1
|
Bose T, Mahomed TG, Mbatha KC, Joubert JC, Hammerbacher A. Tissue ontogeny and chemical composition influence bacterial biodiversity in the wood and shoot tip of Populus nigra. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 39356199 DOI: 10.1111/plb.13724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024]
Abstract
Plant-microbe interactions significantly influence plant growth dynamics and adaptability. This study explores the impact of metabolites on microbial biodiversity in shoot tips and wood of Populus nigra under greenhouse conditions, using high-throughput sequencing and metabolite profiling. Branches from P. nigra were harvested, rooted, and transplanted into pots for growth. After 3 months, tissue samples from shoot tips and wood were collected, and metabolites extracted and analysed using GC-MS and LC-MS. Genomic DNA was extracted and subjected to high-throughput sequencing for bacterial biodiversity profiling. Both datasets were analysed using bioinformatic and statistical pipelines. Metabolite profiling indicated that shoot tips had a higher relative abundance of primary and secondary metabolites, including sugars, fatty acids, organic acids, phenolic acid derivatives and salicinoids, while wood was enriched in flavonoids. Bacterial biodiversity also differed significantly between these tissues, with Clostridiales, Bacteroidales and Bacillales dominating in shoot tips, associated with rapid growth and anaerobic fermentation, while wood tissues were characterized by diazotrophs from Rhizobiales, Sphingomonadales and Frankiales. PCoA clustering confirmed tissue-specific microbial differences. Functional analysis revealed an enrichment of fundamental cellular processes in shoot tips, while wood exhibited pathways related to degradation and mortality. Metabolite profiling revealed significant variations in primary and secondary metabolites, highlighting their influence on microbial biodiversity across plant tissues. The dominance of specific bacterial orders and distinct functional pathways in each tissue suggests a tailored microbial response to the unique environments of shoot tips and wood.
Collapse
Affiliation(s)
- T Bose
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - T G Mahomed
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - K C Mbatha
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - J C Joubert
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A Hammerbacher
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Ruiz-Checa R, Pérez-Jordán H, García-Gómez H, Prieto-Benítez S, Gónzalez-Fernández I, Alonso R. Foliar nitrogen uptake in broadleaf evergreen Mediterranean forests: Fertilisation experiment with labelled nitrogen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171865. [PMID: 38518824 DOI: 10.1016/j.scitotenv.2024.171865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Atmospheric nitrogen (N) deposition in Mediterranean sclerophyllous forests of Holm oak (Quercus rotundifolia, Q. ilex) in Spain often exceeds empirical critical loads established for ecosystem conservation. There are still uncertainties on the capacity of canopy retention and uptake of the atmospheric N deposited of these forests. Studying and analysing all the forest nitrogen-cycle processes is essential to understand the potential effect of N deposition in these ecosystems. This study conducted a year-long short-term fertilisation experiment with labelled ammonium (15N-NH4) and nitrate (15N-NO3) to estimate foliar N absorption rates and assess the influence of leaf phenology and meteorological seasonal variations. Fertilising solutions were prepared to simulate low and high wet N deposition concentration, based on data reported from previous studies. Additionally, ecophysiological and meteorological measurements were collected to explore potential relationships between absorption rates, plant activity, and weather conditions. The results showed that Holm oak leaves were able to absorb both oxidised and reduced N compounds, with higher rates of NH4+ absorption. N recovery of both NH4+ and NO3- was higher in the low concentration treatments, suggesting reduced effectiveness of absorption as concentration increases. Foliar absorption rates were leaf-age dependent, with the highest values observed in young developing leaves. Foliar uptake showed seasonal changes with a clear reduction during the summer, linked to drought and dry weather conditions, and showing also smaller leaf net assimilation and stomatal conductance. During the rest of the year, foliar N absorption was not clearly associated to plant physiological activity but with environmental conditions. Our findings suggest that Holm oak canopies could absorb an important part of the incoming N deposition, but this process is compound, season and leaf phenology dependent. Further research is therefore needed to better understand and model this part of the N cycle.
Collapse
Affiliation(s)
- Raquel Ruiz-Checa
- Ecotoxicology of Air Pollution, CIEMAT (Edif.70), Avda. Complutense n° 40, Madrid 28040, Spain; Dept. of Biology, Geology, Physics and Inorganic Chemistry, Universidad Rey Juan Carlos, Móstoles 28933, Madrid, Spain.
| | - Hugo Pérez-Jordán
- Ecotoxicology of Air Pollution, CIEMAT (Edif.70), Avda. Complutense n° 40, Madrid 28040, Spain
| | - Héctor García-Gómez
- Ecotoxicology of Air Pollution, CIEMAT (Edif.70), Avda. Complutense n° 40, Madrid 28040, Spain
| | - Samuel Prieto-Benítez
- Ecotoxicology of Air Pollution, CIEMAT (Edif.70), Avda. Complutense n° 40, Madrid 28040, Spain
| | | | - Rocío Alonso
- Ecotoxicology of Air Pollution, CIEMAT (Edif.70), Avda. Complutense n° 40, Madrid 28040, Spain
| |
Collapse
|
3
|
He C, Zhang M, Li X, He X. Seasonal dynamics of phyllosphere epiphytic microbial communities of medicinal plants in farmland environment. FRONTIERS IN PLANT SCIENCE 2024; 14:1328586. [PMID: 38239215 PMCID: PMC10794659 DOI: 10.3389/fpls.2023.1328586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024]
Abstract
Introduction The phyllosphere of plants is inhabited by various microorganisms, which play a crucial role in plant physiological metabolism. Currently, there is limited research on the dynamic effects of species and seasons on plant phyllosphere microbial community diversity and microbial interactions. Methods In this study, high-throughput sequencing technology was used to sequence the leaf surface parasitic microorganisms of five medicinal plants (Bupleurum chinense, Atractylodes lancea, Salvia miltiorrhiza, Astragalus membranaceus, and Lonicera japonica). Results The results showed that bacteria and fungi clustered into 3,898 and 1,572 operational taxonomic units (OTUs), respectively. Compared to host species, seasons had a more significant impact on the a diversity of bacteria and fungi. The heterogeneity of phyllosphere microbial communities was greater in winter compared to summer. Key species analysis at the OTU level and Spearman correlation analysis demonstrated significant preferences in microbial interactions under plant and seasonal backgrounds. The network connections between bacterial and fungal communities significantly increased during seasonal transitions compared to connections with plants. Discussion This study enhances our understanding of the composition and ecological roles of plant-associated microbial communities in small-scale agricultural environments. Additionally, it provides valuable insights for assessing the biodiversity of medicinal plants.
Collapse
Affiliation(s)
- Chao He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Man Zhang
- College of Life Sciences, Hebei University, Baoding, China
| | - Xianen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xueli He
- College of Life Sciences, Hebei University, Baoding, China
| |
Collapse
|
4
|
Yuan Z, Ye J, Lin F, Wang X, Yang T, Bi B, Mao Z, Fang S, Wang X, Hao Z, Ali A. Relationships between Phyllosphere Bacterial Communities and Leaf Functional Traits in a Temperate Forest. PLANTS (BASEL, SWITZERLAND) 2023; 12:3854. [PMID: 38005751 PMCID: PMC10674237 DOI: 10.3390/plants12223854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023]
Abstract
As a vital component of biodiversity, phyllosphere bacteria in forest canopy play a critical role in maintaining plant health and influencing the global biogeochemical cycle. There is limited research on the community structure of phyllosphere bacteria in natural forests, which creates a gap in our understanding of whether and/or how phyllosphere bacteria are connected to leaf traits of their host. In this study, we investigated the bacterial diversity and composition of the canopy leaves of six dominant tree species in deciduous broad-leaved forests in northeastern China, using high-throughput sequencing. We then compare the differences in phyllosphere bacterial community structure and functional genes of dominant tree species. Fourteen key leaf functional traits of their host trees were also measured according to standard protocols to investigate the relationships between bacterial community composition and leaf functional traits. Our result suggested that tree species with closer evolutionary distances had similar phyllosphere microbial alpha diversity. The dominant phyla of phyllosphere bacteria were Proteobacteria, Actinobacteria, and Firmicutes. For these six tree species, the functional genes of phyllosphere bacteria were mainly involved in amino acid metabolism and carbohydrate metabolism processes. The redundancy and envfit analysis results showed that the functional traits relating to plant nutrient acquisition and resistance to diseases and pests (such as leaf area, isotope carbon content, and copper content) were the main factors influencing the community structure of phyllosphere bacteria. This study highlights the key role of plant interspecific genetic relationships and plant attributes in shaping phyllosphere bacterial diversity.
Collapse
Affiliation(s)
- Zuoqiang Yuan
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (Z.Y.); (B.B.)
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
| | - Ji Ye
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
| | - Fei Lin
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
| | - Xing Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
- Plant Ecology and Nature Conservation, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing 210008, China;
| | - Boyuan Bi
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (Z.Y.); (B.B.)
| | - Zikun Mao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shuai Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xugao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhanqing Hao
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (Z.Y.); (B.B.)
| | - Arshad Ali
- Forest Ecology Research Group, College of Life Sciences, Hebei University, Baoding 071002, China;
| |
Collapse
|
5
|
Cambon MC, Trillat M, Lesur-Kupin I, Burlett R, Chancerel E, Guichoux E, Piouceau L, Castagneyrol B, Le Provost G, Robin S, Ritter Y, Van Halder I, Delzon S, Bohan DA, Vacher C. Microbial biomarkers of tree water status for next-generation biomonitoring of forest ecosystems. Mol Ecol 2023; 32:5944-5958. [PMID: 37815414 DOI: 10.1111/mec.17149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023]
Abstract
Next-generation biomonitoring proposes to combine machine-learning algorithms with environmental DNA data to automate the monitoring of the Earth's major ecosystems. In the present study, we searched for molecular biomarkers of tree water status to develop next-generation biomonitoring of forest ecosystems. Because phyllosphere microbial communities respond to both tree physiology and climate change, we investigated whether environmental DNA data from tree phyllosphere could be used as molecular biomarkers of tree water status in forest ecosystems. Using an amplicon sequencing approach, we analysed phyllosphere microbial communities of four tree species (Quercus ilex, Quercus robur, Pinus pinaster and Betula pendula) in a forest experiment composed of irrigated and non-irrigated plots. We used these microbial community data to train a machine-learning algorithm (Random Forest) to classify irrigated and non-irrigated trees. The Random Forest algorithm detected tree water status from phyllosphere microbial community composition with more than 90% accuracy for oak species, and more than 75% for pine and birch. Phyllosphere fungal communities were more informative than phyllosphere bacterial communities in all tree species. Seven fungal amplicon sequence variants were identified as candidates for the development of molecular biomarkers of water status in oak trees. Altogether, our results show that microbial community data from tree phyllosphere provides information on tree water status in forest ecosystems and could be included in next-generation biomonitoring programmes that would use in situ, real-time sequencing of environmental DNA to help monitor the health of European temperate forest ecosystems.
Collapse
Affiliation(s)
- Marine C Cambon
- INRAE, University of Bordeaux, BIOGECO, Pessac, France
- School of Natural Sciences, Bangor University, Bangor, UK
| | | | - Isabelle Lesur-Kupin
- INRAE, University of Bordeaux, BIOGECO, Pessac, France
- HelixVenture, Mérignac, France
| | - Régis Burlett
- INRAE, University of Bordeaux, BIOGECO, Pessac, France
| | | | | | | | | | | | | | - Yves Ritter
- INRAE, University of Bordeaux, BIOGECO, Pessac, France
| | | | | | - David A Bohan
- Agroécologie, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | | |
Collapse
|
6
|
Wang W, Hu C, Chang Y, Wang L, Bi Q, Lu X, Zheng Z, Zheng X, Wu D, Niu B. Differentiated responses of the phyllosphere bacterial community of the yellowhorn tree to precipitation and temperature regimes across Northern China. FRONTIERS IN PLANT SCIENCE 2023; 14:1265362. [PMID: 37954985 PMCID: PMC10634255 DOI: 10.3389/fpls.2023.1265362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023]
Abstract
Introduction As an ephemeral and oligotrophic environment, the phyllosphere harbors many highly diverse microorganisms. Importantly, it is known that their colonization of plant leaf surfaces is considerably influenced by a few abiotic factors related to climatic conditions. Yet how the dynamics of phyllosphere bacterial community assembly are shaped by detailed climatological elements, such as various bioclimatic variables, remains poorly understood. Methods Using high-throughput 16S rRNA gene amplicon sequencing technology, we analyzed the bacterial communities inhabiting the leaf surfaces of an oilseed tree, yellowhorn (Xanthoceras sorbifolium), grown at four sites (Yinchuan, Otogqianqi, Tongliao, and Zhangwu) whose climatic status differs in northern China. Results and Discussion We found that the yellowhorn phyllosphere's bacterial community was generally dominated by four phyla: Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Nevertheless, bacterial community composition differed significantly among the four sampled site regions, indicating the possible impact of climatological factors upon the phyllosphere microbiome. Interestingly, we also noted that the α-diversities of phyllosphere microbiota showed strong positive or negative correlation with 13 bioclimatic factors (including 7 precipitation factors and 6 temperature factors). Furthermore, the relative abundances of 55 amplicon sequence variants (ASVs), including three ASVs representing two keystone taxa (the genera Curtobacterium and Streptomyces), exhibited significant yet contrary responses to the precipitation and temperature climatic variables. That pattern was consistent with all ASVs' trends of possessing opposite correlations to those two parameter classes. In addition, the total number of links and nodes, which conveys community network complexity, increased with rising values of most temperature variables. Besides that, remarkably positive relevance was found between average clustering coefficient and most precipitation variables. Altogether, these results suggest the yellowhorn phyllosphere bacterial community is capable of responding to variation in rainfall and temperature regimes in distinctive ways.
Collapse
Affiliation(s)
- Weixiong Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Congcong Hu
- Department of Mathematics, Shanghai Normal University, Shanghai, China
| | - Yu Chang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Libing Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Quanxin Bi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xin Lu
- Chifeng Research Institute of Forestry Science, Chifeng, China
- National Forestry and Grassland Shiny-Leaved Yellowhorn Engineering and Technology Research Center, Chifeng, China
| | - Zhimin Zheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin, China
| | - Xiaoqi Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Di Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Ben Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
7
|
Zhang J, DeLuca TH, Chenpeng Z, Li A, Wang G, Sun S. Comparison of the seasonal and successional variation of asymbiotic and symbiotic nitrogen fixation along a glacial retreat chronosequence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165163. [PMID: 37391152 DOI: 10.1016/j.scitotenv.2023.165163] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/01/2023] [Accepted: 06/25/2023] [Indexed: 07/02/2023]
Abstract
Climate change is resulting in accelerated retreat of glaciers worldwide and much nitrogen-poor debris is left after glacier retreats. Asymbiotic dinitrogen (N2) fixation (ANF) can be considered a 'hidden' source of nitrogen (N) for non-nodulating plants in N limited environments; however, seasonal variation and its relative importance in ecosystem N budgets, especially when compared with nodulating symbiotic N2-fixation (SNF), is not well-understood. In this study, seasonal and successional variations in nodulating SNF and non-nodulating ANF rates (nitrogenase activity) were compared along a glacial retreat chronosequence on the eastern edge of the Tibetan Plateau. Key factors regulating the N2-fixation rates as well as the contribution of ANF and SNF to ecosystem N budget were also examined. Significantly greater nitrogenase activity was observed in nodulating species (0.4-17,820.8 nmol C2H4 g-1 d-1) compared to non-nodulating species (0.0-9.9 nmol C2H4 g-1 d-1) and both peaked in June or July. Seasonal variation in acetylene reduction activity (ARA) rate in plant nodules (nodulating species) and roots (non-nodulating species) was correlated with soil temperature and moisture while ARA in non-nodulating leaves and twigs was correlated with air temperature and humidity. Stand age was not found to be a significant determinant of ARA rates in nodulating or non-nodulating plants. ANF and SNF contributed 0.3-51.5 % and 10.1-77.8 %, respectively, of total ecosystem N input in the successional chronosequence. In this instance, ANF exhibited an increasing trend with successional age while SNF increased only at stages younger than 29 yr and then decreased as succession proceeded. These findings help improve our understanding of ANF activity in non-nodulating plants and N budgets in post glacial primary succession.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, No.24 South Section 1, Yihuan Rd, Chengdu 610065, China; Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Thomas H DeLuca
- College of Forestry, Oregon State University, Corvallis, OR 97331-5704, USA
| | - Zhenni Chenpeng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, No.24 South Section 1, Yihuan Rd, Chengdu 610065, China
| | - Andi Li
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Genxu Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, No.24 South Section 1, Yihuan Rd, Chengdu 610065, China
| | - Shouqin Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, No.24 South Section 1, Yihuan Rd, Chengdu 610065, China.
| |
Collapse
|
8
|
Lin T, Tang J, Li S, Li S, Han S, Liu Y, Yang C, Chen G, Chen L, Zhu T. Drought stress-mediated differences in phyllosphere microbiome and associated pathogen resistance between male and female poplars. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1100-1113. [PMID: 37177875 DOI: 10.1111/tpj.16283] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Phyllosphere-associated microbes play a crucial role in plant-pathogen interactions while their composition and diversity are strongly influenced by drought stress. As dioecious plant species exhibited secondary dimorphism between the two sexes in response to drought stress, whether such difference will lead to sex-specific differences in phyllosphere microbiome and associated pathogen resistance between male and female conspecifics is still unknown. In this study, we subjected female and male full siblings of a dioecious poplar species to a short period of drought treatment followed by artificial infection of a leaf pathogenic fungus. Our results showed that male plants grew better than females with or without drought stress. Female control plants had more leaf lesion area than males after pathogen infection, whereas drought stress reversed such a difference. Further correlation and in vitro toxicity tests suggested that drought-mediated sexual differences in pathogen resistance between the two plant sexes could be attributed to the shifts in structure and function of phyllosphere-associated microbiome rather than the amount of leaf main defensive chemicals contained in plant leaves. Supportively, the microbiome analysis through high-throughput sequencing indicated that female phyllosphere enriched a higher abundance of ecologically beneficial microbes that serve as biological plant protectants, while males harbored abundant phytopathogens under drought-stressed conditions. The results could provide potential implications for the selection of suitable poplar sex to plants in drought or semi-drought habitats.
Collapse
Affiliation(s)
- Tiantian Lin
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Key Laboratory of Forest Protection of Sichuan Education Department, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China and Centre of Invasion Biology, Institute of Biodiversity, Yunnan University, 650504, Kunming, China
| | - Jiayao Tang
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Key Laboratory of Forest Protection of Sichuan Education Department, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
| | - Shuying Li
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Key Laboratory of Forest Protection of Sichuan Education Department, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
| | - Shujiang Li
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Key Laboratory of Forest Protection of Sichuan Education Department, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
| | - Shan Han
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Key Laboratory of Forest Protection of Sichuan Education Department, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
| | - Yinggao Liu
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Key Laboratory of Forest Protection of Sichuan Education Department, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
| | - Chunlin Yang
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Key Laboratory of Forest Protection of Sichuan Education Department, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
| | - Gang Chen
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Key Laboratory of Forest Protection of Sichuan Education Department, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
| | - Lianghua Chen
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Key Laboratory of Forest Protection of Sichuan Education Department, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
| | - Tianhui Zhu
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Key Laboratory of Forest Protection of Sichuan Education Department, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
| |
Collapse
|
9
|
Liu Q, Cheng L, Nian H, Jin J, Lian T. Linking plant functional genes to rhizosphere microbes: a review. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:902-917. [PMID: 36271765 PMCID: PMC10106864 DOI: 10.1111/pbi.13950] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 05/04/2023]
Abstract
The importance of rhizomicrobiome in plant development, nutrition acquisition and stress tolerance is unquestionable. Relevant plant genes corresponding to the above functions also regulate rhizomicrobiome construction. Deciphering the molecular regulatory network of plant-microbe interactions could substantially contribute to improving crop yield and quality. Here, the plant gene-related nutrient uptake, biotic and abiotic stress resistance, which may influence the composition and function of microbial communities, are discussed in this review. In turn, the influence of microbes on the expression of functional plant genes, and thereby plant growth and immunity, is also reviewed. Moreover, we have specifically paid attention to techniques and methods used to link plant functional genes and rhizomicrobiome. Finally, we propose to further explore the molecular mechanisms and signalling pathways of microbe-host gene interactions, which could potentially be used for managing plant health in agricultural systems.
Collapse
Affiliation(s)
- Qi Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Lang Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Jian Jin
- Northeast Institute of Geography and AgroecologyChinese Academy of SciencesHarbinChina
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
10
|
Liu J, Sun X, Zuo Y, Hu Q, He X. Plant species shape the bacterial communities on the phyllosphere in a hyper-arid desert. Microbiol Res 2023; 269:127314. [PMID: 36724560 DOI: 10.1016/j.micres.2023.127314] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 01/14/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
Microorganisms are an important component of global biodiversity. However, they are vulnerable to hyper-arid climates in desert regions. Xerophytes are desert vegetation with unique biodiversity. However, little is known about the identities and communities of phyllosphere epiphytic microorganisms inhabiting the xerophyte leaf surface in the hot and dry environment. The diversity and community composition of phyllosphere epiphytes on different desert plants in Gansu, China, was investigated using the next-generation sequencing technique, revealing the diversity and community composition of the phyllosphere epiphytic bacteria associated with desert xerophytes. In addition, the ecological functions of the bacterial communities were investigated by combining the sequence classification information and prokaryotic taxonomic function annotation (FAPROTAX). This study determined the phyllosphere bacterial community composition, microbial interactions, and their functions. Despite harsh environments in the arid desert, we found that there are still diverse epiphytic bacteria on the leaves of desert plants. The bacterial communities mainly included Actinobacteria (52.79%), Firmicutes (31.62%), and Proteobacteria (12.20%). Further comparisons revealed different microbial communities, including Firmicutes at the phylum and Paenibacillaceae at the family level, in the phyllosphere among different plants, suggesting that the host plants had strong filter effects on bacteria. Co-occurrence network analysis revealed positive relationships were dominant among different bacterial taxa. The abundance of Actinobacteria and Proteobacteria was positively correlated, demonstrating their mutual relationship. On the other hand, the abundance of Firmicutes was negatively correlated, which suggested that they inhibit the growth of other bacterial taxa. FAPROTAX prediction revealed that chemoheterotrophy (accounting for 39.02% of the community) and aerobic chemoheterotrophy (37.01%) were the main functions of the leaf epiphytic bacteria on desert plants. This study improves our understanding of the community composition and ecological functions of plant-associated microbial communities inhabiting scattered niches in the desert ecosystem. In addition, the study provides insight into the biodiversity assessment in the desert region.
Collapse
Affiliation(s)
- Jiaqiang Liu
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Xiang Sun
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Yiling Zuo
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Qiannan Hu
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Xueli He
- School of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
11
|
Bhandari R, Sanz-Saez A, Leisner CP, Potnis N. Xanthomonas infection and ozone stress distinctly influence the microbial community structure and interactions in the pepper phyllosphere. ISME COMMUNICATIONS 2023; 3:24. [PMID: 36973329 PMCID: PMC10043289 DOI: 10.1038/s43705-023-00232-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
While the physiological and transcriptional response of the host to biotic and abiotic stresses have been intensely studied, little is known about the resilience of associated microbiomes and their contribution towards tolerance or response to these stresses. We evaluated the impact of elevated tropospheric ozone (O3), individually and in combination with Xanthomonas perforans infection, under open-top chamber field conditions on overall disease outcome on resistant and susceptible pepper cultivars, and their associated microbiome structure, function, and interaction network across the growing season. Pathogen infection resulted in a distinct microbial community structure and functions on the susceptible cultivar, while concurrent O3 stress did not further alter the community structure, and function. However, O3 stress exacerbated the disease severity on resistant cultivar. This altered diseased severity was accompanied by enhanced heterogeneity in associated Xanthomonas population counts, although no significant shift in overall microbiota density, microbial community structure, and function was evident. Microbial co-occurrence networks under simultaneous O3 stress and pathogen challenge indicated a shift in the most influential taxa and a less connected network, which may reflect the altered stability of interactions among community members. Increased disease severity on resistant cultivar may be explained by such altered microbial co-occurrence network, indicating the altered microbiome-associated prophylactic shield against pathogens under elevated O3. Our findings demonstrate that microbial communities respond distinctly to individual and simultaneous stressors, in this case, O3 stress and pathogen infection, and can play a significant role in predicting how plant-pathogen interactions would change in the face of climate change.
Collapse
Affiliation(s)
- Rishi Bhandari
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| | - Alvaro Sanz-Saez
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Courtney P Leisner
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
12
|
Zhang M, Peng C, Sun W, Dong R, Hao J. Effects of Variety, Plant Location, and Season on the Phyllosphere Bacterial Community Structure of Alfalfa (Medicago sativa L.). Microorganisms 2022; 10:microorganisms10102023. [PMID: 36296299 PMCID: PMC9610643 DOI: 10.3390/microorganisms10102023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Plant phyllosphere bacteria are vital for plant health and productivity and are affected by both abiotic and biotic factors. In this study, we surveyed the structure of the phyllosphere bacterial community associated with alfalfa. For two varieties of alfalfa, forty-eight samples of phyllosphere communities were collected at two locations over four seasons in 2020. Proteobacteria and actinobacteria were associated with the dominating phylum in the bacterial communities of the alfalfa phyllosphere. Sphingomonas was the most abundant genus-level bacteria, followed by Methylobacterium, Burkholderia-Caballeronia-Paraburkholderia, and Pseudomonas. Sampling time had a greater affect than site and variety on alfalfa surface microorganisms. The variation in phyllosphere bacterial community assembly was mostly explained by the season–site interaction (43%), season–variety interaction (35%), and season (28%). Variety, site–variety interaction, and season–site–variety interactions did not have a meaningful effect on phyllosphere bacterial diversity and community structure. The bacterial community in the phyllosphere of alfalfa showed seasonal changes over time. The environmental factors that contributed most to the phyllosphere bacterial community of alfalfa were temperature and sunshine duration, which were significantly positively correlated with most of the dominant bacterial genera in the alfalfa phyllosphere.
Collapse
|
13
|
Song M, Sun B, Li R, Qian Z, Bai Z, Zhuang X. Successions and interactions of phyllospheric microbiome in response to NH 3 exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155805. [PMID: 35561907 DOI: 10.1016/j.scitotenv.2022.155805] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Phyllosphere and numerous phyllospheric microbiomes present a huge potential for air pollution mitigation. Despite research investigating the microbial compositions in the phyllosphere, the successions and interactions of the phyllospheric microbiome under ammonia gas (NH3) stress remain poorly understood. Herein, we performed 16S rDNA, the internal transcribed spacer (ITS) profiling and a quantitative microbial element cycling (QMEC) method to reveal successions, co-occurrence, and N-cycling functions changes of phyllospheric bacteria and fungi during NH3 exposure. The NH3 input mainly elevated ammonium (NH4+-N) and total nitrogen (TN) levels on the leaf surface. The exposure in the phyllosphere decreased fungal concentration with a homogeneity increase while enhanced bacterial concentration with a noticeable richness drop. Both short-term (2-week) and long-term (6-week) exposure induced significant changes in microbial compositions. Bacterial genera (Nocardioides, Pseudonocardia) and fungal genera (Alternaria, Acremonium) dominated throughout the exposure. Intensive microbial interactions compared to that in the natural phyllosphere were observed via network analysis. Our results showed that N-cycling functional genes were largely stimulated by the exposure and might, in turn contribute to NH3 pollution buffer and alleviation via microbial metabolism. This study extended the knowledge on microbial responses to NH3 exposure in the phyllosphere and enlightened phylloremediation on NH3 through the microbial role.
Collapse
Affiliation(s)
- Manjiao Song
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Qian
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Bai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Xiongan Institute of Innovation, Xiongan New Area, 071000, China.
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
14
|
Perreault R, Laforest-Lapointe I. Plant-microbe interactions in the phyllosphere: facing challenges of the anthropocene. THE ISME JOURNAL 2022; 16:339-345. [PMID: 34522008 PMCID: PMC8776876 DOI: 10.1038/s41396-021-01109-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023]
Abstract
Global change is a defining feature of the Anthropocene, the current human-dominated epoch, and poses imminent threats to ecosystem dynamics and services such as plant productivity, biodiversity, and environmental regulation. In this era, terrestrial ecosystems are experiencing perturbations linked to direct habitat modifications as well as indirect effects of global change on species distribution and extreme abiotic conditions. Microorganisms represent an important reservoir of biodiversity that can influence macro-organisms as they face habitat loss, rising atmospheric CO2 concentration, pollution, global warming, and increased frequency of drought. Plant-microbe interactions in the phyllosphere have been shown to support plant growth and increase host resistance to biotic and abiotic stresses. Here, we review how plant-microbe interactions in the phyllosphere can influence host survival and fitness in the context of global change. We highlight evidence that plant-microbe interactions (1) improve urban pollution remediation through the degradation of pollutants such as ultrafine particulate matter, black carbon, and atmospheric hydrocarbons, (2) have contrasting impacts on plant species range shifts through the loss of symbionts or pathogens, and (3) drive plant host adaptation to drought and warming. Finally, we discuss how key community ecology processes could drive plant-microbe interactions facing challenges of the Anthropocene.
Collapse
Affiliation(s)
- Rosaëlle Perreault
- grid.86715.3d0000 0000 9064 6198Département de biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1 Canada
| | - Isabelle Laforest-Lapointe
- grid.86715.3d0000 0000 9064 6198Département de biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1 Canada ,grid.86715.3d0000 0000 9064 6198Centre Sève, Université de Sherbrooke, Sherbrooke, QC J1K 2R1 Canada
| |
Collapse
|
15
|
Bashir I, War AF, Rafiq I, Reshi ZA, Rashid I, Shouche YS. Phyllosphere microbiome: Diversity and functions. Microbiol Res 2021; 254:126888. [PMID: 34700185 DOI: 10.1016/j.micres.2021.126888] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/15/2021] [Accepted: 09/30/2021] [Indexed: 12/28/2022]
Abstract
Phyllosphere or aerial surface of plants represents the globally largest and peculiar microbial habitat that inhabits diverse and rich communities of bacteria, fungi, viruses, cyanobacteria, actinobacteria, nematodes, and protozoans. These hyperdiverse microbial communities are related to the host's specific functional traits and influence the host's physiology and the ecosystem's functioning. In the last few years, significant advances have been made in unravelling several aspects of phyllosphere microbiology, including diversity and microbial community composition, dynamics, and functional interactions. This review highlights the current knowledge about the assembly, structure, and composition of phyllosphere microbial communities across spatio-temporal scales, besides functional significance of different microbial communities to the plant host and the surrounding environment. The knowledge will help develop strategies for modelling and manipulating these highly beneficial microbial consortia for furthering scientific inquiry into their interactions with the host plants and also for their useful and economic utilization.
Collapse
Affiliation(s)
- Iqra Bashir
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India.
| | - Aadil Farooq War
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Iflah Rafiq
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Zafar A Reshi
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Irfan Rashid
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | | |
Collapse
|
16
|
Moreira JCF, Brum M, de Almeida LC, Barrera-Berdugo S, de Souza AA, de Camargo PB, Oliveira RS, Alves LF, Rosado BHP, Lambais MR. Asymbiotic nitrogen fixation in the phyllosphere of the Amazon forest: Changing nitrogen cycle paradigms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145066. [PMID: 33582326 DOI: 10.1016/j.scitotenv.2021.145066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Biological nitrogen fixation is a key process for the maintenance of natural ecosystems productivity. In tropical forests, the contribution of asymbiotic nitrogen fixation (ANF) to the nitrogen (N) input has been underestimated, even though few studies have shown that ANF may be as important as symbiotic nitrogen fixation in such environments. The inputs and abiotic modulators of ANF in the Amazon forest are not completely understood. Here, we determined ANF rates and estimated the N inputs from ANF in the phyllosphere, litter and rhizospheric soil of nine tree species in the Amazon forest over time, including an extreme drought period induced by the El Niño-Southern Oscillation. Our data showed that ANF rates in the phyllosphere were 2.8- and 17.6-fold higher than in the litter and rhizospheric soil, respectively, and was highly dependent on tree taxon. Sampling time was the major factor modulating ANF in all forest compartments. At the driest period, ANF rates were approximately 1.8-fold and 13.1-fold higher than at periods with higher rainfall, before and after the extreme drought period, respectively. Tree species was a key modulator of ANF in the phyllosphere, as well as N and Vanadium concentrations. Carbon, molybdenum and vanadium concentrations were significant modulators of ANF in the litter. Based on ANF rates at the three sampling times, we estimated that the N input in the Amazon forest through ANF in the phyllosphere, litter and rhizospheric soil, was between 0.459 and 0.714 kg N ha-1 yr-1. Our results highlight the importance of ANF in the phyllosphere for the N input in the Amazon forest, and suggest that changes in the patterns of ANF driven by large scale climatic events may impact total N inputs and likely alter forest productivity.
Collapse
Affiliation(s)
| | - Mauro Brum
- Department of Plant Biology, Programa de Pós Graduação em Ecologia, Institute of Biology, State University of Campinas -UNICAMP, PO Box 6109, 13083-970 Campinas, SP, Brazil
| | - Lidiane Cordeiro de Almeida
- Department of Ecology, IBRAG, Rio de Janeiro State University (UERJ), R. São Francisco Xavier, 524, PHLC, Sala 220, Maracanã, Rio de Janeiro, RJ, Brazil
| | - Silvia Barrera-Berdugo
- Soil Science Department, University of São Paulo, Av. Pádua Dias 11, 13418-900 Piracicaba, SP, Brazil
| | - André Alves de Souza
- Soil Science Department, University of São Paulo, Av. Pádua Dias 11, 13418-900 Piracicaba, SP, Brazil
| | - Plínio Barbosa de Camargo
- Center for Nuclear Energy in Agriculture, University of São Paulo, 303 Centenário Avenue, Piracicaba, SP 13400-970, Brazil
| | - Rafael Silva Oliveira
- Department of Plant Biology, Programa de Pós Graduação em Ecologia, Institute of Biology, State University of Campinas -UNICAMP, PO Box 6109, 13083-970 Campinas, SP, Brazil
| | - Luciana Ferreira Alves
- Department of Plant Biology, Programa de Pós Graduação em Ecologia, Institute of Biology, State University of Campinas -UNICAMP, PO Box 6109, 13083-970 Campinas, SP, Brazil
| | - Bruno Henrique Pimentel Rosado
- Department of Ecology, IBRAG, Rio de Janeiro State University (UERJ), R. São Francisco Xavier, 524, PHLC, Sala 220, Maracanã, Rio de Janeiro, RJ, Brazil
| | - Marcio Rodrigues Lambais
- Soil Science Department, University of São Paulo, Av. Pádua Dias 11, 13418-900 Piracicaba, SP, Brazil.
| |
Collapse
|
17
|
Ibekwe AM, Ors S, Ferreira JFS, Liu X, Suarez DL. Influence of seasonal changes and salinity on spinach phyllosphere bacterial functional assemblage. PLoS One 2021; 16:e0252242. [PMID: 34061881 PMCID: PMC8168849 DOI: 10.1371/journal.pone.0252242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/11/2021] [Indexed: 11/18/2022] Open
Abstract
The phyllosphere is the aerial part of plants that is exposed to different environmental conditions and is also known to harbor a wide variety of bacteria including both plant and human pathogens. However, studies on phyllosphere bacterial communities have focused on bacterial composition at different stages of plant growth without correlating their functional capabilities to bacterial communities. In this study, we examined the seasonal effects and temporal variabilities driving bacterial community composition and function in spinach phyllosphere due to increasing salinity and season and estimated the functional capacity of bacterial community16S V4 rRNA gene profiles by indirectly inferring the abundance of functional genes based on metagenomics inference tool Piphillin. The experimental design involved three sets of spinach (Spinacia oleracea L., cv. Racoon) grown with saline water during different seasons. Total bacteria DNA from leaf surfaces were sequenced using MiSeq® Illumina platform. About 66.35% of bacteria detected in the phyllosphere were dominated by four phyla- Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. Permutational analysis of variance (PERMANOVA) showed that phyllosphere microbiomes were significantly (P < 0.003) affected by season, but not salinity (P = 0.501). The most abundant inferred functional pathways in leaf samples were the amino acids biosynthesis, ABC transporters, ribosome, aminoacyl-tRNA biosynthesis, two-component system, carbon metabolism, purine metabolism, and pyrimidine metabolism. The photosynthesis antenna proteins pathway was significantly enriched in June leaf samples, when compared to March and May. Several genes related to toxin co-regulated pilus biosynthesis proteins were also significantly enriched in June leaf samples, when compared to March and May leaf samples. Therefore, planting and harvesting times must be considered during leafy green production due to the influence of seasons in growth and proliferation of phyllosphere microbial communities.
Collapse
Affiliation(s)
| | - Selda Ors
- Ataturk University, Department of Agricultural Structures and Irrigation, Erzurum, Turkey
| | | | - Xuan Liu
- US Salinity Laboratory, USDA-ARS, Riverside, CA, United States of America
| | - Donald L. Suarez
- US Salinity Laboratory, USDA-ARS, Riverside, CA, United States of America
| |
Collapse
|
18
|
Proteomics Data Analysis for the Identification of Proteins and Derived Proteotypic Peptides of Potential Use as Putative Drought Tolerance Markers for Quercus ilex. Int J Mol Sci 2021; 22:ijms22063191. [PMID: 33800973 PMCID: PMC8003919 DOI: 10.3390/ijms22063191] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 01/18/2023] Open
Abstract
Drought is one of the main causes of mortality in holm oak (Quercus ilex) seedlings used in reforestation programs. Although this species shows high adaptability to the extreme climate conditions prevailing in Southern Spain, its intrinsic genetic variability may play a role in the differential response of some populations and individuals. The aim of this work was to identify proteins and derived proteotypic peptides potentially useful as putative markers for drought tolerance in holm oak by using a targeted post-acquisition proteomics approach. For this purpose, we used a set of proteins identified by shotgun (LC-MSMS) analysis in a drought experiment on Q. ilex seedlings from four different provenances (viz. the Andalusian provinces Granada, Huelva, Cadiz and Seville). A double strategy involving the quantification of proteins and target peptides by shotgun analysis and post-acquisition data analysis based on proteotypic peptides was used. To this end, an initial list of proteotypic peptides from proteins highly represented under drought conditions was compiled that was used in combination with the raw files from the shotgun experiment to quantify the relative abundance of the fragment’s ion peaks with the software Skyline. The most abundant peptides under drought conditions in at least two populations were selected as putative markers of drought tolerance. A total of 30 proteins and 46 derived peptides belonging to the redox, stress-related, synthesis,-folding and degradation, and primary and secondary metabolism functional groups were thus identified. Two proteins (viz., subtilisin and chaperone GrpE protein) were found at increased levels in three populations, which make them especially interesting for validation drought tolerance markers in subsequent experiments.
Collapse
|
19
|
Abadi VAJM, Sepehri M, Rahmani HA, Dolatabad HK, Shamshiripour M, Khatabi B. Diversity and abundance of culturable nitrogen-fixing bacteria in the phyllosphere of maize. J Appl Microbiol 2021; 131:898-912. [PMID: 33331107 DOI: 10.1111/jam.14975] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 01/15/2023]
Abstract
AIMS The present study aimed at gaining an insight into the abundance and genetic diversity of culturable N-fixing epiphyte bacteria on the phyllosphere of maize in arid and semi-arid regions of Iran. METHODS AND RESULTS Leaf samples of the maize variety, 'single cross 704' (Zea mays L.) were collected from different locations in Iran. The community of culturable N-fixing epiphyte bacteria present was examined by 16S rRNA sequencing, BOXAIR-polymerase chain reaction (PCR) and restricted fragment length polymorphisms analysis of 16S rRNA gene (16S-RFLP). Approximately, 31·82% of the 242 isolates were identified as N-fixers by cultivation of bacteria in Rennie medium and detection of their nifH gene. The N-fixers were affiliated with four bacterial phyla: Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes. 16S rRNA sequencing detected 16 genera and 24 different species in the identified phyla. The most dominant genus was Bacillus and the species identified were B. pumilus, B. amyloliquefaciens, B. subtilis, B. paralicheniformis, B. licheniformis, B. niabensis and B. megaterium. In total, 22 RFLP groups were present among the isolates originally identified as N-fixing bacteria. BOXAIR-PCR showed that there was a low similarity level among the N-fixing bacteria isolates, and genetic differentiation of individual strains was relatively great. CONCLUSIONS Our findings suggest that nitrogen-fixing epiphyte bacteria on the phyllosphere of maize may provide significant nitrogen input into arid and semi-arid ecosystem. SIGNIFICANCE AND IMPACT OF THE STUDY This research implies that phyllosphere epiphyte diazotrophs have much to offer in sustainable agriculture and can be an alternative to chemical N-fertilizers for providing nitrogen to crops arid and semi-arid regions.
Collapse
Affiliation(s)
- V A J M Abadi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - M Sepehri
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - H A Rahmani
- Soil and Water Research Institute, Agriculture Research, Education and Extension Organization, Karaj, Iran
| | - H K Dolatabad
- Soil and Water Research Institute, Agriculture Research, Education and Extension Organization, Karaj, Iran
| | - M Shamshiripour
- Soil and Water Research Institute, Agriculture Research, Education and Extension Organization, Karaj, Iran
| | - B Khatabi
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| |
Collapse
|
20
|
Sun K, Sun H, Qiu Z, Liu Q. Comparative Analyses of Phyllosphere Bacterial Communities and Metabolomes in Newly Developed Needles of Cunninghamia lanceolata (Lamb.) Hook. at Four Stages of Stand Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:717643. [PMID: 34650578 PMCID: PMC8505725 DOI: 10.3389/fpls.2021.717643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/30/2021] [Indexed: 05/06/2023]
Abstract
Host-plant-associated bacteria affect the growth, vigor, and nutrient availability of the host plant. However, phyllosphere bacteria have received less research attention and their functions remain elusive, especially in forest ecosystems. In this study, we collected newly developed needles from sapling (age 5 years), juvenile (15 years), mature (25 years), and overmature (35 years) stands of Chinese fir [Cunninghamia lanceolata (Lamb.) Hook]. We analyzed changes in phyllosphere bacterial communities, their functional genes, and metabolic activity among different stand ages. The results showed that phyllosphere bacterial communities changed, both in relative abundance and in composition, with an increase in stand age. Community abundance predominantly changed in the orders Campylobacterales, Pseudonocardiales, Deinococcales, Gemmatimonadales, Betaproteobacteriales, Chthoniobacterales, and Propionibacteriales. Functional predictions indicated the genes of microbial communities for carbon metabolism, nitrogen metabolism, antibiotic biosynthesis, flavonoids biosynthesis, and steroid hormone biosynthesis varied; some bacteria were strongly correlated with some metabolites. A total of 112 differential metabolites, including lipids, benzenoids, and flavonoids, were identified. Trigonelline, proline, leucine, and phenylalanine concentrations increased with stand age. Flavonoids concentrations were higher in sapling stands than in other stands, but the transcript levels of genes associated with flavonoids biosynthesis in the newly developed needles of saplings were lower than those of other stands. The nutritional requirements and competition between individual trees at different growth stages shaped the phyllosphere bacterial community and host-bacteria interaction. Gene expression related to the secondary metabolism of shikimate, mevalonate, terpenoids, tocopherol, phenylpropanoids, phenols, alkaloids, carotenoids, betains, wax, and flavonoids pathways were clearly different in Chinese fir at different ages. This study provides an overview of phyllosphere bacteria, metabolism, and transcriptome in Chinese fir of different stand ages and highlights the value of an integrated approach to understand the molecular mechanisms associated with biosynthesis.
Collapse
Affiliation(s)
- Kun Sun
- Key Laboratory of Subtropical Siviculture of State Forestry and Grassland Administration, Research Institute of Subtropical Forestry of Chinese Academy of Forestry, Hangzhou, China
- Department of Tree Genetics, College of Forestry, Beihua University, Jilin, China
| | - Honggang Sun
- Key Laboratory of Subtropical Siviculture of State Forestry and Grassland Administration, Research Institute of Subtropical Forestry of Chinese Academy of Forestry, Hangzhou, China
- *Correspondence: Honggang Sun
| | - Zonghao Qiu
- Laboratory of Molecular Biology, Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Qiang Liu
- Department of Plant Sciences, School of Life Sciences, Jilin Normal University, Siping, China
| |
Collapse
|
21
|
Aydogan EL, Budich O, Hardt M, Choi YH, Jansen-Willems AB, Moser G, Müller C, Kämpfer P, Glaeser SP. Global warming shifts the composition of the abundant bacterial phyllosphere microbiota as indicated by a cultivation-dependent and -independent study of the grassland phyllosphere of a long-term warming field experiment. FEMS Microbiol Ecol 2020; 96:5835220. [DOI: 10.1093/femsec/fiaa087] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/08/2020] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
The leaf-colonizing bacterial microbiota was studied in a long-term warming experiment on a permanent grassland, which had been continuously exposed to increased surface temperature (+2°C) for more than six years. Two abundant plant species, Arrhenatherum elatius and Galium album, were studied. Surface warming reduced stomata opening and changed leaf metabolite profiles. Leaf surface colonization and the concentration of leaf-associated bacterial cells were not affected. However, bacterial 16S ribosomal RNA (rRNA) gene amplicon Illumina sequencing showed significant temperature effects on the plant species-specific phyllosphere microbiota. Warming partially affected the concentrations of cultured bacteria and had a significant effect on the composition of most abundant cultured plant species-specific bacteria. The abundance of Sphingomonas was significantly reduced. Sphingomonas isolates from warmed plots represented different phylotypes, had different physiological traits and were better adapted to higher temperatures. Among Methylobacterium isolates, a novel phylotype with a specific mxaFtype was cultured from plants of warmed plots while the most abundant phylotype cultured from control plots was strongly reduced. This study clearly showed a correlation of long-term surface warming with changes in the plant physiology and the development of a physiologically and genetically adapted phyllosphere microbiota.
Collapse
Affiliation(s)
- Ebru L Aydogan
- Institute of Applied Microbiology (IFZ), Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Olga Budich
- Institute of Applied Microbiology (IFZ), Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Martin Hardt
- Biomedical Research Center Seltersberg – Imaging Unit, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Anne B Jansen-Willems
- Institute of Plant Ecology (IFZ), Justus Liebig University Giessen, D-39392 Giessen, Germany
| | - Gerald Moser
- Institute of Plant Ecology (IFZ), Justus Liebig University Giessen, D-39392 Giessen, Germany
| | - Christoph Müller
- Institute of Plant Ecology (IFZ), Justus Liebig University Giessen, D-39392 Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, D04V1W8 Dublin, Ireland
| | - Peter Kämpfer
- Institute of Applied Microbiology (IFZ), Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Stefanie P Glaeser
- Institute of Applied Microbiology (IFZ), Justus Liebig University Giessen, D-35392 Giessen, Germany
| |
Collapse
|
22
|
Yadav AN, Singh J, Rastegari AA, Yadav N. Phyllospheric Microbiomes: Diversity, Ecological Significance, and Biotechnological Applications. ACTA ACUST UNITED AC 2020. [PMCID: PMC7123684 DOI: 10.1007/978-3-030-38453-1_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The phyllosphere referred to the total aerial plant surfaces (above-ground portions), as habitat for microorganisms. Microorganisms establish compositionally complex communities on the leaf surface. The microbiome of phyllosphere is rich in diversity of bacteria, fungi, actinomycetes, cyanobacteria, and viruses. The diversity, dispersal, and community development on the leaf surface are based on the physiochemistry, environment, and also the immunity of the host plant. A colonization process is an important event where both the microbe and the host plant have been benefited. Microbes commonly established either epiphytic or endophytic mode of life cycle on phyllosphere environment, which helps the host plant and functional communication with the surrounding environment. To the scientific advancement, several molecular techniques like metagenomics and metaproteomics have been used to study and understand the physiology and functional relationship of microbes to the host and its environment. Based on the available information, this chapter describes the basic understanding of microbiome in leaf structure and physiology, microbial interactions, especially bacteria, fungi, and actinomycetes, and their adaptation in the phyllosphere environment. Further, the detailed information related to the importance of the microbiome in phyllosphere to the host plant and their environment has been analyzed. Besides, biopotentials of the phyllosphere microbiome have been reviewed.
Collapse
Affiliation(s)
- Ajar Nath Yadav
- Department of Biotechnology, Eternal University, Baru Sahib, Himachal Pradesh India
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab India
| | | | - Neelam Yadav
- Gopi Nath PG College, Veer Bahadur Singh Purvanchal University, Ghazipur, Uttar Pradesh India
| |
Collapse
|
23
|
Li Y, Wu X, Wang W, Wang M, Zhao C, Chen T, Liu G, Zhang W, Li S, Zhou H, Wu M, Yang R, Zhang G. Microbial taxonomical composition in spruce phyllosphere, but not community functional structure, varies by geographical location. PeerJ 2019; 7:e7376. [PMID: 31355059 PMCID: PMC6644631 DOI: 10.7717/peerj.7376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/28/2019] [Indexed: 01/06/2023] Open
Abstract
Previous studies indicate that the plant phenotypic traits eventually shape its microbiota due to the community assembly based on the functional types. If so, the distance-related variations of microbial communities are mostly only in taxonomical composition due to the different seeds pool, and there is no difference in microbial community functional structure if the location associated factors would not cause phenotypical variations in plants. We test this hypothesis by investigating the phyllospheric microbial community from five species of spruce (Picea spp.) trees that planted similarly but at three different locations. Results indicated that the geographical location affected microbial taxonomical compositions and had no effect on the community functional structure. In fact, this actually leads to a spurious difference in the microbial community. Our findings suggest that, within similar host plants, the phyllosphere microbial communities with differing taxonomical compositions might be functionally similar.
Collapse
Affiliation(s)
- Yunshi Li
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Xiukun Wu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Wanfu Wang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Conservation Institute, Dunhuang Academy, Dunhuang, China
| | - Minghao Wang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Changming Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tuo Chen
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Guangxiu Liu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Wei Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Shiweng Li
- Lanzhou Jiaotong University, School of Environmental and Municipal Engineering, Lanzhou, China
| | - Huaizhe Zhou
- National University of Defense Technology, College of Computer, Changsha, China
| | - Minghui Wu
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Ruiqi Yang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Gaosen Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| |
Collapse
|
24
|
Moreira-Grez B, Muñoz-Rojas M, Kariman K, Storer P, O’Donnell AG, Kumaresan D, Whiteley AS. Reconditioning Degraded Mine Site Soils With Exogenous Soil Microbes: Plant Fitness and Soil Microbiome Outcomes. Front Microbiol 2019; 10:1617. [PMID: 31354694 PMCID: PMC6636552 DOI: 10.3389/fmicb.2019.01617] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/28/2019] [Indexed: 02/01/2023] Open
Abstract
Mining of mineral resources substantially alters both the above and below-ground soil ecosystem, which then requires rehabilitation back to a pre-mining state. For belowground rehabilitation, recovery of the soil microbiome to a state which can support key biogeochemical cycles, and effective plant colonization is usually required. One solution proposed has been to translate microbial inocula from agricultural systems to mine rehabilitation scenarios, as a means of reconditioning the soil microbiome for planting. Here, we experimentally determine both the aboveground plant fitness outcomes and belowground soil microbiome effects of a commercially available soil microbial inocula (SMI). We analyzed treatment effects at four levels of complexity; no SMI addition control, Nitrogen addition alone, SMI addition and SMI plus Nitrogen addition over a 12-week period. Our culture independent analyses indicated that SMIs had a differential response over the 12-week incubation period, where only a small number of the consortium members persisted in the semi-arid ecosystem, and generated variable plant fitness responses, likely due to plant-microbiome physiological mismatching and low survival rates of many of the SMI constituents. We suggest that new developments in custom-made SMIs to increase rehabilitation success in mine site restoration are required, primarily based upon the need for SMIs to be ecologically adapted to both the prevailing edaphic conditions and a wide range of plant species likely to be encountered.
Collapse
Affiliation(s)
- Benjamin Moreira-Grez
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Miriam Muñoz-Rojas
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Perth, WA, Australia
| | - Khalil Kariman
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Paul Storer
- Troforte Innovations Pty Ltd., Perth, WA, Australia
| | | | - Deepak Kumaresan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, Queen’s University of Belfast, Belfast, United Kingdom
| | - Andrew S. Whiteley
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
25
|
Nouioui I, Cortés-albayay C, Carro L, Castro JF, Gtari M, Ghodhbane-Gtari F, Klenk HP, Tisa LS, Sangal V, Goodfellow M. Genomic Insights Into Plant-Growth-Promoting Potentialities of the Genus Frankia. Front Microbiol 2019; 10:1457. [PMID: 31333602 PMCID: PMC6624747 DOI: 10.3389/fmicb.2019.01457] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
This study was designed to determine the plant growth promoting (PGP) potential of members of the genus Frankia. To this end, the genomes of 21 representative strains were examined for genes associated directly or indirectly with plant growth. All of the Frankia genomes contained genes that encoded for products associated with the biosynthesis of auxins [indole-3-glycerol phosphate synthases, anthranilate phosphoribosyltransferases (trpD), anthranilate synthases, and aminases (trpA and B)], cytokinins (11 well-conserved genes within the predicted biosynthetic gene cluster), siderophores, and nitrogenases (nif operon except for atypical Frankia) as well as genes that modulate the effects of biotic and abiotic environmental stress (e.g., alkyl hydroperoxide reductases, aquaporin Z, heat shock proteins). In contrast, other genes were associated with strains assigned to one or more of four host-specific clusters. The genes encoding for phosphate solubilization (e.g., low-affinity inorganic phosphate transporters) and lytic enzymes (e.g., cellulases) were found in Frankia cluster 1 genomes, while other genes were found only in cluster 3 genomes (e.g., alkaline phosphatases, extracellular endoglucanases, pectate lyases) or cluster 4 and subcluster 1c genomes (e.g., NAD(P) transhydrogenase genes). Genes encoding for chitinases were found only in the genomes of the type strains of Frankia casuarinae, F. inefficax, F. irregularis, and F. saprophytica. In short, these in silico genome analyses provide an insight into the PGP abilities of Frankia strains of known taxonomic provenance. This is the first study designed to establish the underlying genetic basis of cytokinin production in Frankia strains. Also, the discovery of additional genes in the biosynthetic gene cluster involved in cytokinin production opens up the prospect that Frankia may have novel molecular mechanisms for cytokinin biosynthesis.
Collapse
Affiliation(s)
- Imen Nouioui
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Carlos Cortés-albayay
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lorena Carro
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca, Spain
| | - Jean Franco Castro
- The Chilean Collection of Microbial Genetic Resources (CChRGM), Instituto de Investigaciones Agropecuarias (INIA) – Quilamapu, Chillán, Chile
| | - Maher Gtari
- Institut National des Sciences Appliquées et de Technologie, Université de Carthage Centre Urbain Nord, Tunis, Tunisia
| | - Faten Ghodhbane-Gtari
- Institut National des Sciences Appliquées et de Technologie, Université de Carthage Centre Urbain Nord, Tunis, Tunisia
- Laboratoire Microorganismes et Biomolécules Actives, Faculté de Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Louis S. Tisa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
26
|
The Composition and Assembly of Bacterial Communities across the Rhizosphere and Phyllosphere Compartments of Phragmites Australis. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11060098] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The rhizosphere and the phyllosphere represent two different epiphytic compartments of host plant, which are closely related to plant growth, health, and productivity. However, the understanding of the diversity, composition, and assembly of the bacterial communities in different epiphytic microenvironments of large emerged macrophytes has remained elusive, especially the abundant and rare taxa across rhizosphere and phyllosphere communities. In this study, we collected samples of two different epiphytic compartments (rhizosphere and phyllosphere) of Phragmites australis. Both 16S rRNA gene-based high-throughput sequencing and null-model analysis were employed to determine the difference in the composition and assembly of above-mentioned epiphytic bacterial communities. Our results indicated that bacterial communities of rhizosphere exhibited higher diversity and richness than those of phyllosphere. Deterministic processes dominated the assembly of bacterial community in both compartments, and stochastic processes contributed a certain proportion (30.30%) in the assembly of phyllosphere bacterial community. We also found that rare taxa contributed more significantly to the alpha- and beta-diversity of bacterial community than those of abundant taxa. The obtained data are useful for better understanding the bacterial community of different epiphytic compartments of P. australis.
Collapse
|
27
|
Li Y, Sun H, Wu Z, Li H, Sun Q. Urban traffic changes the biodiversity, abundance, and activity of phyllospheric nitrogen-fixing bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16097-16104. [PMID: 30968298 DOI: 10.1007/s11356-019-05008-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
The phyllosphere provides appropriate conditions for colonization by microorganisms, including diazotrophic bacteria. However, a poor understanding of the effects of the atmospheric environment on the phyllospheric diazotrophic communities persists. We detected the biodiversity, abundance, and activity of nitrogen-fixing bacteria in the phyllospheres of two evergreen shrubs, Nerium indicum Mill. and Osmanthus sp., sampled from urban areas with heavy traffic, a college campus, and a forest. Quantitative PCR analysis indicated that the copy numbers of nifH sequences were highest in the phyllospheres of both plants in heavy-traffic urban areas and correlated with the recorded nitrogenase activities of the phyllospheres. Similarly, the phyllosphere from heavy-traffic urban areas also possessed the highest biodiversity indices of diazotrophic communities from both the two plants. Pyrosequencing analysis revealed a diversity of nifH sequences in phyllosphere that were mostly uniquely found in the phyllosphere, and many of these were proteobacteria-like and cyanobacteria-like. Members of the Proteobacteria, mostly of which were not closely related to unknown organisms, were detected exclusively in the phyllosphere and represented substantial fractions of their associated diazotrophic communities. Our study provides initial insight into the shifts in the biodiversity and community structure of N2-fixing microorganisms in the phyllospheres of different atmospheric environments.
Collapse
Affiliation(s)
- Yang Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
| | - Hong Sun
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhaojun Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
| | - Hui Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
| | - Qingye Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, China.
| |
Collapse
|
28
|
Sánchez-López AS, González-Chávez MDCA, Solís-Domínguez FA, Carrillo-González R, Rosas-Saito GH. Leaf Epiphytic Bacteria of Plants Colonizing Mine Residues: Possible Exploitation for Remediation of Air Pollutants. Front Microbiol 2018; 9:3028. [PMID: 30581428 PMCID: PMC6292962 DOI: 10.3389/fmicb.2018.03028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/22/2018] [Indexed: 11/20/2022] Open
Abstract
Plant surfaces are known as an important sink for various air pollutants, including particulate matter and its associated potentially toxic elements (PTE). Moreover, leaves surface or phylloplane is a habitat that harbors diverse bacterial communities (epiphytic). However, little is known about their possible functions during phytoremediation of air pollutants like PTE. The study of leaf epiphytic bacteria of plants colonizing mine residues (MR) containing PTE is thus a key to understand and exploit plant–epiphytic bacteria interactions for air phytoremediation purposes. In this research, we aimed (i) to characterize the functions of epiphytic bacteria isolated from the phylloplane of Brickellia veronicifolia, Flaveria trinervia, Gnaphalium sp., and Allioniachoisyi growing spontaneously on multi-PTE contaminated MR and (ii) to compare these against the same plant species in a non-polluted control site (NC). Concentrations (mg kg-1) of PTE on MR leaf surfaces of A. choisyi reached up to 232 for Pb, 13 for Cd, 2,728 for As, 52 for Sb, 123 for Cu in F. trinervia, and 269 for Zn in Gnaphalium sp. In the four plant species, the amount of colony-forming units per cm2 was superior in MR leaves than in NC ones, being A. choisyi the plant species with the highest value. Moreover, the proportion of isolates tolerant to PTE (Zn, Cu, Cd, and Sb), UV light, and drought was higher in MR leaves than in those in NC. Strain BA15, isolated from MR B. veronicifolia, tolerated 150 mg Zn L-1, 30 mg Sb L-1, 25 mg Cu L-1; 80 mg Pb L-1, and was able to grow after 12 h of continuous exposition to UV light and 8 weeks of drought. Plant growth promotion related traits [N fixation, indole acetic acid (IAA) production, and phosphate solubilization] of bacterial isolates varied among plant species isolates and between MR and NC sampling condition. The studied epiphytic isolates possess functions interesting for phytoremediation of air pollutants. The results of this research may contribute to the development of novel and more efficient inoculants for microbe-assisted phytoremediation applied to improve air quality in areas exposed to the dispersion of metal mine tailings.
Collapse
Affiliation(s)
- Ariadna S Sánchez-López
- Bio-Engineering Laboratory, Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Mexico
| | | | - Fernando A Solís-Domínguez
- Bio-Engineering Laboratory, Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Mexico
| | - Rogelio Carrillo-González
- Soil and Environmental Chemistry Laboratory, Edaphology Program, Colegio de Postgraduados, Texcoco, Mexico
| | - Greta H Rosas-Saito
- Electron Microscopy Laboratory, Red de Estudios Moleculares Avanzados, Instituto Nacional de Ecología, Xalapa Enríquez, Mexico
| |
Collapse
|
29
|
Singh P, Santoni S, This P, Péros JP. Genotype-Environment Interaction Shapes the Microbial Assemblage in Grapevine's Phyllosphere and Carposphere: An NGS Approach. Microorganisms 2018; 6:microorganisms6040096. [PMID: 30248973 PMCID: PMC6313654 DOI: 10.3390/microorganisms6040096] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/10/2018] [Accepted: 09/19/2018] [Indexed: 11/26/2022] Open
Abstract
Plant surface or phyllosphere is the habitat of hyperdiverse microbial communities and it is always exposed to the fluctuating environmental factors, which is thought to be one of the potential drivers of microbial community structuring. Impact of grapevine genotypes in variable environmental factors (i.e., at different geographic locations) on the phyllosphere has never been studied and is the main objective of this report. Using high throughput short amplicon sequencing of 16S rRNA genes and internal transcribed spacer (ITS), we analyzed the impacts of genotypes of Vitis Vinifera (coming from three genetic pool), on the microbial (bacterial and fungal) assemblage in the phyllosphere. First, we performed the analysis of the phyllosphere microbiome while using fifteen genotypes that were chosen to maximize intra-specific diversity and grown in two Mediterranean vineyards. Then, the same analysis was performed on five commercially important varieties of Vitis vinifera that were sampled from three different French agro-climatic zones (or terroir: a combination of climate, soils, and human practices). Our study revealed that, at a particular geographic location, genotypes have an impact on microbial assemblage in the phyllosphere and carposphere of leaf and fruit (or berries), respectively, which is more prominent on the carposphere but the effect of terroir was much stronger than the genotype when the leaf phyllosphere of five grapevine varieties grown in different agro-climatic zones was compared. Impacts of the season and exterior plant organs (leaf and berries) on microbial taxa structuring in the phyllosphere was also assessed and presented in this report.
Collapse
Affiliation(s)
- Prashant Singh
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 34000 Montpellier, France.
| | - Sylvain Santoni
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 34000 Montpellier, France.
| | - Patrice This
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 34000 Montpellier, France.
| | - Jean-Pierre Péros
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 34000 Montpellier, France.
| |
Collapse
|
30
|
Wei X, Lyu S, Yu Y, Wang Z, Liu H, Pan D, Chen J. Phylloremediation of Air Pollutants: Exploiting the Potential of Plant Leaves and Leaf-Associated Microbes. FRONTIERS IN PLANT SCIENCE 2017; 8:1318. [PMID: 28804491 PMCID: PMC5532450 DOI: 10.3389/fpls.2017.01318] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/12/2017] [Indexed: 05/22/2023]
Abstract
Air pollution is air contaminated by anthropogenic or naturally occurring substances in high concentrations for a prolonged time, resulting in adverse effects on human comfort and health as well as on ecosystems. Major air pollutants include particulate matters (PMs), ground-level ozone (O3), sulfur dioxide (SO2), nitrogen dioxides (NO2), and volatile organic compounds (VOCs). During the last three decades, air has become increasingly polluted in countries like China and India due to rapid economic growth accompanied by increased energy consumption. Various policies, regulations, and technologies have been brought together for remediation of air pollution, but the air still remains polluted. In this review, we direct attention to bioremediation of air pollutants by exploiting the potentials of plant leaves and leaf-associated microbes. The aerial surfaces of plants, particularly leaves, are estimated to sum up to 4 × 108 km2 on the earth and are also home for up to 1026 bacterial cells. Plant leaves are able to adsorb or absorb air pollutants, and habituated microbes on leaf surface and in leaves (endophytes) are reported to be able to biodegrade or transform pollutants into less or nontoxic molecules, but their potentials for air remediation has been largely unexplored. With advances in omics technologies, molecular mechanisms underlying plant leaves and leaf associated microbes in reduction of air pollutants will be deeply examined, which will provide theoretical bases for developing leaf-based remediation technologies or phylloremediation for mitigating pollutants in the air.
Collapse
Affiliation(s)
- Xiangying Wei
- Fujian Univeristy Key Laboratory of Plant-Microbe Interaction, College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- Department of Environmental Horticulture and Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of FloridaApopka, FL, United States
| | - Shiheng Lyu
- Department of Environmental Horticulture and Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of FloridaApopka, FL, United States
- College of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Ying Yu
- College of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Zonghua Wang
- Fujian Univeristy Key Laboratory of Plant-Microbe Interaction, College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Hong Liu
- Fujian Univeristy Key Laboratory of Plant-Microbe Interaction, College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Dongming Pan
- College of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Jianjun Chen
- Fujian Univeristy Key Laboratory of Plant-Microbe Interaction, College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- Department of Environmental Horticulture and Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of FloridaApopka, FL, United States
- College of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
31
|
Valverde A, González-Tirante M, Medina-Sierra M, Rivas R, Santa-Regina I, Igual JM. Culturable bacterial diversity from the chestnut ( Castanea sativa Mill.) phyllosphere and antagonism against the fungi causing the chestnut blight and ink diseases. AIMS Microbiol 2017; 3:293-314. [PMID: 31294162 PMCID: PMC6605015 DOI: 10.3934/microbiol.2017.2.293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/21/2017] [Indexed: 11/18/2022] Open
Abstract
The phyllosphere supports a large and complex bacterial community that varies both across plant species and geographical locations. Phyllosphere bacteria can have important effects on plant health. The sweet chestnut (Castanea sativa Mill.) is an economically important tree species affected worldwide by the fungal pathogens Cryphonectria parasitica and Phytophthora cinnamomi. We examined the culturable phyllosphere bacterial community of the sweet chestnut at two nearby locations in Central Spain in order to know its geographical variability and to explore its potential as source of biological control agents against these two pathogenic fungi. The bacterial diversity at strain level was high but it varied significantly between locations; however, phylotype richness and diversity were more comparable. The isolates were affiliated with the phyla Actinobacteria, Firmicutes and Proteobacteria. Most of them were members of recognized bacterial species, with a notable proportion of representative of the genera Dietzia and Lonsdalea, but a small fraction of the strains revealed the existence of several potential novel species or even genera. Antagonism tests showed the occurrence in the chestnut phyllosphere of bacterial strains potentially useful as biological control agents against the two pathogenic fungi, some of which belong to species never before described as fungal antagonists. Chestnut phyllosphere, therefore, contains a great diversity of culturable bacteria and may represent an untapped source of potential biocontrol agents against the fungi causing blight and ink diseases of this tree species.
Collapse
Affiliation(s)
- Angel Valverde
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), 37008 Salamanca, Spain.,Department of Genetics, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria 0028, South Africa
| | - María González-Tirante
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), 37008 Salamanca, Spain.,Estación Biológica de Doñana, 41001 Sevilla, Spain
| | - Marisol Medina-Sierra
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), 37008 Salamanca, Spain.,Escuela de Producción Agropecuaria, Group GRICA (Grupo de Investigación en Ciencias Agrarias), Facultad de Ciencias Agrarias, Universidad de Antioquia, Medellín, Colombia
| | - Raúl Rivas
- Departamento de Microbiología y Genética, Universidad de Salamanca, 37007 Salamanca, Spain.,Unidad Asociada Universidad de Salamanca-CSIC (IRNASA), Salamanca, Spain
| | - Ignacio Santa-Regina
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), 37008 Salamanca, Spain.,Unidad Asociada Universidad de Salamanca-CSIC (IRNASA), Salamanca, Spain
| | - José M Igual
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), 37008 Salamanca, Spain.,Unidad Asociada Universidad de Salamanca-CSIC (IRNASA), Salamanca, Spain
| |
Collapse
|
32
|
McRose DL, Zhang X, Kraepiel AML, Morel FMM. Diversity and Activity of Alternative Nitrogenases in Sequenced Genomes and Coastal Environments. Front Microbiol 2017; 8:267. [PMID: 28293220 PMCID: PMC5328986 DOI: 10.3389/fmicb.2017.00267] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/07/2017] [Indexed: 11/13/2022] Open
Abstract
The nitrogenase enzyme, which catalyzes the reduction of N2 gas to NH4+, occurs as three separate isozyme that use Mo, Fe-only, or V. The majority of global nitrogen fixation is attributed to the more efficient 'canonical' Mo-nitrogenase, whereas Fe-only and V-('alternative') nitrogenases are often considered 'backup' enzymes, used when Mo is limiting. Yet, the environmental distribution and diversity of alternative nitrogenases remains largely unknown. We searched for alternative nitrogenase genes in sequenced genomes and used PacBio sequencing to explore the diversity of canonical (nifD) and alternative (anfD and vnfD) nitrogenase amplicons in two coastal environments: the Florida Everglades and Sippewissett Marsh (MA). Genome-based searches identified an additional 25 species and 10 genera not previously known to encode alternative nitrogenases. Alternative nitrogenase amplicons were found in both Sippewissett Marsh and the Florida Everglades and their activity was further confirmed using newly developed isotopic techniques. Conserved amino acid sequences corresponding to cofactor ligands were also analyzed in anfD and vnfD amplicons, offering insight into environmental variants of these motifs. This study increases the number of available anfD and vnfD sequences ∼20-fold and allows for the first comparisons of environmental Mo-, Fe-only, and V-nitrogenase diversity. Our results suggest that alternative nitrogenases are maintained across a range of organisms and environments and that they can make important contributions to nitrogenase diversity and nitrogen fixation.
Collapse
Affiliation(s)
- Darcy L McRose
- Department of Geosciences, Princeton University, Princeton NJ, USA
| | - Xinning Zhang
- Department of Geosciences, Princeton University, Princeton NJ, USA
| | | | | |
Collapse
|
33
|
Houle D, Lajoie G, Duchesne L. Major losses of nutrients following a severe drought in a boreal forest. NATURE PLANTS 2016; 2:16187. [PMID: 27909293 DOI: 10.1038/nplants.2016.187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 10/28/2016] [Indexed: 06/06/2023]
Abstract
Because of global warming, the frequency and severity of droughts are expected to increase, which will have an impact on forest ecosystem health worldwide1. Although the impact of drought on tree growth and mortality is being increasingly documented2-4, very little is known about the impact on nutrient cycling in forest ecosystems. Here, based on long-term monitoring data, we report nutrient fluxes in a boreal forest before, during and following a severe drought in July 2012. During and shortly after the drought, we observed high throughfall (rain collected below the canopy) concentrations of nutrient base cations (potassium, calcium and magnesium), chlorine, phosphorus and dissolved organic carbon (DOC), differing by one to two orders of magnitude relative to the long-term normal, and resulting in important canopy losses. The high throughfall fluxes had repercussions in the soil solution at a depth of 30 cm, leading to high DOC, chlorine and potassium concentrations. The net potassium losses (atmospheric deposition minus leaching losses) following the drought were especially important, being the equivalent of nearly 20 years of net losses under 'normal' conditions. Our data show that droughts have unexpected impacts on nutrient cycling through impacts on tree canopy and soils and may lead to important episodes of potassium losses from boreal forest ecosystems. The potassium losses associated with drought will add to those originating from tree harvesting and from forest fires and insect outbreaks5-7 (with the last two being expected to increase in the future as a result of climate change), and may contribute to reduced potassium availability in boreal forests in a warming world.
Collapse
Affiliation(s)
- Daniel Houle
- Direction de la recherche forestière, Forêt Québec, Ministère des Forêts, de la Faune et des Parcs, 2700 Einstein Street, Québec City, Quebec G1P 3W8, Canada
- Consortium on Regional Climatology and Adaptation to Climate Change (Ouranos), 550 Sherbrooke Street West, 19th Floor, Montreal, Quebec H3A 1B9, Canada
| | - Geneviève Lajoie
- Consortium on Regional Climatology and Adaptation to Climate Change (Ouranos), 550 Sherbrooke Street West, 19th Floor, Montreal, Quebec H3A 1B9, Canada
| | - Louis Duchesne
- Direction de la recherche forestière, Forêt Québec, Ministère des Forêts, de la Faune et des Parcs, 2700 Einstein Street, Québec City, Quebec G1P 3W8, Canada
| |
Collapse
|
34
|
Vacher C, Hampe A, Porté AJ, Sauer U, Compant S, Morris CE. The Phyllosphere: Microbial Jungle at the Plant–Climate Interface. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-121415-032238] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Arndt Hampe
- BIOGECO, INRA, Univ. Bordeaux, 33610 Cestas, France
| | | | - Ursula Sauer
- Bioresources Unit, Department of Health and Environment, AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria
| | - Stéphane Compant
- Bioresources Unit, Department of Health and Environment, AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria
| | - Cindy E. Morris
- INRA, Unité de Recherche de Pathologie Végétale, 84143 Montfavet, France
| |
Collapse
|
35
|
Farré-Armengol G, Filella I, Llusia J, Peñuelas J. Bidirectional Interaction between Phyllospheric Microbiotas and Plant Volatile Emissions. TRENDS IN PLANT SCIENCE 2016; 21:854-860. [PMID: 27401253 DOI: 10.1016/j.tplants.2016.06.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 05/24/2023]
Abstract
Due to their antimicrobial effects and their potential role as carbon sources, plant volatile organic compound (VOC) emissions play significant roles in determining the characteristics of the microbial communities that can establish on plant surfaces. Furthermore, epiphytic microorganisms, including bacteria and fungi, can affect plant VOC emissions in different ways: by producing and emitting their own VOCs, which are added to and mixed with the plant VOC blend; by affecting plant physiology and modifying the production and emission of VOCs; and by metabolizing the VOCs emitted by the plant. The study of the interactions between plant VOC emissions and phyllospheric microbiotas is thus of great interest and deserves more attention.
Collapse
Affiliation(s)
- Gerard Farré-Armengol
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain.
| | - Iolanda Filella
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| | - Joan Llusia
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| |
Collapse
|
36
|
Gargallo-Garriga A, Sardans J, Pérez-Trujillo M, Guenther A, Llusià J, Rico L, Terradas J, Farré-Armengol G, Filella I, Parella T, Peñuelas J. Shifts in plant foliar and floral metabolomes in response to the suppression of the associated microbiota. BMC PLANT BIOLOGY 2016; 16:78. [PMID: 27048394 PMCID: PMC4822282 DOI: 10.1186/s12870-016-0767-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/31/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND The phyllospheric microbiota is assumed to play a key role in the metabolism of host plants. Its role in determining the epiphytic and internal plant metabolome, however, remains to be investigated. We analyzed the Liquid Chromatography-Mass Spectrometry (LC-MS) profiles of the epiphytic and internal metabolomes of the leaves and flowers of Sambucus nigra with and without external antibiotic treatment application. RESULTS The epiphytic metabolism showed a degree of complexity similar to that of the plant organs. The suppression of microbial communities by topical applications of antibiotics had a greater impact on the epiphytic metabolome than on the internal metabolomes of the plant organs, although even the latter changed significantly both in leaves and flowers. The application of antibiotics decreased the concentration of lactate in both epiphytic and organ metabolomes, and the concentrations of citraconic acid, acetyl-CoA, isoleucine, and several secondary compounds such as terpenes and phenols in the epiphytic extracts. The metabolite pyrogallol appeared in the floral epiphytic community only after the treatment. The concentrations of the amino acid precursors of the ketoglutarate-synthesis pathway tended to decrease in the leaves and to increase in the foliar epiphytic extracts. CONCLUSIONS These results suggest that anaerobic and/or facultative anaerobic bacteria were present in high numbers in the phyllosphere and in the apoplasts of S. nigra. The results also show that microbial communities play a significant role in the metabolomes of plant organs and could have more complex and frequent mutualistic, saprophytic, and/or parasitic relationships with internal plant metabolism than currently assumed.
Collapse
Affiliation(s)
- Albert Gargallo-Garriga
- />CSIC, Global Ecology Unit CREAF- CSIC-UAB, Cerdanyola del Vallès, Catalonia 08193 Spain
- />CREAF, Cerdanyola del Vallès, Catalonia 08193 Spain
- />Service of Nuclear Magnetic Resonance, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia 08913 Spain
| | - Jordi Sardans
- />CSIC, Global Ecology Unit CREAF- CSIC-UAB, Cerdanyola del Vallès, Catalonia 08193 Spain
- />CREAF, Cerdanyola del Vallès, Catalonia 08193 Spain
| | - Míriam Pérez-Trujillo
- />Service of Nuclear Magnetic Resonance, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia 08913 Spain
| | - Alex Guenther
- />Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | - Joan Llusià
- />CSIC, Global Ecology Unit CREAF- CSIC-UAB, Cerdanyola del Vallès, Catalonia 08193 Spain
- />CREAF, Cerdanyola del Vallès, Catalonia 08193 Spain
| | - Laura Rico
- />CSIC, Global Ecology Unit CREAF- CSIC-UAB, Cerdanyola del Vallès, Catalonia 08193 Spain
- />CREAF, Cerdanyola del Vallès, Catalonia 08193 Spain
| | - Jaume Terradas
- />CREAF, Cerdanyola del Vallès, Catalonia 08193 Spain
- />Department BABVE, Universitat Autònoma de Barcelona, Barcelona, Catalonia 08913 Spain
| | - Gerard Farré-Armengol
- />CSIC, Global Ecology Unit CREAF- CSIC-UAB, Cerdanyola del Vallès, Catalonia 08193 Spain
- />CREAF, Cerdanyola del Vallès, Catalonia 08193 Spain
| | - Iolanda Filella
- />CSIC, Global Ecology Unit CREAF- CSIC-UAB, Cerdanyola del Vallès, Catalonia 08193 Spain
- />CREAF, Cerdanyola del Vallès, Catalonia 08193 Spain
| | - Teodor Parella
- />Service of Nuclear Magnetic Resonance, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia 08913 Spain
| | - Josep Peñuelas
- />CSIC, Global Ecology Unit CREAF- CSIC-UAB, Cerdanyola del Vallès, Catalonia 08193 Spain
- />CREAF, Cerdanyola del Vallès, Catalonia 08193 Spain
| |
Collapse
|
37
|
Phylogenetic Diversity of Diazotrophs along an Experimental Nutrient Gradient in Mangrove Sediments. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2015. [DOI: 10.3390/jmse3030699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|