1
|
Baek S, Naing AH, Kang H, Chung MY, Kim CK. Overexpression of acdS in petunia reduces ethylene production and improves tolerance to heat stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:789-797. [PMID: 38858861 DOI: 10.1111/plb.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024]
Abstract
Petunia hybrida, widely grown as a bedding plant, has reduced growth and flower quality at temperatures above 30 °C (heat stress), primarily due to heat stress-induced ethylene (ET) production. The gene acdS encodes the 1-aminocyclopropane-1-carboxylate (ACC) deaminase (ACCD) enzyme, which is known for its role in reducing ET production by breaking down the ET precursor, ACC, in plant tissues. This study investigated the impact of heat stress on both 'Mirage Rose' WT petunia and its acdS-overexpressing transgenic lines. Heat stress-induced growth inhibition was observed in WT plants but not in transgenic plants. The increased stress tolerance of transgenic plants over WT plants was associated with lower ET production, ROS accumulation, higher SPAD values, water content, and relative water content. Furthermore, higher sensitivity of the WT to heat stress than the transgenic plants was confirmed by analysing ET signalling genes, heat shock transcription factor genes, and antioxidant- and proline-related genes, more strongly induced in WT than in transgenic plants. Overall, this study suggests the potential application of acdS overexpression in other floriculture plants as a viable strategy for developing heat stress-tolerant varieties. This approach holds promise for advancing the floricultural industry by overcoming challenges related to heat-induced growth inhibition and loss of flower quality.
Collapse
Affiliation(s)
- S Baek
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - A H Naing
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - H Kang
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - M Y Chung
- Department of Agricultural Education, Sunchon National University, Suncheon, South Korea
| | - C K Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
2
|
Yan F, Ma J, Peng M, Xi C, Chang S, Yang Y, Tian S, Zhou B, Liu T. Lactic acid induced defense responses in tobacco against Phytophthora nicotianae. Sci Rep 2024; 14:9338. [PMID: 38654120 DOI: 10.1038/s41598-024-60037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Induced resistance is considered an eco-friendly disease control strategy, which can enhance plant disease resistance by inducing the plant's immune system to activate the defense response. In recent years, studies have shown that lactic acid can play a role in plant defense against biological stress; however, whether lactic acid can improve tobacco resistance to Phytophthora nicotianae, and its molecular mechanism remains unclear. In our study, the mycelial growth and sporangium production of P. nicotianae were inhibited by lactic acid in vitro in a dose-dependent manner. Application of lactic acid could reduce the disease index, and the contents of total phenol, salicylic acid (SA), jasmonic acid (JA), lignin and H2O2, catalase (CAT) and phenylalanine ammonia-lyase (PAL) activities were significantly increased. To explore this lactic acid-induced protective mechanism for tobacco disease resistance, RNA-Seq analysis was used. Lactic acid enhances tobacco disease resistance by activating Ca2+, reactive oxygen species (ROS) signal transduction, regulating antioxidant enzymes, SA, JA, abscisic acid (ABA) and indole-3-acetic acid (IAA) signaling pathways, and up-regulating flavonoid biosynthesis-related genes. This study demonstrated that lactic acid might play a role in inducing resistance to tobacco black shank disease; the mechanism by which lactic acid induces disease resistance includes direct antifungal activity and inducing the host to produce direct and primed defenses. In conclusion, this study provided a theoretical basis for lactic acid-induced resistance and a new perspective for preventing and treating tobacco black shank disease.
Collapse
Affiliation(s)
- Fan Yan
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- National-Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Junchi Ma
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- National-Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Manjiang Peng
- Tobacco Quality Inspection, Department of Raw Material, Hongyun Honghe Tobacco Group, Kunming, 650051, Yunnan, China
| | - Congfang Xi
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Sheng Chang
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd. Kunming, Yunnan, 650201, China
| | - Ying Yang
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd. Kunming, Yunnan, 650201, China
| | - Suohui Tian
- No. 10 Middle School, Guangnan County, Wenshan Prefecture, Wenshan, 663300, Yunnan, China.
| | - Bo Zhou
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd. Kunming, Yunnan, 650201, China.
| | - Tao Liu
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
- National-Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
3
|
Zhu F, Cao MY, Zhang QP, Mohan R, Schar J, Mitchell M, Chen H, Liu F, Wang D, Fu ZQ. Join the green team: Inducers of plant immunity in the plant disease sustainable control toolbox. J Adv Res 2024; 57:15-42. [PMID: 37142184 PMCID: PMC10918366 DOI: 10.1016/j.jare.2023.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Crops are constantly attacked by various pathogens. These pathogenic microorganisms, such as fungi, oomycetes, bacteria, viruses, and nematodes, threaten global food security by causing detrimental crop diseases that generate tremendous quality and yield losses worldwide. Chemical pesticides have undoubtedly reduced crop damage; however, in addition to increasing the cost of agricultural production, the extensive use of chemical pesticides comes with environmental and social costs. Therefore, it is necessary to vigorously develop sustainable disease prevention and control strategies to promote the transition from traditional chemical control to modern green technologies. Plants possess sophisticated and efficient defense mechanisms against a wide range of pathogens naturally. Immune induction technology based on plant immunity inducers can prime plant defense mechanisms and greatly decrease the occurrence and severity of plant diseases. Reducing the use of agrochemicals is an effective way to minimize environmental pollution and promote agricultural safety. AIM OF REVIEW The purpose of this workis to offer valuable insights into the current understanding and future research perspectives of plant immunity inducers and their uses in plant disease control, ecological and environmental protection, and sustainable development of agriculture. KEY SCIENTIFIC CONCEPTS OF REVIEW In this work, we have introduced the concepts of sustainable and environment-friendly concepts of green disease prevention and control technologies based on plant immunity inducers. This article comprehensively summarizes these recent advances, emphasizes the importance of sustainable disease prevention and control technologies for food security, and highlights the diverse functions of plant immunity inducers-mediated disease resistance. The challenges encountered in the potential applications of plant immunity inducers and future research orientation are also discussed.
Collapse
Affiliation(s)
- Feng Zhu
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Meng-Yao Cao
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qi-Ping Zhang
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | | | - Jacob Schar
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | | | - Huan Chen
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
4
|
An YQ, Bi BS, Xu H, Ma DJ, Xi Z. Co-application of Brassinolide and Pyraclostrobin Improved Disease Control Efficacy by Eliciting Plant Innate Defense Responses in Arabidopsis thaliana. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:916-932. [PMID: 38115548 DOI: 10.1021/acs.jafc.3c07006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Applying brassinolide (BL, a phytohormone) in combination with pyraclostrobin (Pyr, a fungicide) has shown effective disease control in field trials. However, the mechanism by which BL + Pyr control disease remains uncertain. This work compared the disease control and defense responses of three pretreatments (BL, Pyr, and BL + Pyr) in Arabidopsis thaliana. We found that BL + Pyr improved control against Pyr-sensitive Hyaloperonospora arabidopsidis and Botrytis cinerea by 19 and 17% over Pyr, respectively, and achieved 29% control against Pyr-resistant B. cinerea. Furthermore, BL + Pyr outperformed BL or Pyr in boosting transient H2O2 accumulation, and the activities of POD, APX, GST, and GPX. RNA-seq analysis revealed a more potent activation of defense genes elicited by BL + Pyr than by BL or Pyr. Overall, BL + Pyr controlled disease by integrating the elicitation of plant innate disease resistance with the fungicidal activity of Pyr.
Collapse
Affiliation(s)
- Ya-Qi An
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Bo-Shi Bi
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Han Xu
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - De-Jun Ma
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, P. R. China
| |
Collapse
|
5
|
Kim YW, Youn JH, Roh J, Kim JM, Kim SK, Kim TW. Brassinosteroids enhance salicylic acid-mediated immune responses by inhibiting BIN2 phosphorylation of clade I TGA transcription factors in Arabidopsis. MOLECULAR PLANT 2022; 15:991-1007. [PMID: 35524409 DOI: 10.1016/j.molp.2022.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
Salicylic acid (SA) plays an important role in plant immune response, including resistance to pathogens and systemic acquired resistance. Two major components, NONEXPRESSOR OF PATHOGENESIS-RELATED GENES (NPRs) and TGACG motif-binding transcription factors (TGAs), are known to mediate SA signaling, which might also be orchestrated by other hormonal and environmental changes. Nevertheless, the molecular and functional interactions between SA signaling components and other cellular signaling pathways remain poorly understood. Here we showed that the steroid plant hormone brassinosteroid (BR) promotes SA responses by inactivating BR-INSENSITIVE 2 (BIN2), which inhibits the redox-sensitive clade I TGAs in Arabidopsis. We found that both BR and the BIN2 inhibitor bikinin synergistically increase SA-mediated physiological responses, such as resistance to Pst DC3000. Our genetic and biochemical analyses indicated that BIN2 functionally interacts with TGA1 and TGA4, but not with other TGAs. We further demonstrated that BIN2 phosphorylates Ser-202 of TGA4, resulting in the suppression of the redox-dependent interaction between TGA4 and NPR1 as well as destabilization of TGA4. Consistently, transgenic Arabidopsis overexpressing TGA4-YFP with a S202A mutation displayed enhanced SA responses compared to the wild-type TGA4-YFP plants. Taken together, these results suggest a novel crosstalk mechanism by which BR signaling coordinates the SA responses mediated by redox-sensitive clade I TGAs.
Collapse
Affiliation(s)
- Yeong-Woo Kim
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Ji-Hyun Youn
- Department of Life Science, Chung-Ang University, Seoul 06973, Republic of Korea
| | - Jeehee Roh
- Department of Life Science, Chung-Ang University, Seoul 06973, Republic of Korea
| | - Jeong-Mok Kim
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Seong-Ki Kim
- Department of Life Science, Chung-Ang University, Seoul 06973, Republic of Korea.
| | - Tae-Wuk Kim
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
6
|
Xiong J, Wan X, Ran M, Xu X, Chen L, Yang F. Brassinosteroids Positively Regulate Plant Immunity via BRI1-EMS-SUPPRESSOR 1-Mediated GLUCAN SYNTHASE-LIKE 8 Transcription. FRONTIERS IN PLANT SCIENCE 2022; 13:854899. [PMID: 35401617 PMCID: PMC8988940 DOI: 10.3389/fpls.2022.854899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Plant hormone brassinosteroids (BRs) play key roles in plant adaptation to biotic stresses, including various pathogen infections. As a core factor in BR signaling, the transcription factor BRI1-EMS-SUPPRESSOR 1 (BES1) activates BR responses via regulating the expression of target genes. However, the molecular mechanism of BRs in regulating plant immunity is unclear, and the key components are not identified. In this study, we found that BR biosynthesis and signaling transduction are essential for plant resistance to pathogen infection, and BR biosynthesis or BR signaling-deficient mutants displayed susceptibility to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) infection [including more serious symptoms and more photosystem II (PSII) photochemistry damage]. We identified a callose synthase gene GLUCAN SYNTHASE-LIKE 8 (GSL8) as a direct target of BES1, and its expression was induced by BRs/BES1. Meanwhile, BRs induced callose accumulation after Pst DC3000 infection. Moreover, BES1 gain-of-function mutant bes1-D showed promoted Pst DC3000 resistance. GSL8 T-DNA insertion mutant gsl8-1 was susceptible to DC3000, while brassinolide (BL) treatment partially rescued gsl8-1 susceptible phenotypes. Our study suggests that BR-induced pathogen resistance partly depends on the BR-induced BES1-GSL8 cascade to mediate callose accumulation.
Collapse
Affiliation(s)
- Jiawei Xiong
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Xiaoping Wan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
- Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Deyang, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maolin Ran
- Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Deyang, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiumei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Lezhang Chen
- Sichuan Huitai Agriculture Technology Co. Ltd., Chengdu, China
| | - Feng Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
- Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Deyang, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
7
|
Han Y, Yang R, Zhang X, Wang Q, Wang B, Zheng X, Li Y, Prusky D, Bi Y. Brassinosteroid Accelerates Wound Healing of Potato Tubers by Activation of Reactive Oxygen Metabolism and Phenylpropanoid Metabolism. Foods 2022; 11:906. [PMID: 35406993 PMCID: PMC8997868 DOI: 10.3390/foods11070906] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 12/23/2022] Open
Abstract
Wound healing could effectively reduce the decay rate of potato tubers after harvest, but it took a long time to form typical and complete healing structures. Brassinosteroid (BR), as a sterol hormone, is important for enhancing plant resistance to abiotic and biotic stresses. However, it has not been reported that if BR affects wound healing of potato tubers. In the present study, we observed that BR played a positive role in the accumulation of lignin and suberin polyphenolic (SPP) at the wounds, and effectively reduced the weight loss and disease index of potato tubers (cv. Atlantic) during healing. At the end of healing, the weight loss and disease index of BR group was 30.8% and 23.1% lower than the control, respectively. Furthermore, BR activated the expression of StPAL, St4CL, StCAD genes and related enzyme activities in phenylpropanoid metabolism, and promoted the synthesis of lignin precursors and phenolic acids at the wound site, mainly by inducing the synthesis of caffeic acid, sinapic acid and cinnamyl alcohol. Meanwhile, the expression of StNOX was induced and the production of O2- and H2O2 was promoted, which mediated oxidative crosslinking of above phenolic acids and lignin precursors to form SPP and lignin. In addition, the expression level of StPOD was partially increased. In contrast, the inhibitor brassinazole inhibited phenylpropanoid metabolism and reactive oxygen metabolism, and demonstrated the function of BR hormone in healing in reverse. Taken together, the activation of reactive oxygen metabolism and phenylpropanoid metabolism by BR could accelerate the wound healing of potato tubers.
Collapse
Affiliation(s)
- Ye Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (R.Y.); (X.Z.); (Q.W.); (B.W.); (X.Z.); (Y.L.)
| | - Ruirui Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (R.Y.); (X.Z.); (Q.W.); (B.W.); (X.Z.); (Y.L.)
| | - Xuejiao Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (R.Y.); (X.Z.); (Q.W.); (B.W.); (X.Z.); (Y.L.)
| | - Qihui Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (R.Y.); (X.Z.); (Q.W.); (B.W.); (X.Z.); (Y.L.)
| | - Bin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (R.Y.); (X.Z.); (Q.W.); (B.W.); (X.Z.); (Y.L.)
| | - Xiaoyuan Zheng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (R.Y.); (X.Z.); (Q.W.); (B.W.); (X.Z.); (Y.L.)
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (R.Y.); (X.Z.); (Q.W.); (B.W.); (X.Z.); (Y.L.)
| | - Dov Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion 7505101, Israel;
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (R.Y.); (X.Z.); (Q.W.); (B.W.); (X.Z.); (Y.L.)
| |
Collapse
|
8
|
Hu D, Wei L, Liao W. Brassinosteroids in Plants: Crosstalk with Small-Molecule Compounds. Biomolecules 2021; 11:biom11121800. [PMID: 34944444 PMCID: PMC8698649 DOI: 10.3390/biom11121800] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Brassinosteroids (BRs) are known as the sixth type of plant hormone participating in various physiological and biochemical activities and play an irreplaceable role in plants. Small-molecule compounds (SMCs) such as nitric oxide (NO), ethylene, hydrogen peroxide (H2O2), and hydrogen sulfide (H2S) are involved in plant growth and development as signaling messengers. Recently, the involvement of SMCs in BR-mediated growth and stress responses is gradually being discovered in plants, including seed germination, adventitious rooting, stem elongation, fruit ripening, and stress responses. The crosstalk between BRs and SMCs promotes plant development and alleviates stress damage by modulating the antioxidant system, photosynthetic capacity, and carbohydrate metabolism, as well as osmotic adjustment. In the present review, we try to explain the function of BRs and SMCs and their crosstalk in the growth, development, and stress resistance of plants.
Collapse
Affiliation(s)
| | | | - Weibiao Liao
- Correspondence: ; Tel.: +86-931-763-2155; Fax: +86-931-763-2155
| |
Collapse
|
9
|
Ortiz-Morea FA, He P, Shan L, Russinova E. It takes two to tango - molecular links between plant immunity and brassinosteroid signalling. J Cell Sci 2020; 133:133/22/jcs246728. [PMID: 33239345 DOI: 10.1242/jcs.246728] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In response to the invasion of microorganisms, plants actively balance their resources for growth and defence, thus ensuring their survival. The regulatory mechanisms underlying plant immunity and growth operate through complex networks, in which the brassinosteroid phytohormone is one of the central players. In the past decades, a growing number of studies have revealed a multi-layered crosstalk between brassinosteroid-mediated growth and plant immunity. In this Review, by means of the tango metaphor, we immerse ourselves into the intimate relationship between brassinosteroid and plant immune signalling pathways that is tailored by the lifestyle of the pathogen and modulated by other phytohormones. The plasma membrane is the unique stage where brassinosteroid and immune signals are dynamically integrated and where compartmentalization into nanodomains that host distinct protein consortia is crucial for the dance. Shared downstream signalling components and transcription factors relay the tango play to the nucleus to activate the plant defence response and other phytohormonal signalling pathways for the finale. Understanding how brassinosteroid and immune signalling pathways are integrated in plants will help develop strategies to minimize the growth-defence trade-off, a key challenge for crop improvement.
Collapse
Affiliation(s)
- Fausto Andres Ortiz-Morea
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA .,Amazonian Research Center Cimaz-Macagual, University of the Amazon, Florencia 180002622, Colombia
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium .,Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|