1
|
He Y, Wang Z, Cui W, Zhang Q, Zheng M, Li W, Gao J, Yang Z, You J. Comparative quantitative phosphoproteomic and parallel reaction monitoring analysis of soybean roots under aluminum stress identify candidate phosphoproteins involved in aluminum resistance capacity. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135485. [PMID: 39208632 DOI: 10.1016/j.jhazmat.2024.135485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Aluminum (Al) toxicity adversely impacts soybean (Glycine max) growth in acidic soil. Reversible protein phosphorylation plays an important role in adapting to adverse environmental conditions by regulating multiple physiological processes including signal transduction, energy coupling and metabolism adjustment in higher plant. This study aimed to reveal the Al-responsive phosphoproteins to understand their putative function and involvement in the regulation of Al resistance in soybean root. We used immobilized metal affinity chromatography to enrich the key phosphoproteins from soybean root apices at 0, 4, or 24 h Al exposure. These phosphoproteins were detected using liquid chromatography-tandem mass spectrometry measurement, verified by parallel reaction monitoring (PRM), and functionally characterized via overexpression in soybean hairy roots. A total of 638 and 686 phosphoproteins were identified as differentially enriched between the 4-h and 0-h, and the 24-h and 0-h Al treatment comparison groups, respectively. Typically, the phosphoproteins involved in biological processes including cell wall modification, and RNA and protein metabolic regulation displayed patterns of decreasing enrichment (clusters 3, 5 and 6), however, the phosphoproteins involved in the transport and metabolic processes of various substrates, and signal transduction pathways showed increased enrichment after 24 h of Al treatment. The enrichment of phosphoproteins in organelle organization bottomed after 4 h of Al treatment (cluster 1). Next, we selected 26 phosphoproteins from the phosphoproteomic profiles, assessed their enrichment status using PRM, and detected enrichment patterns similar to those observed via phosphoproteomic analysis. Among them, 15 phosphoproteins were found to reduce the accumulation of Al and callose in Al-stressed soybean root apices when their corresponding genes were individually overexpressed in soybean hairy roots. In summary, the findings of this study facilitated a comprehensive understanding of the protein phosphorylation events involved in Al resistance responses and revealed some critical phosphoproteins that enhance Al resistance in soybean roots.
Collapse
Affiliation(s)
- Ying He
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Zhengbiao Wang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Wenmo Cui
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Qingxiu Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Meihui Zheng
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Wen Li
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jie Gao
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Zhenming Yang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jiangfeng You
- College of Plant Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
2
|
Su H, Wang Q, Wang L, Cui J. The Ca 2+-Regulated Protein Kinase CIPK1 Modulates Plant Response to Nitrate Deficiency in Arabidopsis. Genes (Basel) 2024; 15:1235. [PMID: 39336826 PMCID: PMC11431708 DOI: 10.3390/genes15091235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Nitrogen is an essential macroelement for plant growth and productivity. Calcium (Ca2+) acts as a critical second messenger in numerous adaptations and developmental processes in plants. The Calcineurin B-like protein (CBL)-interacting protein kinase (CIPK) signaling pathway has been demonstrated to be involved in multiple intracellular ion homeostasis of plants in response to stresses. However, whether CIPKs are involved in nitrate deficiency stress remains largely unknown. METHODS In this study, we screened Arabidopsis thaliana T-DNA insertion mutants of the CIPK family under nitrate deficiency conditions by a reverse genetic strategy. RESULTS We found that the cipk1 mutant showed a shorter primary root and had a lower fresh weight and total N content compared with wildtype (WT) plants under nitrate deficiency. The CIPK1 complementation lines completely rescued the sensitive phenotype. Additionally, CIPK1 mutation caused nitrogen-starvation marker genes to be decreased under nitrate deficiency. We further found that CIPK1 interacted with teosintebranched 1/cycloidea/proliferating cell factor 1-20 (TCP20) in a yeast two-hybrid system. CONCLUSIONS Collectively, our results reveal a novel role of CIPK1 in response to nitrate deficiency in Arabidopsis.
Collapse
Affiliation(s)
- Hang Su
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (L.W.); (J.C.)
- Research Center for Stress Physiology in Fruit Trees, Hebei University of Engineering, Handan 056038, China
| | - Qian Wang
- Library, Hebei University of Engineering, Handan 056038, China;
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (L.W.); (J.C.)
- Research Center for Stress Physiology in Fruit Trees, Hebei University of Engineering, Handan 056038, China
| | - Junjun Cui
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (L.W.); (J.C.)
- Research Center for Stress Physiology in Fruit Trees, Hebei University of Engineering, Handan 056038, China
| |
Collapse
|
3
|
Wang S, Liu Y, Hao X, Chen Y, Wang Z, Shen Y. Enhancing plant defensins in a desert shrub: Exploring a regulatory pathway of AnWRKY29. Int J Biol Macromol 2024; 270:132259. [PMID: 38740161 DOI: 10.1016/j.ijbiomac.2024.132259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
A distinct family of plant-specific WRKY transcription factors plays a crucial role in modulating responses to biotic and abiotic stresses. In this investigation, we unveiled a signaling pathway activated in the desert shrub Ammopiptanthus nanus during feeding by the moth Spodoptera exigua. The process involves a Ca2+ flux that facilitates interaction between the protein kinase AnCIPK12 and AnWRKY29. AnWRKY29 directly interacts with the promoters of two key genes encoding AnPDF1 and AnHsfB1, involved in the biosynthesis of plant defensins. Consequently, AnWRKY29 exerts its transcriptional regulatory function, influencing plant defensins biosynthesis. This discovery implies that A. nanus can bolster resistance against herbivorous insects like S. exigua by utilizing this signaling pathway, providing an effective natural defense mechanism that supports its survival and reproductive success.
Collapse
Affiliation(s)
- Shuyao Wang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yahui Liu
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xin Hao
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yingying Chen
- Guangxi Key Laboratory of Special Non-wood Forests Cultivation and Utilization, Guangxi Xylophyta Spices Research Center of Engineering Technology, Illicium and Cinnamomum Engineering Technology Research Center of National Forestry and Grassland Administration, Guangxi Forestry Research Institute, Nanning 530002, China
| | - Zhaoyuan Wang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yingbai Shen
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
4
|
Khan GA, Dutta A, van de Meene A, Frandsen KEH, Ogden M, Whelan J, Persson S. Phosphate starvation regulates cellulose synthesis to modify root growth. PLANT PHYSIOLOGY 2024; 194:1204-1217. [PMID: 37823515 PMCID: PMC10828208 DOI: 10.1093/plphys/kiad543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/15/2023] [Accepted: 09/24/2023] [Indexed: 10/13/2023]
Abstract
In the model plant Arabidopsis (Arabidopsis thaliana), the absence of the essential macro-nutrient phosphate reduces primary root growth through decreased cell division and elongation, requiring alterations to the polysaccharide-rich cell wall surrounding the cells. Despite its importance, the regulation of cell wall synthesis in response to low phosphate levels is not well understood. In this study, we show that plants increase cellulose synthesis in roots under limiting phosphate conditions, which leads to changes in the thickness and structure of the cell wall. These changes contribute to the reduced growth of primary roots in low-phosphate conditions. Furthermore, we found that the cellulose synthase complex (CSC) activity at the plasma membrane increases during phosphate deficiency. Moreover, we show that this increase in the activity of the CSC is likely due to alterations in the phosphorylation status of cellulose synthases in low-phosphate conditions. Specifically, phosphorylation of CELLULOSE SYNTHASE 1 (CESA1) at the S688 site decreases in low-phosphate conditions. Phosphomimic versions of CESA1 with an S688E mutation showed significantly reduced cellulose induction and primary root length changes in low-phosphate conditions. Protein structure modeling suggests that the phosphorylation status of S688 in CESA1 could play a role in stabilizing and activating the CSC. This mechanistic understanding of root growth regulation under limiting phosphate conditions provides potential strategies for changing root responses to soil phosphate content.
Collapse
Affiliation(s)
- Ghazanfar Abbas Khan
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
| | - Arka Dutta
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
| | | | - Kristian E H Frandsen
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C 1871, Denmark
| | - Michael Ogden
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C 1871, Denmark
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C 1871, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| |
Collapse
|
5
|
Ren H, Zhang Y, Zhong M, Hussian J, Tang Y, Liu S, Qi G. Calcium signaling-mediated transcriptional reprogramming during abiotic stress response in plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:210. [PMID: 37728763 DOI: 10.1007/s00122-023-04455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Calcium (Ca2+) is a second messenger in plants growth and development, as well as in stress responses. The transient elevation in cytosolic Ca2+ concentration have been reported to be involved in plants response to abiotic and biotic stresses. In plants, Ca2+-induced transcriptional changes trigger molecular mechanisms by which plants adapt and respond to environment stresses. The mechanism for transcription regulation by Ca2+ could be either rapid in which Ca2+ signals directly cause the related response through the gene transcript and protein activities, or involved amplification of Ca2+ signals by up-regulation the expression of Ca2+ responsive genes, and then increase the transmission of Ca2+ signals. Ca2+ regulates the expression of genes by directly binding to the transcription factors (TFs), or indirectly through its sensors like calmodulin, calcium-dependent protein kinases (CDPK) and calcineurin B-like protein (CBL). In recent years, significant progress has been made in understanding the role of Ca2+-mediated transcriptional regulation in different processes in plants. In this review, we have provided a comprehensive overview of Ca2+-mediated transcriptional regulation in plants in response to abiotic stresses including nutrition deficiency, temperature stresses (like heat and cold), dehydration stress, osmotic stress, hypoxic, salt stress, acid rain, and heavy metal stress.
Collapse
Affiliation(s)
- Huimin Ren
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Yuting Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Minyi Zhong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Jamshaid Hussian
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad, 22060, Pakistan
| | - Yuting Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China.
| | - Guoning Qi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
6
|
Pahuja S, Bheri M, Bisht D, Pandey GK. Calcium signalling components underlying NPK homeostasis: potential avenues for exploration. Biochem J 2023; 480:1015-1034. [PMID: 37418287 DOI: 10.1042/bcj20230156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Plants require the major macronutrients, nitrogen (N), phosphorus (P) and potassium (K) for normal growth and development. Their deficiency in soil directly affects vital cellular processes, particularly root growth and architecture. Their perception, uptake and assimilation are regulated by complex signalling pathways. To overcome nutrient deficiencies, plants have developed certain response mechanisms that determine developmental and physiological adaptations. The signal transduction pathways underlying these responses involve a complex interplay of components such as nutrient transporters, transcription factors and others. In addition to their involvement in cross-talk with intracellular calcium signalling pathways, these components are also engaged in NPK sensing and homeostasis. The NPK sensing and homeostatic mechanisms hold the key to identify and understand the crucial players in nutrient regulatory networks in plants under both abiotic and biotic stresses. In this review, we discuss calcium signalling components/pathways underlying plant responses to NPK sensing, with a focus on the sensors, transporters and transcription factors involved in their respective signalling and homeostasis.
Collapse
Affiliation(s)
- Sonam Pahuja
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Diksha Bisht
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
7
|
Characterization of Dendrobium catenatum CBL-CIPK signaling networks and their response to abiotic stress. Int J Biol Macromol 2023; 236:124010. [PMID: 36918075 DOI: 10.1016/j.ijbiomac.2023.124010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Dendrobium catenatum is a traditional Chinese medicine listing as rare and endangered due to environmental impacts. But little is known about its stress resistance mechanism. The CBL-CIPK signaling pathway played vital roles in various stress responses. In this study, we identified 9 calcineurin B-like (CBL) genes and 28 CBL-interacting protein kinase (CIPK) genes from D. catenatum. Phylogenetic analysis showed that DcCBL and DcCIPK families could be divided into four and six subgroups, respectively. Members in each subgroup had similar gene structures. Cis-acting element analyses showed that these genes were involved in stress responses and hormone signaling. Spatial expression profiles showed that they were tissue-specific, and expressed lower in vegetative organs than reproductive organs. Gene expression analyses revealed that these genes were involved in drought, heat, cold, and salt responses and depended on abscisic acid (ABA) and salicylic acid (SA) signaling pathways. Furthermore, we cloned 19 DcCIPK genes and 9 DcCBL genes and detected ten interacting CBL-CIPK combinations using yeast two-hybrid system. Finally, we constructed 20 CBL-CIPK signaling pathways based on their expression patterns and interaction relationships. These results established CBL-CIPK signaling pathway responding to abiotic stress and provided a molecular basis for improving D. catenatum stress resistance in the future.
Collapse
|
8
|
Nitrate availability controls translocation of the transcription factor NAC075 for cell-type-specific reprogramming of root growth. Dev Cell 2022; 57:2638-2651.e6. [PMID: 36473460 DOI: 10.1016/j.devcel.2022.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/22/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
Plant root architecture flexibly adapts to changing nitrate (NO3-) availability in the soil; however, the underlying molecular mechanism of this adaptive development remains under-studied. To explore the regulation of NO3--mediated root growth, we screened for low-nitrate-resistant mutant (lonr) and identified mutants that were defective in the NAC transcription factor NAC075 (lonr1) as being less sensitive to low NO3- in terms of primary root growth. We show that NAC075 is a mobile transcription factor relocating from the root stele tissues to the endodermis based on NO3- availability. Under low-NO3- availability, the kinase CBL-interacting protein kinase 1 (CIPK1) is activated, and it phosphorylates NAC075, restricting its movement from the stele, which leads to the transcriptional regulation of downstream target WRKY53, consequently leading to adapted root architecture. Our work thus identifies an adaptive mechanism involving translocation of transcription factor based on nutrient availability and leading to cell-specific reprogramming of plant root growth.
Collapse
|
9
|
Yang C, Yi-feng J, Yushu W, Yansong G, Qi W, Xue Y. Diverse roles of the CIPK gene family in transcription regulation and various biotic and abiotic stresses: A literature review and bibliometric study. Front Genet 2022; 13:1041078. [PMID: 36457742 PMCID: PMC9705351 DOI: 10.3389/fgene.2022.1041078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/24/2022] [Indexed: 12/10/2023] Open
Abstract
CIPKs are a subclass of serine/threonine (Ser/Thr) protein kinases. CBLs are ubiquitous Ca2+ sensors that interact with CIPK with the aid of secondary Ca2+ messengers for regulation of growth and development and response to stresses faced by plants. The divergent roles of the CIPK-CBL interaction in plants include responding to environmental stresses (salt, cold, drought, pH, ABA signaling, and ion toxicity), ion homeostasis (K+, NH4 +, NO3 -, and microelement homeostasis), biotic stress, and plant development. Each member of this gene family produces distinct proteins that help plants adapt to diverse stresses or stimuli by interacting with calcium ion signals. CIPK consists of two structural domains-an N-terminal domain and a C-terminal domain-connected by a junction domain. The N-terminal domain, the site of phosphorylation, is also called the activation domain and kinase domain. The C-terminal, also known as the regulatory domain of CIPK, further comprises NAF/FISL and PPI. CBL comprises four EF domains and conserved PFPF motifs and is the site of binding with the NAF/FISL domain of CIPK to form a CBL-CIPK complex. In addition, we also performed a bibliometric analysis of the CIPK gene family of data extracted from the WoSCC. A total of 95 documents were retrieved, which had been published by 47 sources. The production over time was zigzagged. The top key terms were gene, CIPK, abiotic stress, and gene expression. Beijing Forestry University was the top affiliation, while The Plant Cell was the top source. The genomics and metabolomics of this gene family require more study.
Collapse
Affiliation(s)
- Chen Yang
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Key Laboratory Resistance Gene Engineering, Qiqihar, China
| | - Jin Yi-feng
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Key Laboratory Resistance Gene Engineering, Qiqihar, China
| | - Wang Yushu
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Key Laboratory Resistance Gene Engineering, Qiqihar, China
| | - Gao Yansong
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Wang Qi
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - You Xue
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| |
Collapse
|
10
|
Gao H, Wang T, Zhang Y, Li L, Wang C, Guo S, Zhang T, Wang C. GTPase ROP6 negatively modulates phosphate deficiency through inhibition of PHT1;1 and PHT1;4 in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1775-1786. [PMID: 34288396 DOI: 10.1111/jipb.13153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus, an essential macroelement for plant growth and development, is a major limiting factor for sustainable crop yield. The Rho of plant (ROP) GTPase is involved in regulating multiple signal transduction processes in plants, but potentially including the phosphate deficiency signaling pathway remains unknown. Here, we identified that the rop6 mutant exhibited a dramatic tolerant phenotype under Pi-deficient conditions, with higher phosphate accumulation and lower anthocyanin content. In contrast, the rop6 mutant was more sensitive to arsenate (As(V)) toxicity, the analog of Pi. Immunoblot analysis displayed that the ROP6 protein was rapidly degraded through ubiquitin/26S proteasome pathway under Pi-deficient conditions. In addition, pull-down assay using GST-RIC1 demonstrated that the ROP6 activity was decreased obviously under Pi-deficient conditions. Strikingly, protein-protein interaction and two-voltage clamping assays demonstrated that ROP6 physically interacted with and inhibited the key phosphate uptake transporters PHT1;1 and PHT1;4 in vitro and in vivo. Moreover, genetic analysis showed that ROP6 functioned upstream of PHT1;1 and PHT1;4. Thus, we conclude that GTPase ROP6 modulates the uptake of phosphate by inhibiting the activities of PHT1;1 and PHT1;4 in Arabidopsis.
Collapse
Affiliation(s)
- Huiling Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Tian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yanting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Lili Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Chuanqing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Shiyuan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Tianqi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Cun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
11
|
Gong J, Shi T, Li Y, Wang H, Li F. Genome-Wide Identification and Characterization of Calcium Metabolism Related Gene Families in Arabidopsis thaliana and Their Regulation by Bacillus amyloliquefaciens Under High Calcium Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:707496. [PMID: 34456948 PMCID: PMC8387222 DOI: 10.3389/fpls.2021.707496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 05/05/2023]
Abstract
Several gene families involved in calcium signaling have been detected in plants, including calmodulin (CaM), calcium dependent protein kinases (CDPK), calcineurin B-like (CBL) and cyclic nucleotide-gated channels (CNGCs). In our previous study, we demonstrated that Bacillus amyloliquefaciens LZ04 (B. amyloliquefaciens LZ04) regulate genes involved in calcium stress in Arabidopsis thaliana (A. thaliana). Here, we aimed to explore the potential involvement of calcium-related gene families in the response of A. thaliana to calcium stress and the potential regulatory effects of B. amyloliquefaciens LZ04 on these genes. The structure, duplication, synteny, and expression profiles of 102 genes in calcium-related gene families in A. thaliana were investigated. Hidden Markov Models (HMMs) and BLASTP were used to predict candidate genes and conserved domains of the candidate genes were confirmed in SMART and NCBI CDD databases. Gene duplications and synteny were uncovered by BLASTP and phylogenetic analysis. The transcriptome expression profiles of candidate genes were investigated by strand-specific sequencing. Cluster analysis was used to find the expression profiles of calcium-related genes families under different treatment conditions. A total of 102 genes in calcium-related gene families were detected in A. thaliana genome, including 34 CDPK genes, 20 CNGC genes, 18 CIPK genes, 22 IQD genes, and 10 CBP genes. Additionally, of the 102 genes, 33 duplications (32.35%) and 26 gene pairs including 48 genes (47.06%) were detected. Treatment with B. amyloliquefaciens LZ04 enhanced the resistance of A. thaliana under high calcium stress by regulating some of the genes in the calcium-related gene families. Functional enrichment analysis revealed that the genes clustered in the 42nd expression profile which may be B. amyloliquefaciens-responsive genes under calcium stress were enriched in protein phosphorylation and protein modification process. Transcriptome data was validated by RT-PCR and the results generally corroborated the transcriptome sequencing results. These results may be useful for agricultural improvement in high calcium stress regions.
Collapse
Affiliation(s)
- Jiyi Gong
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Tianlong Shi
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yuke Li
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Hancheng Wang
- Upland Flue-cured Tobacco Quality and Ecology Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Fei Li
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
- *Correspondence: Fei Li, ; ;
| |
Collapse
|
12
|
Gao H, Wang C, Li L, Fu D, Zhang Y, Yang P, Zhang T, Wang C. A novel role of the calcium sensor CBL1 in response to phosphate deficiency in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2020; 253:153266. [PMID: 32854072 DOI: 10.1016/j.jplph.2020.153266] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 05/28/2023]
Abstract
Phosphorus acts as an essential macroelement in plant growth and development. A lack of phosphate (Pi) in arable soil and phosphate fertilizer resources is a vital limiting factor in crop yields. Calcineurin B-like proteins (CBLs) act as one of the most important calcium sensors in plants; however, whether CBLs are involved in Pi deficiency signaling pathway remains largely elusive. In this study, we utilized a reverse genetic strategy to screen Arabidopsis thaliana T-DNA insertion mutants belonging to the CBL family under Pi deficiency conditions. The cbl1 mutant exhibited a relatively tolerant phenotype, with longer roots, lower anthocyanin content, and elevated Pi content under Pi deficiency, and a more sensitive phenotype to arsenate treatment compared with wild-type plants. Moreover, CBL1 was upregulated, and the mutation of CBL1 caused phosphate starvation-induced (PSIs) genes to be significantly induced under Pi deficiency. Histochemical staining demonstrated that the cbl1 mutant has decreased acid phosphatase activity and hydrogen peroxide concentrations under Pi deficiency. Collectively, our results have revealed a novel role of CBL1 in maintaining Pi homeostasis.
Collapse
Affiliation(s)
- Huiling Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Chuanqing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Lili Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Dali Fu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yanting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Peiyuan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Tianqi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Cun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|