1
|
Jalakas P, Tulva I, Bērziņa NM, Hõrak H. Stomatal patterning is differently regulated in adaxial and abaxial epidermis in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6476-6488. [PMID: 39158985 PMCID: PMC11523041 DOI: 10.1093/jxb/erae354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Stomatal pores in leaves mediate CO2 uptake into the plant and water loss via transpiration. Most plants are hypostomatous with stomata present only in the lower leaf surface (abaxial epidermis). Many herbs, including the model plant Arabidopsis, have substantial numbers of stomata also on the upper (adaxial) leaf surface. Studies of stomatal development have mostly focused on abaxial stomata and very little is known of adaxial stomatal formation. We analysed the role of leaf number in determining stomatal density and stomatal ratio, and studied adaxial and abaxial stomatal patterns in Arabidopsis mutants deficient in known abaxial stomatal development regulators. We found that stomatal density in some genetic backgrounds varies between different fully expanded leaves, and thus we recommend using defined leaves for analyses of stomatal patterning. Our results indicate that stomatal development is at least partly independently regulated in adaxial and abaxial epidermis, as (i) plants deficient in ABA biosynthesis and perception have increased stomatal ratios, (ii) the epf1epf2, tmm, and sdd1 mutants have reduced stomatal ratios, (iii) erl2 mutants have increased adaxial but not abaxial stomatal index, and (iv) stomatal precursors preferentially occur in abaxial epidermis. Further studies of adaxial stomata can reveal new insights into stomatal form and function.
Collapse
Affiliation(s)
- Pirko Jalakas
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Ingmar Tulva
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | | | - Hanna Hõrak
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| |
Collapse
|
2
|
Sun M, Niinemets Ü, Li Q, Jiao Y, Yao W, Shi P. An Inverse Scaling Relationship between Stomatal Density and Mean Nearest Neighbor Distance: Evidence from a Photinia Hybrid and One of Its Parents. PLANTS (BASEL, SWITZERLAND) 2023; 12:3701. [PMID: 37960057 PMCID: PMC10650524 DOI: 10.3390/plants12213701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Stomata are involved in transpiration and CO2 uptake by mediating gas exchange between internal plant tissues and the atmosphere. The capacity for gas exchange depends on stomatal density (SD), stomatal size, and pore dimensions. Most published work on stomatal quantification has assumed that stomatal distribution and stomatal density are spatially homogeneous across the leaf, but this assumption has been seldom tested. We selected 32 leaves from a Photinia hybrid, Photinia × fraseri 'Red Robin', and one of its parents, P. serratifolia. For each leaf, the leaf surface was divided into three or four equidistant layers along the apical-basal axis, and, in each layer, two positions, one closer to the midrib and the other closer to the leaf margin, were further selected. We calculated SD and mean nearest neighbor distance (MNND) for each lamina section and tested the scaling relationship between SD and MNND of the sampled stomatal centers using reduced major axis protocols. In addition, we calculated the stomatal aggregation index (SAI) for each lamina section to examine the spatial arrangement of stomata at the given size of field of view of 1.2 mm × 0.9 mm. We observed that SD decreased from the lamina apex towards the base for central lamina areas but varied little at leaf margins. An inverse scaling relationship between SD and MNND was observed for both species. This relationship could be used for SD estimation using the rapidly estimated trait, MNND. SAI did not vary significantly throughout leaf lamina, and the numerical values of SAI for all fields of view were greater than one, which indicates significant spatial repulsion between stomata. The study suggests that SD varies across leaf lamina to fine-tune plant water use and maximize carbon gain. However, spatial structures of stomata from different lamina sections exhibit similar patterns (i.e., spatial inhibition between stomata at small scales), probably due to hierarchical leaf vein patterns.
Collapse
Affiliation(s)
- Manli Sun
- Archives, Bamboo Research Institute, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China; (M.S.); (Q.L.); (Y.J.); (W.Y.)
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
- Estonian Academy of Sciences, 10130 Tallinn, Estonia
| | - Qiying Li
- Archives, Bamboo Research Institute, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China; (M.S.); (Q.L.); (Y.J.); (W.Y.)
| | - Yabing Jiao
- Archives, Bamboo Research Institute, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China; (M.S.); (Q.L.); (Y.J.); (W.Y.)
| | - Weihao Yao
- Archives, Bamboo Research Institute, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China; (M.S.); (Q.L.); (Y.J.); (W.Y.)
| | - Peijian Shi
- Archives, Bamboo Research Institute, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China; (M.S.); (Q.L.); (Y.J.); (W.Y.)
| |
Collapse
|
3
|
Robertson BC, Han Y, Li C. A Comparison of Different Stomatal Density Phenotypes of Hordeum vulgare under Varied Watering Regimes Reveals Superior Genotypes with Enhanced Drought Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:2840. [PMID: 37570994 PMCID: PMC10420674 DOI: 10.3390/plants12152840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Enhancing the water-use efficiency (WUE) of barley cultivars may safeguard yield deficits during periods of low rainfall. Reduced stomatal density is linked to enhanced WUE, leading to improved drought resistance across plant genera. In this study, 10 barley varieties exhibiting a range of stomatal density phenotypes were grown under differing soil water contents to determine whether stomatal density influences the capacity of genotypes to resist low water availability. The low-stomatal-density genotype Hindmarsh showed the least impact on biomass production during early development, with a 37.13% decrease in dry biomass during drought treatment. Low-stomatal-density genotypes additionally outcompeted high-stomatal-density genotypes under water-deprivation conditions during the reproductive phase of development, exhibiting 19.35% greater wilting resistance and generating 54.62% more heads relative to high-stomatal-density genotypes (p < 0.05). Finally, a correlation analysis revealed a strong negative linear relationship between stomatal density and the traits of head number (r = -0.71) and the number of days until wilting symptoms (r = -0.67) (p < 0.05). The combined results indicate that low-stomatal-density genotypes show promising attributes for high WUE, revealing novel barley varieties that may be useful to future breed improvement for drought tolerance.
Collapse
Affiliation(s)
- Brittany Clare Robertson
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (B.C.R.); (Y.H.)
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Yong Han
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (B.C.R.); (Y.H.)
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Department of Primary Industries and Regional Development, 3-Baron-Hay Court, South Perth, WA 6151, Australia
| | - Chengdao Li
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (B.C.R.); (Y.H.)
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Department of Primary Industries and Regional Development, 3-Baron-Hay Court, South Perth, WA 6151, Australia
| |
Collapse
|
4
|
Hasanuzzaman M, Zhou M, Shabala S. How Does Stomatal Density and Residual Transpiration Contribute to Osmotic Stress Tolerance? PLANTS (BASEL, SWITZERLAND) 2023; 12:494. [PMID: 36771579 PMCID: PMC9919688 DOI: 10.3390/plants12030494] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Osmotic stress that is induced by salinity and drought affects plant growth and development, resulting in significant losses to global crop production. Consequently, there is a strong need to develop stress-tolerant crops with a higher water use efficiency through breeding programs. Water use efficiency could be improved by decreasing stomatal transpiration without causing a reduction in CO2 uptake under osmotic stress conditions. The genetic manipulation of stomatal density could be one of the most promising strategies for breeders to achieve this goal. On the other hand, a substantial amount of water loss occurs across the cuticle without any contribution to carbon gain when the stomata are closed and under osmotic stress. The minimization of cuticular (otherwise known as residual) transpiration also determines the fitness and survival capacity of the plant under the conditions of a water deficit. The deposition of cuticular wax on the leaf epidermis acts as a limiting barrier for residual transpiration. However, the causal relationship between the frequency of stomatal density and plant osmotic stress tolerance and the link between residual transpiration and cuticular wax is not always straightforward, with controversial reports available in the literature. In this review, we focus on these controversies and explore the potential physiological and molecular aspects of controlling stomatal and residual transpiration water loss for improving water use efficiency under osmotic stress conditions via a comparative analysis of the performance of domesticated crops and their wild relatives.
Collapse
Affiliation(s)
- Md. Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- School of Biological Science, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
5
|
Xia Y, Du K, Ling A, Wu W, Li J, Kang X. Overexpression of PagSTOMAGEN, a Positive Regulator of Stomatal Density, Promotes Vegetative Growth in Poplar. Int J Mol Sci 2022; 23:ijms231710165. [PMID: 36077563 PMCID: PMC9456429 DOI: 10.3390/ijms231710165] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Poplar is an important fast-growing tree, and its photosynthetic capacity directly affects its vegetative growth. Stomatal density is closely related to photosynthetic capacity and growth characteristics in plants. Here, we isolated PagSTOMAGEN from the hybrid poplar (Populus alba × Populus glandulosa) clone 84K and investigated its biological function in vegetative growth. PagSTOMAGEN was expressed predominantly in young tissues and localized in the plasma membrane. Compared with wild-type 84K poplars, PagSTOMAGEN-overexpressing plants displayed an increased plant height, leaf area, internode number, basal diameter, biomass, IAA content, IPR content, and stomatal density. Higher stomatal density improved the net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, and transpiration rate in transgenic poplar. The differential expression of genes related to stomatal development showed a diverged influence of PagSTOMAGEN at different stages of stomatal development. Finally, transcriptomic analysis showed that PagSTOMAGEN affected vegetative growth by affecting the expression of photosynthesis and plant hormone-related genes (such as SAUR75, PQL2, PSBX, ERF1, GNC, GRF5, and ARF11). Taken together, our data indicate that PagSTOMAGEN could positively regulate stomatal density and increase the photosynthetic rate and plant hormone content, thereby promoting vegetative growth in poplar. Our study is of great significance for understanding the relationship between stoma, photosynthesis, and yield breeding in poplar.
Collapse
Affiliation(s)
- Yufei Xia
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Kang Du
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Aoyu Ling
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wenqi Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiang Li
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (J.L.); (X.K.)
| | - Xiangyang Kang
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (J.L.); (X.K.)
| |
Collapse
|
6
|
Pérez-Bueno ML, Illescas-Miranda J, Martín-Forero AF, de Marcos A, Barón M, Fenoll C, Mena M. An extremely low stomatal density mutant overcomes cooling limitations at supra-optimal temperature by adjusting stomatal size and leaf thickness. FRONTIERS IN PLANT SCIENCE 2022; 13:919299. [PMID: 35937324 PMCID: PMC9355609 DOI: 10.3389/fpls.2022.919299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/27/2022] [Indexed: 05/25/2023]
Abstract
The impact of global warming on transpiration and photosynthesis would compromise plant fitness, impacting on crop yields and ecosystem functioning. In this frame, we explored the performance of a set of Arabidopsis mutants carrying partial or total loss-of-function alleles of stomatal development genes and displaying distinct stomatal abundances. Using microscopy and non-invasive imaging techniques on this genotype collection, we examined anatomical leaf and stomatal traits, plant growth and development, and physiological performance at optimal (22°C) and supra-optimal (30°C) temperatures. All genotypes showed thermomorphogenetic responses but no signs of heat stress. Data analysis singled out an extremely low stomatal abundance mutant, spch-5. At 22°C, spch-5 had lower transpiration and warmer leaves than the wild type. However, at 30°C, this mutant developed larger stomata and thinner leaves, paralleled by a notable cooling capacity, similar to that of the wild type. Despite their low stomatal density (SD), spch-5 plants grown at 30°C showed no photosynthesis or growth penalties. The behavior of spch-5 at supra-optimal temperature exemplifies how the effect of very low stomatal numbers can be counteracted by a combination of larger stomata and thinner leaves. Furthermore, it provides a novel strategy for coping with high growth temperatures.
Collapse
Affiliation(s)
- María Luisa Pérez-Bueno
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
- Departamento de Fisiología Vegetal, Universidad de Granada, Granada, Spain
| | | | - Amanda F. Martín-Forero
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Alberto de Marcos
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Matilde Barón
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Carmen Fenoll
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Montaña Mena
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
7
|
Tsoumalakou E, Papadimitriou T, Berillis P, Kormas KA, Levizou E. Spray irrigation with microcystins-rich water affects plant performance from the microscopic to the functional level and food safety of spinach (Spinacia oleracea L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147948. [PMID: 34051502 DOI: 10.1016/j.scitotenv.2021.147948] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Irrigation water coming from freshwater bodies that suffer toxic cyanobacterial blooms causes adverse effects on crop productivity and quality and raises concerns regarding food contamination and human exposure to toxins. The common agricultural practice of spray irrigation is an important exposure route to cyanotoxins, yet its impact on crops has received little attention. In the present study we attempted an integrated approach at the macro- and microscopic level to investigate whether spray or drip irrigation with microcystins (MCs)-rich water differently affect spinach performance. Growth and functional features, structural characteristics of stomata, and toxin bioaccumulation were determined. Additionally, the impact of irrigation method and water type on the abundance of leaf-attached microorganisms was assessed. Drip irrigation with MCs-rich water had detrimental effects on growth and photosynthetic characteristics of spinach, while spray irrigation ameliorated to various extents the observed impairments. The stomatal characteristics were differently affected by the irrigation method. Drip-irrigated spinach leaves showed significantly lower stomatal density in the abaxial epidermis and smaller stomatal size in the adaxial side compared to spray-irrigation treatment. Nevertheless, the latter deteriorated traits related to fresh produce quality and safety for human consumption; both the abundance of leaf-attached microorganisms and the MCs bioaccumulation in edible tissues well exceeded the corresponding values of drip-irrigated spinach with MC-rich water. The results highlight the significance of both the use of MCs-contaminated water in vegetable production and the irrigation method in shaping plant responses as well as health risk due to human and livestock exposure to MCs.
Collapse
Affiliation(s)
- E Tsoumalakou
- University of Thessaly, Department of Agriculture Crop Production and Rural Environment, Fytokou, 38446 Nea Ionia, Volos, Greece
| | - T Papadimitriou
- University of Thessaly, Department of Agriculture Ichthyology & Aquatic Environment, Fytokou, 38446 Nea Ionia, Volos, Greece
| | - P Berillis
- University of Thessaly, Department of Agriculture Ichthyology & Aquatic Environment, Fytokou, 38446 Nea Ionia, Volos, Greece
| | - K A Kormas
- University of Thessaly, Department of Agriculture Ichthyology & Aquatic Environment, Fytokou, 38446 Nea Ionia, Volos, Greece
| | - E Levizou
- University of Thessaly, Department of Agriculture Crop Production and Rural Environment, Fytokou, 38446 Nea Ionia, Volos, Greece.
| |
Collapse
|
8
|
Liu Q, Wang Z, Yu S, Li W, Zhang M, Yang J, Li D, Yang J, Li C. Pu-miR172d regulates stomatal density and water-use efficiency via targeting PuGTL1 in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1370-1383. [PMID: 33098429 DOI: 10.1093/jxb/eraa493] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/16/2020] [Indexed: 05/22/2023]
Abstract
miRNAs play essential regulatory roles in many aspects of plant development and in responses to abiotic and biotic stresses. Here, we characterize Pu-miR172d, which acts as a negative regulator of stomatal density by directly repressing the expression of PuGTL1 in Populus ussuriensis. Quantitative real-time PCR and GUS reporter analyses showed that Pu-miR172d was strongly expressed in the guard cells of young leaves. Overexpression of Pu-miR172d significantly decreased stomatal density, resulting in increases in water use efficiency (WUE) and drought tolerance by reducing net photosynthetic rate, stomatal conductance, and transpiration. Molecular analysis showed that PuGTL1 was a major target of Pu-miR172d cleavage. Moreover, PuGTL1-SRDX plants, in which PuGTL1 is suppressed, phenocopied Pu-miR172d-overexpression lines with reduced stomatal density and enhanced WUE. The expression of PuSDD1, a negative regulator of stomatal development, was significantly increased in young leaves of both Pu-miR172d-overexpression and PuGTL1-SRDX plants. RNA-seq analysis of mature leaves indicated that overexpression of Pu-miR172d decreased the expression of many genes related to photosynthesis. Our findings show that the Pu-miR172d/PuGTL1/PuSDD1 module plays an important role in stomatal differentiation, and hence it is a potential target for engineering improved drought tolerance in poplar.
Collapse
Affiliation(s)
- Quangang Liu
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, China
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Zhanchao Wang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, China
| | - Sen Yu
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, China
| | - Wenlong Li
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, China
| | - Mengqiu Zhang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, China
| | - Jia Yang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, China
| | - Dandan Li
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, China
| | - Jingli Yang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, China
| | - Chenghao Li
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
9
|
SPEECHLESS and MUTE Mediate Feedback Regulation of Signal Transduction during Stomatal Development. PLANTS 2021; 10:plants10030432. [PMID: 33668323 PMCID: PMC7996297 DOI: 10.3390/plants10030432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/14/2021] [Accepted: 02/21/2021] [Indexed: 01/01/2023]
Abstract
Stomatal density, spacing, and patterning greatly influence the efficiency of gas exchange, photosynthesis, and water economy. They are regulated by a complex of extracellular and intracellular factors through the signaling pathways. After binding the extracellular epidermal patterning factor 1 (EPF1) and 2 (EPF2) as ligands, the receptor-ligand complexes activate by phosphorylation through the MAP-kinase cascades, regulating basic helix-loop-helix (bHLH) transcription factors SPEECHLESS (SPCH), MUTE, and FAMA. In this review, we summarize the molecular mechanisms and signal transduction pathways running within the transition of the protodermal cell into a pair of guard cells with a space (aperture) between them, called a stoma, comprising asymmetric and symmetric cell divisions and draw several functional models. The feedback mechanisms involving the bHLH factors SPCH and MUTE are not fully recognized yet. We show the feedback mechanisms driven by SPCH and MUTE in the regulation of EPF2 and the ERECTA family. Intersections of the molecular mechanisms for fate determination of stomatal lineage cells with the role of core cell cycle-related genes and stabilization of SPCH and MUTE are also reported.
Collapse
|
10
|
Stomatal and Leaf Morphology Response of European Beech (Fagus sylvatica L.) Provenances Transferred to Contrasting Climatic Conditions. FORESTS 2020. [DOI: 10.3390/f11121359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Climate change-induced elevated temperatures and drought are considered to be serious threats to forest ecosystems worldwide, negatively affecting tree growth and viability. We studied nine European beech (Fagus sylvatica L.) provenances located in two provenance trial plots with contrasting climates in Central Europe. Stomata play a vital role in the water balance of plants by regulating gaseous exchanges between plants and the atmosphere. Therefore, to explain the possible adaptation and acclimation of provenances to climate conditions, stomatal (stomatal density, the length of guard cells, and the potential conductance index) and leaf morphological traits (leaf size, leaf dry weight and specific leaf area) were assessed. The phenotypic plasticity index was calculated from the variability of provenances’ stomatal and leaf traits between the provenance plots. We assessed the impact of various climatic characteristics and derived indices (e.g., ecodistance) on intraspecific differences in stomatal and leaf traits. Provenances transferred to drier and warmer conditions acclimated through a decrease in stomatal density, the length of guard cells, potential conductance index, leaf size and leaf dry weight. The reduction in stomatal density and the potential conductance index was proportional to the degree of aridity difference between the climate of origin and conditions of the new site. Moreover, we found that the climate heterogeneity and latitude of the original provenance sites influence the phenotypic plasticity of provenances. Provenances from lower latitudes and less heterogeneous climates showed higher values of phenotypic plasticity. Furthermore, we observed a positive correlation between phenotypic plasticity and mortality in the arid plot but not in the more humid plot. Based on these impacts of the climate on stomatal and leaf traits of transferred provenances, we can improve the predictions of provenance reactions for future scenarios of global climate change.
Collapse
|
11
|
Wickramanayake JS, Goss JA, Zou M, Goggin FL. Loss of Function of Fatty Acid Desaturase 7 in Tomato Enhances Photosynthetic Carbon Fixation Efficiency. FRONTIERS IN PLANT SCIENCE 2020; 11:932. [PMID: 32676090 PMCID: PMC7333566 DOI: 10.3389/fpls.2020.00932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/08/2020] [Indexed: 05/19/2023]
Abstract
Fatty Acid Desaturase 7 (FAD7) generates polyunsaturated fatty acids, promoting the desaturation of chloroplast membranes; it also provides an essential precursor for the synthesis of jasmonic acid (JA), a phytohormone that can influence plant growth, development, and primary metabolism. This study examined the effects of spr2, a null mutation in SlFAD7, on the growth, morphology, and photosynthetic traits of tomato, Solanum lycopersicum. Although the spr2 mutant had a lower density of stomata than wild type plants, the two genotypes had comparable stomatal conductance, transpiration rates, and intracellular CO2 levels; in addition, spr2 had significantly thinner leaf blades, which may help maintain normal levels of CO2 diffusion despite the lower number of stomata. Surprisingly, spr2 also had significantly higher carbon assimilation (A) and maximum quantum efficiency of PSII (Fv/Fm) than wild type plants at both of the light intensities tested here (220 or 440 µmol m-2 s-1), despite having lower levels of chlorophyll than wild type plants under low light (220 µmol m-2 s-1). Furthermore, CO2 response curves indicated higher in vivo Rubisco activity (Vcmax) in spr2 compared to wild type plants, as well as an enhanced maximum rate of electron transport used in the regeneration of ribulose-1,5-bisphosphate (Jmax). These data indicate that loss of function of FAD7 can enhance the efficiency of both light-dependent and light-independent reactions in photosynthesis. Consistent with this, the spr2 mutant also displayed enhanced growth, with significantly more leaves and a more compact growth habit. In contrast to spr2, another tomato mutant impaired in JA synthesis (acx1) showed no enhancements in growth or photosynthetic efficiency, suggesting that the enhancements observed in spr2 are independent of the effects of this mutation on JA synthesis. These data demonstrate that loss of function of FAD7 can enhance photosynthesis and growth, potentially through its impacts on the chloroplast membranes.
Collapse
Affiliation(s)
| | - Josue A. Goss
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Min Zou
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Fiona L. Goggin
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
12
|
Yin J, Li X, Guo H, Zhang J, Kong L, Ren W. Legacy effects of historical grazing alter leaf stomatal characteristics in progeny plants. PeerJ 2020; 8:e9266. [PMID: 32596041 PMCID: PMC7305771 DOI: 10.7717/peerj.9266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/10/2020] [Indexed: 12/26/2022] Open
Abstract
Grazing, one of the primary utilization modes of grassland, is the main cause of grassland degradation. Historical overgrazing results in dwarf phenotype and decreased photosynthesis of perennial plants. However, it remains unknown what the mechanism underlying of this legacy effect is, and the role of stomata in the resulting decreased photosynthesis also remains unclear. To address these questions, differences in stomatal density, length and width on both adaxial and abaxial epidermis were compared between overgrazing and ungrazed Leymus chinensis offspring by using rhizome buds cultivated in a greenhouse, and the correlation between photosynthetic capacity and stomatal behavior was also investigated. Our results showed that historical grazing significantly impacted phenotype, photosynthesis and stomatal traits of L. chinensis. The offspring plants taken from overgrazed parents were dwarfed compared to those taken from ungrazed parents, and the photosynthesis and stomatal conductance of plants with a grazing history decreased by 28.6% and 21.3%, respectively. In addition, stomatal density and length on adaxial and abaxial leaf surfaces were significantly increased; however, stomatal width on abaxial leaf surfaces of overgrazed L. chinensis was significantly decreased compared with ungrazed individuals. Moreover, the expression patterns of eight genes related to stomatal regulation were tested: seven were down-regulated (2-18 times) and one was up-regulated (three times). Genes, involved in ABC transporter and receptor-like serine/threonine protein kinase were down-regulated. These results suggest that legacy effects of historical grazing affect the stomatal conductance by decreasing the stomatal width in progeny plants, which thus results in lower photosynthesis. Furthermore, changes of stomatal traits and function were regulated by the inhibition of ABC transporter and serine/threonine protein kinase. These findings are helpful for future exploration of the possible mechanisms underlying the response of grassland plants to long-term overgrazing.
Collapse
Affiliation(s)
- Jingjing Yin
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Institute of Grassland Research, Chinese Academy of Agriculture Sciences, Hohhot, China
| | - Xiliang Li
- Institute of Grassland Research, Chinese Academy of Agriculture Sciences, Hohhot, China
| | - Huiqin Guo
- School of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jize Zhang
- Institute of Grassland Research, Chinese Academy of Agriculture Sciences, Hohhot, China
| | - Lingqi Kong
- Institute of Grassland Research, Chinese Academy of Agriculture Sciences, Hohhot, China
| | - Weibo Ren
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| |
Collapse
|
13
|
Osmolovskaya N, Shumilina J, Kim A, Didio A, Grishina T, Bilova T, Keltsieva OA, Zhukov V, Tikhonovich I, Tarakhovskaya E, Frolov A, Wessjohann LA. Methodology of Drought Stress Research: Experimental Setup and Physiological Characterization. Int J Mol Sci 2018; 19:E4089. [PMID: 30563000 PMCID: PMC6321153 DOI: 10.3390/ijms19124089] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 01/27/2023] Open
Abstract
Drought is one of the major stress factors affecting the growth and development of plants. In this context, drought-related losses of crop plant productivity impede sustainable agriculture all over the world. In general, plants respond to water deficits by multiple physiological and metabolic adaptations at the molecular, cellular, and organism levels. To understand the underlying mechanisms of drought tolerance, adequate stress models and arrays of reliable stress markers are required. Therefore, in this review we comprehensively address currently available models of drought stress, based on culturing plants in soil, hydroponically, or in agar culture, and critically discuss advantages and limitations of each design. We also address the methodology of drought stress characterization and discuss it in the context of real experimental approaches. Further, we highlight the trends of methodological developments in drought stress research, i.e., complementing conventional tests with quantification of phytohormones and reactive oxygen species (ROS), measuring antioxidant enzyme activities, and comprehensively profiling transcriptome, proteome, and metabolome.
Collapse
Affiliation(s)
- Natalia Osmolovskaya
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia.
| | - Julia Shumilina
- Department of Biochemistry, St. Petersburg State University, 199904 St. Petersburg, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
| | - Ahyoung Kim
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
| | - Anna Didio
- Department of Biochemistry, St. Petersburg State University, 199904 St. Petersburg, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
| | - Tatiana Grishina
- Department of Biochemistry, St. Petersburg State University, 199904 St. Petersburg, Russia.
| | - Tatiana Bilova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
| | - Olga A Keltsieva
- Institute of Analytical Instrumentation, Russian Academy of Science, 190103 St. Petersburg, Russia.
| | - Vladimir Zhukov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia.
| | - Igor Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia.
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia.
| | - Elena Tarakhovskaya
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia.
- Department of Scientific Information, Russian Academy of Sciences Library, 199034 St. Petersburg, Russia.
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University, 199904 St. Petersburg, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
| |
Collapse
|
14
|
A Megabase-Scale Deletion is Associated with Phenotypic Variation of Multiple Traits in Maize. Genetics 2018; 211:305-316. [PMID: 30389804 PMCID: PMC6325712 DOI: 10.1534/genetics.118.301567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/26/2018] [Indexed: 11/18/2022] Open
Abstract
Genomic deletions are pervasive in the maize (Zea mays L.) genome, and play important roles in phenotypic variation and adaptive evolution. However, little is known about the biological functions of these genomic deletions. Here, we report the biological function of a megabase-scale deletion, which we identified by position-based cloning of the multi-trait weakened (muw) mutant, which is inherited as a single recessive locus. MUW was mapped to a 5.16-Mb region on chromosome 2. The 5.16-Mb deletion in the muw mutant led to the loss of 48 genes and was responsible for a set of phenotypic abnormities, including wilting leaves, poor yield performance, reduced plant height, increased stomatal density, and rapid water loss. While muw appears to have resulted from double-stranded break repair that was not dependent on intragenomic DNA homology, extensive duplication of maize genes may have mitigated its effects and facilitated its survival.
Collapse
|
15
|
Effect of polyploidy on the leaf epidermis structure of Cynodon dactylon (L.) Pers. (Poaceae). Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0106-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Morales-Navarro S, Pérez-Díaz R, Ortega A, de Marcos A, Mena M, Fenoll C, González-Villanueva E, Ruiz-Lara S. Overexpression of a SDD1-Like Gene From Wild Tomato Decreases Stomatal Density and Enhances Dehydration Avoidance in Arabidopsis and Cultivated Tomato. FRONTIERS IN PLANT SCIENCE 2018; 9:940. [PMID: 30022991 PMCID: PMC6039981 DOI: 10.3389/fpls.2018.00940] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/12/2018] [Indexed: 05/20/2023]
Abstract
Stomata are microscopic valves formed by two guard cells flanking a pore, which are located on the epidermis of most aerial plant organs and are used for water and gas exchange between the plant and the atmosphere. The number, size and distribution of stomata are set during development in response to changing environmental conditions, allowing plants to minimize the impact of a stressful environment. In Arabidopsis, STOMATAL DENSITY AND DISTRIBUTION 1 (AtSDD1) negatively regulates stomatal density and optimizes transpiration and water use efficiency (WUE). Despite this, little is known about the function of AtSDD1 orthologs in crop species and their wild stress-tolerant relatives. In this study, SDD1-like from the stress-tolerant wild tomato Solanum chilense (SchSDD1-like) was identified through its close sequence relationship with SDD1-like from Solanum lycopersicum and AtSDD1. Both Solanum SDD1-like transcripts accumulated in high levels in young leaves, suggesting that they play a role in early leaf development. Arabidopsis sdd1-3 plants transformed with SchSDD1-like under a constitutive promoter showed a significant reduction in stomatal leaf density compared with untransformed sdd1-3 plants. Additionally, a leaf dehydration shock test demonstrated that the reduction in stomatal abundance of transgenic plants was sufficient to slow down dehydration. Overexpression of SchSDD1-like in cultivated tomato plants decreased the stomatal index and density of the cotyledons and leaves, and resulted in higher dehydration avoidance. Taken together, these results indicate that SchSDD1-like functions in a similar manner to AtSDD1 and suggest that Arabidopsis and tomatoes share this component of the stomatal development pathway that impinges on water status.
Collapse
Affiliation(s)
| | | | - Alfonso Ortega
- Facultad de Ciencias Ambientales Y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Alberto de Marcos
- Facultad de Ciencias Ambientales Y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Montaña Mena
- Facultad de Ciencias Ambientales Y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Carmen Fenoll
- Facultad de Ciencias Ambientales Y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | | | - Simón Ruiz-Lara
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- *Correspondence: Simón Ruiz-Lara,
| |
Collapse
|