1
|
Wang Y, Chen X, Chen J. Advances of the mechanism for copper tolerance in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112299. [PMID: 39455032 DOI: 10.1016/j.plantsci.2024.112299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
Copper (Cu) is a vital trace element necessary for plants growth and development. It acts as a co-factor for enzymes and plays a crucial role in various physiological processes, including photosynthesis, respiration, antioxidant systems, and hormone signaling transduction. However, excessive amounts of Cu can disrupt normal physiological metabolism, thus hindering plant growth, development, and reducing yield. In recent years, the widespread abuse of Cu-containing fungicides and industrial Cu pollution has resulted in significant soil contamination. Therefore, it is of utmost importance to uncover the adverse effects of excessive Cu on plant growth and delve into the molecular mechanisms employed by plants to counteract the stress caused by excessive Cu. Recent studies have confirmed the inhibitory effects of excess Cu on mineral nutrition, chlorophyll biosynthesis, and antioxidant enzyme activity. This review systematically outlines the ways in which plants tolerate excessive Cu stress and summarizes them into eight Cu-tolerance strategies. Furthermore, it highlights the necessity for further research to comprehend the molecular regulatory mechanisms underlying the responses to excessive Cu stress.
Collapse
Affiliation(s)
- Yamei Wang
- School of Agriculture and Biotechnology, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Xueke Chen
- School of Agriculture and Biotechnology, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Jingguang Chen
- School of Agriculture and Biotechnology, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
2
|
Zhou W, Li X, Li D, Jiang X, Yang Y, You J, Liu H, Cheng H, Wang H, Zhang M. Comparative transcriptome analysis provides novel insights into the seed germination of Panax japonicus, an endangered species in China. BMC PLANT BIOLOGY 2024; 24:1167. [PMID: 39639201 PMCID: PMC11619102 DOI: 10.1186/s12870-024-05904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Panax japonicus, an endangered species in China, is usually used as a traditional medicine with functions of hemostasis, pain relief, and detoxify. However, the seeds of P. japonicus are hard to germinate in natural conditions, and the molecular events and systematic changes occurring in seed germination are still largely unknown. In this study, we compared the seeds in different germination stages in terms of morphological features, antioxidant enzyme activities, and transcriptomics. The results indicated that sand storage at 25℃ for 120 d effectively released the seed dormancy of P. japonicus and promoted the seed germination. Moreover, sand storage treatment increased the antioxidant capacity of P. japonicus seeds through increasing the activities of SOD, POD, and CAT. The RNA-seq identified 28,908 differentially expressed genes (DEGs) between different germination stages, of which 1697 DEGs significantly changed throughout the whole germination process. Functional annotations showed that the seed germination of P. japonicus was mainly regulated by the DEGs related to pathways of ROS-scavenging metabolism, plant hormonal signal transduction, starch and sucrose metabolism, energy supply (glycolysis, pyruvate metabolism, and oxidative phosphorylation), and phenylpropanoid biosynthesis, as well as the transcription factors such as bHLHs, MYBs, WRKYs, and bZIPs. This study provides a foundation for unveiling molecular mechanisms underlying the seed germination and is beneficial for accelerating the development of P. japonicus industry.
Collapse
Affiliation(s)
- Wuxian Zhou
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Xiaoling Li
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
- Gongshui River Wetland Park Management Bureau of Xuan'en County, Enshi, 445000, China
| | - Darong Li
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Xiaogang Jiang
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Yuying Yang
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Jinwen You
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Haihua Liu
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Heng Cheng
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Hua Wang
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China.
| | - Meide Zhang
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China.
| |
Collapse
|
3
|
Wang J, Chen X, Chu S, Hayat K, Chi Y, Liao X, Zhang H, Xie Y, Zhou P, Zhang D. Conjoint analysis of physio-biochemical, transcriptomic, and metabolomic reveals the response characteristics of solanum nigrum L. to cadmium stress. BMC PLANT BIOLOGY 2024; 24:567. [PMID: 38880885 PMCID: PMC11181532 DOI: 10.1186/s12870-024-05278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Cadmium (Cd) is a nonessential element in plants and has adverse effects on the growth and development of plants. However, the molecular mechanisms of Cd phytotoxicity, tolerance and accumulation in hyperaccumulators Solanum nigrum L. has not been well understood. Here, physiology, transcriptome, and metabolome analyses were conducted to investigate the influence on the S. nigrum under 0, 25, 50, 75 and 100 µM Cd concentrations for 7 days. Pot experiments demonstrated that compared with the control, Cd treatment significantly inhibited the biomass, promoted the Cd accumulation and translocation, and disturbed the balance of mineral nutrient metabolism in S. nigrum, particularly at 100 µM Cd level. Moreover, the photosynthetic pigments contents were severely decreased, while the content of total protein, proline, malondialdehyde (MDA), H2O2, and antioxidant enzyme activities generally increased first and then slightly declined with increasing Cd concentrations, in both leaves and roots. Furthermore, combined with the previous transcriptomic data, numerous crucial coding-genes related to mineral nutrients and Cd ion transport, and the antioxidant enzymes biosynthesis were identified, and their expression pattern was regulated under different Cd stress. Simultaneously, metabolomic analyses revealed that Cd treatment significantly changed the expression level of many metabolites related to amino acid, lipid, carbohydrate, and nucleotide metabolism. Metabolic pathway analysis also showed that S. nigrum roots activated some differentially expressed metabolites (DEMs) involved in energy metabolism, which may enhance the energy supply for detoxification. Importantly, central common metabolism pathways of DEGs and DEMs, including the "TCA cycle", "glutathione metabolic pathway" and "glyoxylate and dicarboxylate metabolism" were screened using conjoint transcriptomics and metabolomics analysis. Our results provide some novel evidences on the physiological and molecular mechanisms of Cd tolerance in hyperaccumulator S. nigrum plants.
Collapse
Affiliation(s)
- Juncai Wang
- Guizhou Academy of Sciences, Guiyang, Guizhou, 550001, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- The Land Greening Remediation Engineering Research Center of Guizhou Province, Guiyang, 550001, China
| | - Xunfeng Chen
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaofeng Liao
- Guizhou Academy of Sciences, Guiyang, Guizhou, 550001, China
- The Land Greening Remediation Engineering Research Center of Guizhou Province, Guiyang, 550001, China
- Guizhou University, Guiyang, 550025, China
| | - Hongliang Zhang
- Guizhou Academy of Sciences, Guiyang, Guizhou, 550001, China
- The Land Greening Remediation Engineering Research Center of Guizhou Province, Guiyang, 550001, China
| | - Yuangui Xie
- Guizhou Academy of Sciences, Guiyang, Guizhou, 550001, China.
- The Land Greening Remediation Engineering Research Center of Guizhou Province, Guiyang, 550001, China.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
4
|
Chen X, Tang Y, Zhang H, Zhang X, Sun X, Zang X, Xu N. Physiological, Transcriptome, and Metabolome Analyses Reveal the Tolerance to Cu Toxicity in Red Macroalgae Gracilariopsis lemaneiformis. Int J Mol Sci 2024; 25:4770. [PMID: 38731988 PMCID: PMC11083833 DOI: 10.3390/ijms25094770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Heavy metal copper (Cu) will inevitably impact the marine macroalgae Gracilariopsis lemaneiformis (G. lemaneiformis), which is a culture of economic importance along China's coastline. In this study, the detoxification mechanism of Cu stress on G. lemaneiformis was revealed by assessing physiological indicators in conjunction with transcriptome and metabolome analyses at 1 d after Cu stress. Our findings revealed that 25 μM Cu stimulated ROS synthesis and led to the enzymatic oxidation of arachidonic acid residues. This process subsequently impeded G. lemaneiformis growth by suppressing photosynthesis, nitrogen metabolism, protein synthesis, etc. The entry of Cu ions into the algae was facilitated by ZIPs and IRT transporters, presenting as Cu2+. Furthermore, there was an up-regulation of Cu efflux transporters HMA5 and ABC family transporters to achieve compartmentation to mitigate the toxicity. The results revealed that G. lemaneiformis elevated the antioxidant enzyme superoxide dismutase and ascorbate-glutathione cycle to maintain ROS homeostasis. Additionally, metabolites such as flavonoids, 3-O-methylgallic acid, 3-hydroxy-4-keto-gama-carotene, and eicosapentaenoic acid were up-regulated compared with the control, indicating that they might play roles in response to Cu stress. In summary, this study offers a comprehensive insight into the detoxification mechanisms driving the responses of G. lemaneiformis to Cu exposure.
Collapse
Affiliation(s)
- Xiaojiao Chen
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (X.C.); (Y.T.); (H.Z.); (X.Z.); (X.S.)
| | - Yueyao Tang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (X.C.); (Y.T.); (H.Z.); (X.Z.); (X.S.)
| | - Hao Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (X.C.); (Y.T.); (H.Z.); (X.Z.); (X.S.)
| | - Xiaoqian Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (X.C.); (Y.T.); (H.Z.); (X.Z.); (X.S.)
| | - Xue Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (X.C.); (Y.T.); (H.Z.); (X.Z.); (X.S.)
| | - Xiaonan Zang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China;
| | - Nianjun Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (X.C.); (Y.T.); (H.Z.); (X.Z.); (X.S.)
| |
Collapse
|
5
|
Moy A, Czajka K, Michael P, Nkongolo K. Gene expression profiling of Jack Pine (Pinus banksiana) under copper stress: Identification of genes associated with copper resistance. PLoS One 2024; 19:e0296027. [PMID: 38452110 PMCID: PMC10919686 DOI: 10.1371/journal.pone.0296027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 12/05/2023] [Indexed: 03/09/2024] Open
Abstract
Understanding the genetic response of plants to copper stress is a necessary step to improving the utility of plants for environmental remediation and restoration. The objectives of this study were to: 1) characterize the transcriptome of Jack Pine (Pinus banksiana) under copper stress, 2) analyze the gene expression profile shifts of genotypes exposed to copper ion toxicity, and 3) identify genes associated with copper resistance. Pinus banksiana seedlings were treated with 10 mmoles of copper and screened in a growth chamber. There were 6,213 upregulated and 29,038 downregulated genes expressed in the copper resistant genotypes compared to the susceptible genotypes at a high stringency based on the false discovery rate (FDR). Overall, 25,552 transcripts were assigned gene ontology. Among the top upregulated genes, the response to stress, the biosynthetic process, and the response to chemical stimuli terms represented the highest proportion of gene expression for the biological processes. For the molecular function category, the majority of expressed genes were associated with nucleotide binding followed by transporter activity, and kinase activity. The majority of upregulated genes were located in the plasma membrane while half of the total downregulated genes were associated with the extracellular region. Two candidate genes associated with copper resistance were identified including genes encoding for heavy metal-associated isoprenylated plant proteins (AtHIP20 and AtHIP26) and a gene encoding the pleiotropic drug resistance protein 1 (NtPDR1). This study represents the first report of transcriptomic responses of a conifer species to copper ions.
Collapse
Affiliation(s)
- Alistar Moy
- Biomolecular Sciences Program, School of Natural Sciences, Laurentian University, Sudbury, Ontario, Canada
| | - Karolina Czajka
- Biomolecular Sciences Program, School of Natural Sciences, Laurentian University, Sudbury, Ontario, Canada
| | - Paul Michael
- Biomolecular Sciences Program, School of Natural Sciences, Laurentian University, Sudbury, Ontario, Canada
| | - Kabwe Nkongolo
- Biomolecular Sciences Program, School of Natural Sciences, Laurentian University, Sudbury, Ontario, Canada
- Department of Biology, School of Natural Sciences, Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
6
|
Hussain M, Hafeez A, Al-Huqail AA, Alsudays IM, Alghanem SMS, Ashraf MA, Rasheed R, Rizwan M, Abeed AHA. Effect of hesperidin on growth, photosynthesis, antioxidant systems and uptake of cadmium, copper, chromium and zinc by Celosia argentea plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108433. [PMID: 38364631 DOI: 10.1016/j.plaphy.2024.108433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Rapid industrialization and extensive agricultural practices are the major causes of soil heavy metal contamination, which needs urgent attention to safeguard the soils from contamination. However, the phytotoxic effects of excessive metals in plants are the primary obstacle to efficient phytoextraction. The present study evaluated the effects of hesperidin (HSP) on metals (Cu, Cd, Cr, Zn) phytoextraction by hyperaccumulator (Celosia argentea L.) plants. For this purpose, HSP, a flavonoid compound with strong antioxidant potential to assist metal phytoextraction was used under metal stress in plants. Celosia argentea plants suffered significant (P ≤ 0.001) oxidative damage due to the colossal accumulation of metals (Cu, Cd, Cr, Zn). However, HSP supplementation notably (P ≤ 0.001) abated ROS generation (O2•‒, •OH, H2O2), lipoxygenase activity, methylglyoxal production, and relative membrane permeability that clearly indicated HSP-mediated decline in oxidative injury in plants. Exogenous HSP improved (P ≤ 0.001) the production of non-protein thiol, phytochelatins, osmolytes, and antioxidant compounds. Further, HSP enhanced (P ≤ 0.001) H2S and NO endogenous production, which might have improved the GSH: GSSG ratio. Consequently, HSP-treated C. argentea plants had higher biomass alongside elevated metal accumulation mirrored as profound modifications in translocation factor (TF), bioaccumulation coefficient (BAC), and bioconcentration factor (BCF). In this context, HSP significantly enhanced TF of Cr (P ≤ 0.001), Cd (P ≤ 0.001), and Zn (P ≤ 0.01), while BAC of Cr (P ≤ 0.001), Cd (P ≤ 0.001), and Zn (P ≤ 0.001). Further, BCF was significant (P ≤ 0.05) only in plants grown under Cr-spiked soil. Overall, HSP has the potential for phytoremediation of metals by C. argentea, which might be a suitable strategy for metal-polluted soils.
Collapse
Affiliation(s)
- Mazhar Hussain
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Arslan Hafeez
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | | | | | - Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
7
|
Ghuge SA, Nikalje GC, Kadam US, Suprasanna P, Hong JC. Comprehensive mechanisms of heavy metal toxicity in plants, detoxification, and remediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131039. [PMID: 36867909 DOI: 10.1016/j.jhazmat.2023.131039] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Natural and anthropogenic causes are continually growing sources of metals in the ecosystem; hence, heavy metal (HM) accumulation has become a primary environmental concern. HM contamination poses a serious threat to plants. A major focus of global research has been to develop cost-effective and proficient phytoremediation technologies to rehabilitate HM-contaminated soil. In this regard, there is a need for insights into the mechanisms associated with the accumulation and tolerance of HMs in plants. It has been recently suggested that plant root architecture has a critical role in the processes that determine sensitivity or tolerance to HMs stress. Several plant species, including those from aquatic habitats, are considered good hyperaccumulators for HM cleanup. Several transporters, such as the ABC transporter family, NRAMP, HMA, and metal tolerance proteins, are involved in the metal acquisition mechanisms. Omics tools have shown that HM stress regulates several genes, stress metabolites or small molecules, microRNAs, and phytohormones to promote tolerance to HM stress and for efficient regulation of metabolic pathways for survival. This review presents a mechanistic view of HM uptake, translocation, and detoxification. Sustainable plant-based solutions may provide essential and economical means of mitigating HM toxicity.
Collapse
Affiliation(s)
- Sandip A Ghuge
- Agricultural Research Organization (ARO), The Volcani Institute, P.O. Box 15159, 7505101 Rishon LeZion, Israel
| | - Ganesh Chandrakant Nikalje
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea; Department of Botany, Seva Sadan's R. K. Talreja College of Arts, Science and Commerce, Affiliated to University of Mumbai, Ulhasnagar 421003, India
| | - Ulhas Sopanrao Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea.
| | - Penna Suprasanna
- Amity Centre for Nuclear Biotechnology, Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, India
| | - Jong Chan Hong
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea; Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
8
|
Alsherif EA, Yaghoubi Khanghahi M, Crecchio C, Korany SM, Sobrinho RL, AbdElgawad H. Understanding the Active Mechanisms of Plant ( Sesuvium portulacastrum L.) against Heavy Metal Toxicity. PLANTS (BASEL, SWITZERLAND) 2023; 12:676. [PMID: 36771762 PMCID: PMC9919468 DOI: 10.3390/plants12030676] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Through metabolic analysis, the present research seeks to reveal the defense mechanisms activated by a heavy metals-resistant plant, Sesuvium portulacastrum L. In this regard, shifting metabolisms in this plant were investigated in different heavy metals-contaminated experimental sites, which were 50, 100, 500, 1000, and 5000 m away from a man-fabricated sewage dumping lake, with a wide range of pollutant concentrations. Heavy metals contaminations in contaminated soil and their impact on mineral composition and microbial population were also investigated. The significant findings to emerge from this research were the modifications of nitrogen and carbon metabolisms in plant tissues to cope with heavy metal toxicity. Increased plant amylase enzymes activity in contaminated soils increased starch degradation to soluble sugars as a mechanism to mitigate stress impact. Furthermore, increased activity of sucrose phosphate synthase in contaminated plants led to more accumulation of sucrose. Moreover, no change in the content of sucrose hydrolyzing enzymes (vacuolar invertase and cytosolic invertase) in the contaminated sites can suggest the translocation of sucrose from shoot to root under stress. Similarly, although this study demonstrated a high level of malate in plants exposed to stress, caution must be applied in suggesting a strong link between organic acids and the activation of defense mechanisms in plants, since other key organic acids were not affected by stress. Therefore, activation of other defense mechanisms, especially antioxidant defense molecules including alpha and beta tocopherols, showed a greater role in protecting plants from heavy metals stress. Moreover, the increment in the content of some amino acids (e.g., glycine, alanine, glutamate, arginine, and ornithine) in plants under metal toxicity can be attributed to a high level of stress tolerance. Moreover, strategies in the excitation of the synthesis of the unsaturated fatty acids (oleic and palmitoleic) were involved in enhancing stress tolerance, which was unexpectedly associated with an increase in the accumulation of palmitic and stearic (saturated fatty acids). Taken together, it can be concluded that these multiple mechanisms were involved in the response to stress which may be cooperative and complementary with each other in inducing resistance to the plants.
Collapse
Affiliation(s)
- Emad A. Alsherif
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohammad Yaghoubi Khanghahi
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Carmine Crecchio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Shereen Magdy Korany
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Renato Lustosa Sobrinho
- Department of Agronomy, Federal University of Technology—Paraná (UTFPR), Pato Branco 85503-390, PR, Brazil
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2000 Antwerp, Belgium
| |
Collapse
|
9
|
Rahman SU, Nawaz MF, Gul S, Yasin G, Hussain B, Li Y, Cheng H. State-of-the-art OMICS strategies against toxic effects of heavy metals in plants: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113952. [PMID: 35999767 DOI: 10.1016/j.ecoenv.2022.113952] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution of heavy metals (HMs), mainly due to anthropogenic activities, has received growing attention in recent decades. HMs, especially the non-essential carcinogenic ones, including chromium (Cr), cadmium (Cd), mercury (Hg), aluminum (Al), lead (Pb), and arsenic (As), have appeared as the most significant air, water, and soil pollutants, which adversely affect the quantity, quality, and security of plant-based food all over the world. Plants exposed to HMs could experience significant decline in growth and yield. To avoid or tolerate the toxic effects of HMs, plants have developed complicated defense mechanisms, including absorption and accumulation of HMs in cell organelles, immobilization by forming complexes with organic chelates, extraction by using numerous transporters, ion channels, signalling cascades, and transcription elements, among others. OMICS strategies have developed significantly to understand the mechanisms of plant transcriptomics, genomics, proteomics, metabolomics, and ionomics to counter HM-mediated stress stimuli. These strategies have been considered to be reliable and feasible for investigating the roles of genomics (genomes), transcriptomic (coding), mRNA transcripts (non-coding), metabolomics (metabolites), and ionomics (metal ions) to enhance stress resistance or tolerance in plants. The recent developments in the mechanistic understandings of the HMs-plant interaction in terms of their absorption, translocation, and toxicity invasions at the molecular and cellular levels, as well as plants' response and adaptation strategies against these stressors, are summarized in the present review. Transcriptomics, genomics, metabolomics, proteomics, and ionomics for plants against HMs toxicities are reviewed, while challenges and future recommendations are also discussed.
Collapse
Affiliation(s)
- Shafeeq Ur Rahman
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China; MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Muhammad Farrakh Nawaz
- Department of Forestry and Range Management, University of Agricultureó, Faisalabad, Pakistan
| | - Sadaf Gul
- Department of Botany, University of Karachi, Karachi, Pakistan
| | - Ghulam Yasin
- Department of Forestry and Range Management, Bahauddin Zakariya University Multan, Pakistan
| | - Babar Hussain
- Department of Plant Science Karakoram International University (KIU), Gilgit 15100, Gilgit-Baltistan, Pakistan
| | - Yanliang Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China; Dongguan Key Laboratory of Water Pollution and Ecological Safety Regulation, Dongguan, Guangdong 523808, China.
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
10
|
Wu J, Gao T, Zhao L, Bao H, Yu C, Hu J, Ma F. Investigating Phragmites australis response to copper exposure using physiologic, Fourier Transform Infrared and metabolomic approaches. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:365-381. [PMID: 35290177 DOI: 10.1071/fp21258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Phragmites australis (Cav.) Trin. ex Steud is a landscape plant with resistance to heavy metals that has significance in phytoremediation. However, little is known about the metabolomic background of the heavy metal resistance mechanisms of Phragmites . We studied copper stress on Phragmites and monitored physiological indicators such as malondialdehyde (MDA) and electrolyte leakage (EL). In addition, Fourier Transform Infrared (FTIR) was used to study the related chemical composition in the roots, stems, and leaves under copper stress. Furthermore, LC-MS technology was used to analyse the plants metabolic profile. Results showed that increased copper concentration in Phragmites led to the accumulation of MDA and EL. FTIR spectrum detected the presence of O-H and C=O stretching. O-H stretching was related to the presence of flavonoids, while C=O stretching reflected the presence of protein amide I. The latter was related to the change of amino acid composition. Both flavonoids and amino acids are regarded as contributors to the antioxidant of Phragmites under copper stress. Metabolomics analysis revealed that arginine and ayarin were accumulated and Phragmites leaves responded to copper stress with changes in the pool size of arginine and ayarin. It is speculated that they could improve resistance. Arginine is accumulated through two pathways: the citrulline decomposition and conversion pathway; and the circular pathway composed of ornithine, citrulline, l -argininosuccinate and arginine. Ayarin is synthesised through the quercetin methylation pathway. This study elucidates the antioxidant mechanisms for enhancing its resistance to heavy metal stress, thus improving of phytoremediation efficiency.
Collapse
Affiliation(s)
- Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Tian Gao
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Hongxu Bao
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Chang Yu
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Jianing Hu
- Dalian Neusoft University of Information, Dalian 116032, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| |
Collapse
|
11
|
Influence of Seed Source and Soil Contamination on Ecophysiological Responses of Lavandula pedunculata in Rehabilitation of Mining Areas. PLANTS 2021; 11:plants11010105. [PMID: 35009108 PMCID: PMC8747297 DOI: 10.3390/plants11010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022]
Abstract
Mining activities have turned many areas of the Iberian Pyrite Belt (IPB) into extreme environments with high concentrations of metal(loid)s. These harsh conditions can inhibit or reduce the colonization and/or development of most vegetation. However, some species or populations have developed ecophysiological responses to tolerate stress factors and contaminated soils. The main objectives of this study are: (i) to assess the differences in germination, growth, development and physiological behaviour against oxidative stress caused by metal(loid)s in Lavandula pedunculata (Mill.) Cav. from two different origins (a contaminated area in São Domingos mine, SE of Portugal and an uncontaminated area from Serra do Caldeirão, S of Portugal) under controlled conditions; and (ii) to assess whether it is possible to use this species for the rehabilitation of mine areas of the IPB. After germination, seedlings from São Domingos (LC) and Caldeirão (L) were planted in pots with a contaminated soil developed on gossan (CS) and in pots with an uncontaminated soil (US) under controlled conditions. Multielemental concentrations were determined in soils (total and available fractions) and plants (shoots and roots). Germination rate, shoot height, dry biomass and leaf area were determined, and pigments, glutathione, ascorbate and H2O2 contents were measured in plant shoots. Total concentrations of As, Cr, Cu, Pb and Sb in CS, and As in US exceed the intervention and maximum limits for ecosystem protection and human health. The main results showed that L. pedunculata, regardless of the seed origin, activated defence mechanisms against oxidative stress caused by high concentrations of metal(loid)s. Plants grown from seeds of both origins increased the production of AsA to preserve its reduction levels and kept the contents of GSH stable to maintain the cell’s redox state. Plants grown from seeds collected in non-contaminated areas showed a high capacity for adaptation to extreme conditions. This species showed a greater growth capacity when seeds from a contaminated area were sown in uncontaminated soils. Thus, L. pedunculata, mainly grown from seeds from contaminated areas, may be used in phytostabilization programmes in areas with soils with high contents of metal(loid)s.
Collapse
|
12
|
Sameena PP, Puthur JT. Cotyledonary leaves effectively shield the true leaves in Ricinus communis L. from copper toxicity. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:492-504. [PMID: 33001743 DOI: 10.1080/15226514.2020.1825331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The stress-buffering effects of cotyledonary leaves of Ricinus communis and the protection thus offered to the true leaves upon exposure to copper stress was performed by analyzing bioaccumulation of Cu and associated metabolic processes in the presence and absence of cotyledonary leaves. One-month-old seedlings of R. communis were treated with various concentrations of CuSO4 for 6 d under hydroponics with quarter strength modified Hoagland medium. Even though the photosynthetic pigments showed a decreasing trend with an increase in CuSO4 concentration and days of exposure in cotyledonary and true leaves, it was significant in true leaves with excised cotyledonary leaves. The results of chlorophyll a fluorescence parameters indicated that toxic levels of CuSO4 do not impart any major negative effect on the photochemistry of true leaves along with cotyledonary leaves. The analysis of osmolality, malondialdehyde, and metabolites showed a significantly increasing trend in true leaves with excised cotyledonary leaves. The above observations were strongly supported by higher Cu bioaccumulation in true leaves with excised cotyledonary leaves. The results suggest that the cotyledonary leaves have got the potential to evade Cu toxicity and thereby R. communis can be effectively used for the phytoremediation of Cu contaminated lands.
Collapse
Affiliation(s)
- P P Sameena
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Malappuram, India
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Malappuram, India
| |
Collapse
|