1
|
Deryabin A, Zhukova K, Naraikina N, Venzhik Y. Effect of Low Temperature on Content of Primary Metabolites in Two Wheat Genotypes Differing in Cold Tolerance. Metabolites 2024; 14:199. [PMID: 38668327 PMCID: PMC11052526 DOI: 10.3390/metabo14040199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
The study of cold-tolerance mechanisms of wheat as a leading cereal crop is very relevant to science. Primary metabolites play an important role in the formation of increased cold tolerance. The aim of this research is to define changes in the content of primary metabolites (soluble proteins and sugars), growth, and photosynthetic apparatus of freezing-tolerant and cold-sustainable wheat (Triticum aestivum L.) genotypes under optimal conditions and after prolonged (7 days) exposure to low temperature (4 °C). In order to gain a deeper comprehension of the mechanisms behind wheat genotypes' adaptation to cold, we determined the expression levels of photosynthetic genes (RbcS, RbcL) and genes encoding cold-regulated proteins (Wcor726, CBF14). The results indicated different cold-adaptation strategies of freezing-tolerant and cold-sustainable wheat genotypes, with soluble proteins and sugars playing a significant role in this process. In plants of freezing-tolerant genotypes, the strategy of adaptation to low temperature was aimed at increasing the content of soluble proteins and modification of carbohydrate metabolism. The accumulation of sugars was not observed in wheat of cold-sustainable genotypes during chilling, but a high content of soluble proteins was maintained both under optimal conditions and after cold exposure. The adaptation strategies of wheat genotypes differing in cold tolerance were related to the expression of photosynthetic genes and genes encoding cold-regulated proteins. The data improve our knowledge of physiological and biochemical mechanisms of wheat cold adaptation.
Collapse
Affiliation(s)
- Alexander Deryabin
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (K.Z.); (N.N.); (Y.V.)
| | | | | | | |
Collapse
|
2
|
Zhu M, Liu Y, Bai H, Zhang W, Liu H, Qiu Z. Integrated physio-biochemical and RNA sequencing analysis revealed mechanisms of long non-coding RNA-mediated response to cadmium toxicity in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108028. [PMID: 37708712 DOI: 10.1016/j.plaphy.2023.108028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
The yield and quality of wheat (Triticum aestivum L.) is seriously affected by soil cadmium (Cd), a hazardous material to plant and human health. Long non-coding RNAs (lncRNAs) of plants are shown actively involved in response to various biotic and abiotic stresses by mediating the gene regulatory networks. However, the functions of lncRNAs in wheat against Cd stress are still obscure. Using deep strand-specific RNA sequencing, 10,044 confident novel lncRNAs in wheat roots response to Cd stress were identified. It was found that 69 lncRNA-target pairs referred to cis-acting regulation and impacted the expressions of their neighboring genes involving in Cd transport and detoxification, photosynthesis, and antioxidant defense. These findings were positively corelated with the physio-biochemical results, i.e. Cd stress affected Cd accumulation, photosynthesis system and ROS in wheat. Overexpression of lncRNA37228 (targeted to a photosystem II protein D1 coding gene), resulted in enhancing Arabidopsis thaliana resistance against Cd stress. By genome-wide identification and characterization, the possible functions of photosystem II protein gene family in wheat under Cd condition were illustrated. Our findings provide novel knowledge into the molecular mechanisms of lncRNAs-regulated wheat tolerance to Cd toxicity and lay foundations for the further studies concerning lncRNAs in food safety production.
Collapse
Affiliation(s)
- Mo Zhu
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China; Xinxiang Key Laboratory of Plant Stress Biology, Xinxiang, 453000, PR China
| | - Yan Liu
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Hongxia Bai
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Wanwan Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Zongbo Qiu
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China; Xinxiang Key Laboratory of Plant Stress Biology, Xinxiang, 453000, PR China.
| |
Collapse
|
3
|
Tian Y, Peng K, Ma X, Ren Z, Lou G, Jiang Y, Xia J, Wang D, Yu J, Cang J. Overexpression of TaMYB4 Confers Freezing Tolerance in Arabidopsis thaliana. Int J Mol Sci 2023; 24:11090. [PMID: 37446268 DOI: 10.3390/ijms241311090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Freezing stress is one of the main factors limiting the growth and yield of wheat. In this study, we found that TaMYB4 expression was significantly upregulated in the tillering nodes of the strong cold-resistant winter wheat variety Dongnongdongmai1 (Dn1) under freezing stress. Weighted gene co-expression network analysis, qRT-PCR and protein-DNA interaction experiments demonstrated that monodehydroascorbate reductase (TaMDHAR) is a direct target of TaMYB4. The results showed that overexpression of TaMYB4 enhanced the freezing tolerance of transgenic Arabidopsis. In TaMYB4 overexpression lines (OE-TaMYB4), AtMDHAR2 expression was upregulated and ascorbate-glutathione (AsA-GSH) cycle operation was enhanced. In addition, the expression of cold stress marker genes such as AtCBF1, AtCBF2, AtCBF3, AtCOR15A, AtCOR47, AtKIN1 and AtRD29A in OE-TaMYB4 lines was significantly upregulated. Therefore, TaMYB4 may increase freezing tolerance as a transcription factor (TF) in Arabidopsis through the AsA-GSH cycle and DREB/CBF signaling pathway. This study provides a potential gene for molecular breeding against freezing stress.
Collapse
Affiliation(s)
- Yu Tian
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Kankan Peng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xuan Ma
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhipeng Ren
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Guicheng Lou
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunshuang Jiang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingqiu Xia
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Duojia Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jing Yu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jing Cang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
4
|
Fang S, Cong B, Zhao L, Liu C, Zhang Z, Liu S. Genome-Wide Analysis of Long Non-Coding RNAs Related to UV-B Radiation in the Antarctic Moss Pohlia nutans. Int J Mol Sci 2023; 24:ijms24065757. [PMID: 36982830 PMCID: PMC10051584 DOI: 10.3390/ijms24065757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
Antarctic organisms are consistently suffering from multiple environmental pressures, especially the strong UV radiation caused by the loss of the ozone layer. The mosses and lichens dominate the vegetation of the Antarctic continent, which grow and propagate in these harsh environments. However, the molecular mechanisms and related regulatory networks of these Antarctic plants against UV-B radiation are largely unknown. Here, we used an integrated multi-omics approach to study the regulatory mechanism of long non-coding RNAs (lncRNAs) of an Antarctic moss (Pohlia nutans) in response to UV-B radiation. We identified a total of 5729 lncRNA sequences by transcriptome sequencing, including 1459 differentially expressed lncRNAs (DELs). Through functional annotation, we found that the target genes of DELs were significantly enriched in plant-pathogen interaction and the flavonoid synthesis pathway. In addition, a total of 451 metabolites were detected by metabonomic analysis, and 97 differentially change metabolites (DCMs) were found. Flavonoids account for 20% of the total significantly up-regulated metabolites. In addition, the comprehensive transcriptome and metabolome analyses revealed the co-expression pattern of DELs and DCMs of flavonoids. Our results provide insights into the regulatory network of lncRNA under UV-B radiation and the adaptation of Antarctic moss to the polar environments.
Collapse
Affiliation(s)
- Shuo Fang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Bailin Cong
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Linlin Zhao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266061, China
| | - Chenlin Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Zhaohui Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266061, China
| | - Shenghao Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266061, China
| |
Collapse
|
5
|
Wang R, Yu M, Xia J, Ren Z, Xing J, Li C, Xu Q, Cang J, Zhang D. Cold stress triggers freezing tolerance in wheat (Triticum aestivum L.) via hormone regulation and transcription of related genes. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:308-321. [PMID: 36385725 DOI: 10.1111/plb.13489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Low temperatures limit the geographic distribution and yield of plants. Hormones play an important role in coordinating the growth and development of plants and their tolerance to low temperatures. However, the mechanisms by which hormones affect plant resistance to extreme cold stress in the natural environment are still unclear. In this study, two winter wheat varieties with different cold resistances, Dn1 and J22, were used to conduct targeted plant hormone metabolome analysis on the tillering nodes of winter wheat at 5 °C, -10 °C and -25 °C using an LC-ESI-MS/MS system. We screened 39 hormones from 88 plant hormone metabolites and constructed a partial regulatory network of auxin, jasmonic acid and cytokinin. GO analysis and enrichment of KEGG pathways in different metabolites showed that the 'plant hormone signal transduction' pathway was the most common. Our study showed that extreme low temperature increased the most levels of auxin, cytokinin and salicylic acid, and decreased levels of jasmonic acid and abscisic acid, and that levels of auxin, jasmonic acid and cytokinin in Dn1 were higher than those in J22. These changes in hormone levels were associated with changes in gene expression in synthesis, catabolism, transport and signal transduction pathways. These results differ from the previous hormone regulation mechanisms, which were mostly obtained at 4 °C. Our results provide a basis for further understanding the molecular mechanisms by which plant endogenous hormones regulate plant freezing stress tolerance.
Collapse
Affiliation(s)
- R Wang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - M Yu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - J Xia
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Z Ren
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - J Xing
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - C Li
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Q Xu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - J Cang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - D Zhang
- College of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
6
|
Patra GK, Gupta D, Rout GR, Panda SK. Role of long non coding RNA in plants under abiotic and biotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:96-110. [PMID: 36399914 DOI: 10.1016/j.plaphy.2022.10.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Evolutionary processes have evolved plants to cope with several different natural stresses. Basic physiological activities of crop plants are significantly harmed by these stresses, reducing productivity and eventually leading to death. The recent advancements in high-throughput sequencing of transcriptome and expression profiling with NGS techniques lead to the innovation of various RNAs which do not code for proteins, more specifically long non-coding RNAs (lncRNAs), undergirding regulate growth, development, and the plant defence mechanism transcriptionally under stress situations. LncRNAs are a diverse set of RNAs that play key roles in various biological processes at the level of transcription, post-transcription, and epigenetics. These are thought to serve crucial functions in plant immunity and response to changes in the environment. In plants, however, just a few lncRNAs have been functionally identified. In this review, we will address recent advancements in comprehending lncRNA regulatory functions, focusing on the expanding involvement of lncRNAs in modulating environmental stress responsiveness in plants.
Collapse
Affiliation(s)
- Gyanendra K Patra
- Department of Agriculture Biotechnology, Orissa University of Agriculture and Technology, Bhubaneswar, 751 003, Odisha, India
| | - Divya Gupta
- School of Life Sciences, Central University of Rajasthan, NH 8, Bandarsindri, Ajmer, 305817, Rajasthan, India
| | - Gyana Ranjan Rout
- Department of Agriculture Biotechnology, Orissa University of Agriculture and Technology, Bhubaneswar, 751 003, Odisha, India
| | - Sanjib Kumar Panda
- School of Life Sciences, Central University of Rajasthan, NH 8, Bandarsindri, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
7
|
Peng Y, Pan R, Liu Y, Medison MB, Shalmani A, Yang X, Zhang W. LncRNA-mediated ceRNA regulatory network provides new insight into chlorogenic acid synthesis in sweet potato. PHYSIOLOGIA PLANTARUM 2022; 174:e13826. [PMID: 36377281 DOI: 10.1111/ppl.13826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Sweet potato (Ipomoea batatas L.) is considered a highly nutritional and economical crop due to its high contents of bioactive substances, such as anthocyanin and chlorogenic acid (CGA), especially in leaves and stems. The roles of noncoding RNAs (ncRNA), including long noncoding RNA (lncRNA) and microRNA (miRNA), in CGA synthesis, are still unknown. In this study, the differentially expressed (DE) mRNAs, miRNAs, and lncRNAs in two leafy vegetable genotypes "FS7-6-14-7" (high CGA content) and "FS7-6" (low CGA content) were identified. The cis-regulation between lncRNA and mRNA was analyzed. Then, the CGA synthesis-related modules MEBlue and MEYellow were identified to detect trans-regulation mRNA-lncRNA pairs. The GO and KEGG annotations suggested that mRNA in these two modules was significantly enriched in the secondary metabolite synthesis biosynthesis category. A competing endogenous RNAs (ceRNA) network, including 8730 miRNA-mRNA and 444 miRNA-lncRNA pairs, was constructed by DEmiRNA target prediction. Then, a CGA synthesis-related ceRNA network was obtained with lncRNA and mRNA from MEBlue and MEYellow. Finally, one relational pair, MSTRG.47662.1/mes-miR398/itb04g00990, was selected for functional validation. Overexpression of lncRNA MSTRG.47662.1 and mRNA itb04g00990 increased CGA content in both tobacco and sweet potato callus, while overexpression of miRNA mes-miR398 decreased CGA content. Meanwhile, regression analysis of the expression patterns demonstrated that MSTRG.47662.1, acting as a ceRNA, promoted itb04g00990 expression by competitively binding mes-miR398 in CGA synthesis in sweet potato. Our results provide insights into how ncRNA-mediated ceRNA regulatory networks likely contribute to CGA synthesis in leafy sweet potato.
Collapse
Affiliation(s)
- Ying Peng
- Research Center of Crop Stresses Resistance Technologies/Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
| | - Rui Pan
- Research Center of Crop Stresses Resistance Technologies/Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
| | - Yi Liu
- Research Center of Crop Stresses Resistance Technologies/Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
- Institute of Food Crops/Hubei Engineering and Technology Research Centre of Sweet Potato/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Milca Banda Medison
- Research Center of Crop Stresses Resistance Technologies/Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
| | - Abdullah Shalmani
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xinsun Yang
- Institute of Food Crops/Hubei Engineering and Technology Research Centre of Sweet Potato/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wenying Zhang
- Research Center of Crop Stresses Resistance Technologies/Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
| |
Collapse
|
8
|
Li N, Liu T, Guo F, Yang J, Shi Y, Wang S, Sun D. Identification of long non-coding RNA-microRNA-mRNA regulatory modules and their potential roles in drought stress response in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1011064. [PMID: 36304395 PMCID: PMC9592863 DOI: 10.3389/fpls.2022.1011064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/23/2022] [Indexed: 06/12/2023]
Abstract
Drought is one of the most severe abiotic stresses that influence wheat production across the globe. Understanding the molecular regulatory network of wheat in response to drought is of great importance in molecular breeding. Noncoding RNAs influence plant development and resistance to abiotic stresses by regulating gene expression. In this study, whole-transcriptome sequencing was performed on the seedlings of two wheat varieties with contrasting levels of drought tolerance under drought and control conditions to identify long noncoding RNAs (lncRNAs), micro RNAs (miRNAs), and mRNAs related to drought stress and explore the potential lncRNA-miRNA-mRNA regulatory modules in controlling wheat drought stress response. A total of 1515 differentially expressed lncRNAs (DELs), 209 differentially expressed miRNAs (DEMs), and 20462 differentially expressed genes (DEGs) were identified. Of the 20462 DEGs, 1025 were identified as potential wheat drought resistance-related DEGs. Based on the regulatory relationship and expression patterns of DELs, DEMs, and DEGs, 10 DEL-DEM-DEG regulatory modules related to wheat drought stress response were screened, and preliminary expression verification of two important candidate modules was performed. Our results revealed the possible roles of lncRNA-miRNA-mRNA modules in regulatory networks related to drought tolerance and provided useful information as valuable genomic resources in molecular breeding of wheat.
Collapse
|
9
|
Unravelling lncRNA mediated gene expression as potential mechanism for regulating secondary metabolism in Citrus limon. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Gao Y, Cui Y, Zhao R, Chen X, Zhang J, Zhao J, Kong L. Cryo-Treatment Enhances the Embryogenicity of Mature Somatic Embryos via the lncRNA-miRNA-mRNA Network in White Spruce. Int J Mol Sci 2022; 23:ijms23031111. [PMID: 35163033 PMCID: PMC8834816 DOI: 10.3390/ijms23031111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
In conifers, somatic embryogenesis is uniquely initiated from immature embryos in a narrow time window, which is considerably hindered by the difficulty to induce embryogenic tissue (ET) from other tissues, including mature somatic embryos. In this study, the embryogenic ability of newly induced ET and DNA methylation levels was detected, and whole-transcriptome sequencing analyses were carried out. The results showed that ultra-low temperature treatment significantly enhanced ET induction from mature somatic embryos, with the induction rate from 0.4% to 15.5%, but the underlying mechanisms remain unclear. The newly induced ET showed higher capability in generating mature embryos than the original ET. DNA methylation levels fluctuated during the ET induction process. Here, WGCNA analysis revealed that OPT4, TIP1-1, Chi I, GASA5, GST, LAX3, WRKY7, MYBS3, LRR-RLK, PBL7, and WIN1 genes are involved in stress response and auxin signal transduction. Through co-expression analysis, lncRNAs MSTRG.505746.1, MSTRG.1070680.1, and MSTRG.33602.1 might bind to pre-novel_miR_339 to promote the expression of WRKY7 genes for stress response; LAX3 could be protected by lncRNAs MSTRG.1070680.1 and MSTRG.33602.1 via serving as sponges for novel_miR_495 to initiate auxin signal transduction; lncRNAs MSTRG.505746.1, MSTRG.1070680.1, and MSTRG.33602.1 might serve as sponges for novel_miR_527 to enhance the expression of Chi I for early somatic embryo development. This study provides new insight into the area of stress-enhanced early somatic embryogenesis in conifers, which is also attributable to practical applications.
Collapse
Affiliation(s)
- Ying Gao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Ying Cui
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Ruirui Zhao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Xiaoyi Chen
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Jinfeng Zhang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Jian Zhao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
- Correspondence: (J.Z.); (L.K.)
| | - Lisheng Kong
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
- Correspondence: (J.Z.); (L.K.)
| |
Collapse
|
11
|
Peng K, Tian Y, Sun X, Song C, Ren Z, Bao Y, Xing J, Li Y, Xu Q, Yu J, Zhang D, Cang J. tae-miR399- UBC24 Module Enhances Freezing Tolerance in Winter Wheat via a CBF Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13398-13415. [PMID: 34729981 DOI: 10.1021/acs.jafc.1c04316] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Although the regulation of Pi homeostasis by miR399 has been studied in various plant species, its underlying molecular mechanism in response to freezing stress is still poorly understood. In this work, we found that the expression of tae-miR399 and its target gene TaUBC24 in the tillering nodes of the strong cold-resistant winter wheat cultivar Dongnongdongmai1 (Dn1) was not only significantly altered after severe winters but also responsive to short-term freezing stress. TaUBC24 physically interacted with TaICE1. Enhanced freezing tolerance was observed for tae-miR399-overexpressing Arabidopsis lines. Under freezing stress, overexpression of tae-miR399 ultimately decreased the expression of AtUBC24, inhibiting the degradation of AtICE1, which increased the expression of genes involved in the CBF signaling pathway and starch metabolism and promoted the activities of antioxidant enzymes. These results will improve our understanding of the molecular mechanism through which the miR399-UBC24 module plays a cardinal role in regulating plant freezing stress tolerance through mediation of downstream pathways.
Collapse
Affiliation(s)
- Kankan Peng
- College of Life Science, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yu Tian
- College of Life Science, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xianze Sun
- College of Life Science, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Chunhua Song
- College of Life Science, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Zhipeng Ren
- College of Life Science, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yuzhuo Bao
- College of Life Science, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jinpu Xing
- College of Life Science, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yuanshan Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Qinghua Xu
- College of Life Science, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jing Yu
- College of Life Science, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Da Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jing Cang
- College of Life Science, Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
12
|
Hirsz D, Dixon LE. The Roles of Temperature-Related Post-Transcriptional Regulation in Cereal Floral Development. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112230. [PMID: 34834593 PMCID: PMC8620327 DOI: 10.3390/plants10112230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/02/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Temperature is a critical environmental signal in the regulation of plant growth and development. The temperature signal varies across a daily 24 h period, between seasons and stochastically depending on local environmental events. Extracting important information from these complex signals has led plants to evolve multiple temperature responsive regulatory mechanisms at the molecular level. In temperate cereals, we are starting to identify and understand these molecular mechanisms. In addition, we are developing an understanding of how this knowledge can be used to increase the robustness of crop yield in response to significant changes in local and global temperature patterns. To enable this, it is becoming apparent that gene regulation, regarding expression and post-transcriptional regulation, is crucial. Large transcriptomic studies are identifying global changes in spliced transcript variants and regulatory non-coding RNAs in response to seasonal and stress temperature signals in many of the cereal crops. Understanding the functions of these variants and targets of the non-coding RNAs will greatly increase how we enable the adaptation of crops. This review considers our current understanding and areas for future development.
Collapse
|