstein-Str. 3, D-18051 Rostock, Germany
| | - Ramona Kern
- Universität Rostock, Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, A.- Einstein-Str. 3, D-18051 Rostock, Germany
| | - Veronica G Maurino
- University of Düsseldorf, Institute of Developmental and Molecular Biology of Plants and Biotechnology, Cluster of Excellence on Plant Science (CEPLAS), Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - David T Hanson
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Rowan F Sage
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S3B2, Canada
| | - Hermann Bauwe
- Universität Rostock, Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, A.- Einstein-Str. 3, D-18051 Rostock, Germany
| |
Collapse
|
7
|
Orf I, Timm S, Bauwe H, Fernie AR, Hagemann M, Kopka J, Nikoloski Z. Can cyanobacteria serve as a model of plant photorespiration? - a comparative meta-analysis of metabolite profiles. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2941-2952. [PMID: 26969741 DOI: 10.1093/jxb/erw068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Photorespiration is a process that is crucial for the survival of oxygenic phototrophs in environments that favour the oxygenation reaction of Rubisco. While photorespiration is conserved among cyanobacteria, algae, and embryophytes, it evolved to different levels of complexity in these phyla. The highest complexity is found in embryophytes, where the pathway involves four cellular compartments and respective transport processes. The complexity of photorespiration in embryophytes raises the question whether a simpler system, such as cyanobacteria, may serve as a model to facilitate our understanding of the common key aspects of photorespiration. In this study, we conducted a meta-analysis of publicly available metabolite profiles from the embryophyte Arabidopsis thaliana and the cyanobacterium Synechocystis sp. PCC 6803 grown under conditions that either activate or suppress photorespiration. The comparative meta-analysis evaluated the similarity of metabolite profiles, the variability of metabolite pools, and the patterns of metabolite ratios. Our results show that the metabolic signature of photorespiration is in part conserved between the compared model organisms under conditions that favour the oxygenation reaction. Therefore, our findings support the claim that cyanobacteria can serve as prokaryotic models of photorespiration in embryophytes.
Collapse
Affiliation(s)
- Isabel Orf
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam OT Golm, Germany
| | - Stefan Timm
- Universität Rostock, Abteilung Pflanzenphysiologie, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Hermann Bauwe
- Universität Rostock, Abteilung Pflanzenphysiologie, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam OT Golm, Germany
| | - Martin Hagemann
- Universität Rostock, Abteilung Pflanzenphysiologie, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam OT Golm, Germany
| | - Zoran Nikoloski
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam OT Golm, Germany
| |
Collapse
|
8
|
Rademacher N, Kern R, Fujiwara T, Mettler-Altmann T, Miyagishima SY, Hagemann M, Eisenhut M, Weber APM. Photorespiratory glycolate oxidase is essential for the survival of the red alga Cyanidioschyzon merolae under ambient CO2 conditions. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3165-75. [PMID: 26994474 PMCID: PMC4867895 DOI: 10.1093/jxb/erw118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Photorespiration is essential for all organisms performing oxygenic photosynthesis. The evolution of photorespiratory metabolism began among cyanobacteria and led to a highly compartmented pathway in plants. A molecular understanding of photorespiration in eukaryotic algae, such as glaucophytes, rhodophytes, and chlorophytes, is essential to unravel the evolution of this pathway. However, mechanistic detail of the photorespiratory pathway in red algae is scarce. The unicellular red alga Cyanidioschyzon merolae represents a model for the red lineage. Its genome is fully sequenced, and tools for targeted gene engineering are available. To study the function and importance of photorespiration in red algae, we chose glycolate oxidase (GOX) as the target. GOX catalyses the conversion of glycolate into glyoxylate, while hydrogen peroxide is generated as a side-product. The function of the candidate GOX from C. merolae was verified by the fact that recombinant GOX preferred glycolate over L-lactate as a substrate. Yellow fluorescent protein-GOX fusion proteins showed that GOX is targeted to peroxisomes in C. merolae The GOX knockout mutant lines showed a high-carbon-requiring phenotype with decreased growth and reduced photosynthetic activity compared to the wild type under ambient air conditions. Metabolite analyses revealed glycolate and glycine accumulation in the mutant cells after a shift from high CO2 conditions to ambient air. In summary, or results demonstrate that photorespiratory metabolism is essential for red algae. The use of a peroxisomal GOX points to a high photorespiratory flux as an ancestral feature of all photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Nadine Rademacher
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Ramona Kern
- University Rostock, Department Plant Physiology, Albert-Einstein-Straße 3, 18059 Rostock, Germany
| | - Takayuki Fujiwara
- Division of Symbiosis and Cell Evolution, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Shizuoka, Japan
| | - Tabea Mettler-Altmann
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Shin-Ya Miyagishima
- Division of Symbiosis and Cell Evolution, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Shizuoka, Japan Japan Science and Technology Agency, CREST, 4-1-8 Honcho, Kawaguchi 332-0012, Saitama, Japan
| | - Martin Hagemann
- University Rostock, Department Plant Physiology, Albert-Einstein-Straße 3, 18059 Rostock, Germany
| | - Marion Eisenhut
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Hagemann M, Fernie AR, Espie GS, Kern R, Eisenhut M, Reumann S, Bauwe H, Weber APM. Evolution of the biochemistry of the photorespiratory C2 cycle. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:639-647. [PMID: 23198988 DOI: 10.1111/j.1438-8677.2012.00677.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 08/23/2012] [Indexed: 05/23/2023]
Abstract
Oxygenic photosynthesis would not be possible without photorespiration in the present day O2 -rich atmosphere. It is now generally accepted that cyanobacteria-like prokaryotes first evolved oxygenic photosynthesis, which was later conveyed via endosymbiosis into a eukaryotic host, which then gave rise to the different groups of algae and streptophytes. For photosynthetic CO2 fixation, all these organisms use RubisCO, which catalyses both the carboxylation and the oxygenation of ribulose 1,5-bisphosphate. One of the reaction products of the oxygenase reaction, 2-phosphoglycolate (2PG), represents the starting point of the photorespiratory C2 cycle, which is considered largely responsible for recapturing organic carbon via conversion to the Calvin-Benson cycle (CBC) intermediate 3-phosphoglycerate, thereby detoxifying critical intermediates. Here we discuss possible scenarios for the evolution of this process toward the well-defined 2PG metabolism in extant plants. While the origin of the C2 cycle core enzymes can be clearly dated back towards the different endosymbiotic events, the evolutionary scenario that allowed the compartmentalised high flux photorespiratory cycle is uncertain, but probably occurred early during the algal radiation. The change in atmospheric CO2 /O2 ratios promoting the acquisition of different modes for inorganic carbon concentration mechanisms, as well as the evolutionary specialisation of peroxisomes, clearly had a dramatic impact on further aspects of land plant photorespiration.
Collapse
Affiliation(s)
- M Hagemann
- Institute of Biosciences, Plant Physiology, University of Rostock, Rostock, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Weber APM, Bauwe H. Photorespiration--a driver for evolutionary innovations and key to better crops. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:621-3. [PMID: 23786418 DOI: 10.1111/plb.12036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
|