1
|
Xu J, Cui J, He Q, Liu Y, Lu X, Qi J, Xiong J, Yu W, Li C. Genome-wide identification of HIPP and mechanism of SlHIPP4/7/9/21/26/32 mediated phytohormones response to Cd, osmotic, and salt stresses in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109220. [PMID: 39437665 DOI: 10.1016/j.plaphy.2024.109220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Heavy-metal-associated isoprenylated plant proteins (HIPPs) contributed to abiotic tolerance in vascular plants. Up to now, the HIPP gene family of tomato (Solanum lycopersicum L.) had not been thoroughly understood. In the present study, 34 SlHIPP genes were identified from the tomato genome using the Hidden Markov Model (HMM). The phylogenetic analysis revealed that the evolution of SlHIPPs was highly conserved. The cis-acting element analysis indicated that SlHIPP genes might be involved in phytohormones and abiotic stresses. We constructed venn diagram with 17 genes containing stress-related motifs as well as 15 genes and 19 genes expressing in leaves and roots in RNA-seq data, suggesting that SlHIPP4/7/9/21/26/32 were selected as candidate genes for study. The quantitative real-time PCR (qRT-PCR) analysis showed that 6 candidate genes were indicated to be involved in osmotic and salt stress tolerance and SlHIPP7/21/26/32 responded to cadmium (Cd) tolerance. The virus-induced silencing of 6 candidate genes caused growth inhibition in stress conditions, further illustrating that 6 candidate genes played a positive role in abiotic conditions. Importantly, the phytohormone analysis implied that 6 candidate genes mediated abscisic acid (ABA), salicylic acid (SA), gibberellin (GA3), auxin (IAA), or methyl jasmonate (MeJA) response to Cd, osmotic, or salt stress tolerance. These findings indicated that SlHIPP4/7/9/21/26/32 were key regulators of abiotic stress responses in tomato seedlings, functioning through multiple phytohormone pathways.
Collapse
Affiliation(s)
- Junrong Xu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Jing Cui
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Qiuyu He
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Yunzhi Liu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Xuefang Lu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Jin Qi
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Jingli Xiong
- The Ziyuan Bureau of Agriculture and Rural, Guilin, 541400, China
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Changxia Li
- College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
2
|
Wang Q, Zhou L, Yuan M, Peng F, Zhu X, Wang Y. Genome-Wide Identification of NAC Gene Family Members of Tree Peony ( Paeonia suffruticosa Andrews) and Their Expression under Heat and Waterlogging Stress. Int J Mol Sci 2024; 25:9312. [PMID: 39273263 PMCID: PMC11395581 DOI: 10.3390/ijms25179312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
An important family of transcription factors (TFs) in plants known as NAC (NAM, ATAF1/2, and CUC2) is crucial for the responses of plants to environmental stressors. In this study, we mined the NAC TF family members of tree peony (Paeonia suffruticosa Andrews) from genome-wide data and analyzed their response to heat and waterlogging stresses in conjunction with transcriptome data. Based on tree peony's genomic information, a total of 48 PsNAC genes were discovered. Based on how similar their protein sequences were, these PsNAC genes were divided into 14 branches. While the gene structures and conserved protein motifs of the PsNAC genes within each branch were largely the same, the cis-acting elements in the promoter region varied significantly. Transcriptome data revealed the presence of five PsNAC genes (PsNAC06, PsNAC23, PsNAC38, PsNAC41, PsNAC47) and one PsNAC gene (PsNAC37) in response to heat and waterlogging stresses, respectively. qRT-PCR analysis reconfirmed the response of these five PsNAC genes to heat stress and one PsNAC gene to waterlogging stress. This study lays a foundation for the study of the functions and regulatory mechanisms of NAC TFs in tree peony. Meanwhile, the NAC TFs of tree peony in response to heat and waterlogging stress were excavated, which is of great significance for the selection and breeding of new tree peony varieties with strong heat and waterlogging tolerance.
Collapse
Affiliation(s)
- Qun Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lin Zhou
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Meng Yuan
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Fucheng Peng
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiangtao Zhu
- College of Jiyang, Zhejiang A&F University, Zhuji 311800, China
| | - Yan Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
3
|
Han K, Zhao Y, Liu J, Tian Y, El-Kassaby YA, Qi Y, Ke M, Sun Y, Li Y. Genome-wide investigation and analysis of NAC transcription factor family in Populus tomentosa and expression analysis under salt stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:764-776. [PMID: 38859551 DOI: 10.1111/plb.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/20/2024] [Indexed: 06/12/2024]
Abstract
The NAC transcription factor family is one of the largest families of TFs in plants, and members of NAC gene family play important roles in plant growth and stress response. Recent release of the haplotype-resolved genome assembly of P. tomentosa provide a platform for NAC protein genome-wide analysis. A total of 270 NAC genes were identified and a comprehensive overview of the PtoNAC gene family is presented, including gene promoter, structure and conserved motif analyses, chromosome localization and collinearity analysis, protein phylogeny, expression pattern, and interaction analysis. The results indicate that protein length, molecular weight, and theoretical isoelectric points of the NAC TF family vary, while gene structure and motif are relatively conserved. Chromosome mapping analysis showed that the P. tomentosa NAC genes are unevenly distributed on 19 chromosomes. The interchromosomal evolutionary results indicate 12 pairs of tandem and 280 segmental duplications. Segmental duplication is possibly related to amplification of P. tomentosa NAC gene family. Expression patterns of 35 PtoNAC genes from P. tomentosa subgroup were analysed under high salinity, and seven NAC genes were induced by this treatment. Promoter and protein interaction network analyses showed that PtoNAC genes are closely associated with growth, development, and abiotic and biotic stress, especially salt stress. These results provide a meaningful reference for follow-up studies of the functional characteristics of NAC genes in the mechanism of stress response and their potential roles in development of P. tomentosa.
Collapse
Affiliation(s)
- K Han
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Y Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - J Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Y Tian
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Y A El-Kassaby
- Department of Forest and Conservation Sciences Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - Y Qi
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - M Ke
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Y Sun
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Y Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
4
|
Guo L, Liao Y, Deng S, Li J, Bu X, Zhu C, Zhang W, Cong X, Cheng S, Chen Q, Xu F. Genome-wide analysis of NAC transcription factors and exploration of candidate genes regulating selenium metabolism in Broussonetia papyrifera. PLANTA 2024; 260:1. [PMID: 38753175 DOI: 10.1007/s00425-024-04438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/09/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION Genome-wide identification revealed 79 BpNAC genes belonging to 16 subfamilies, and their gene structures and evolutionary relationships were characterized. Expression analysis highlighted their importance in plant selenium stress responses. Paper mulberry (Broussonetia papyrifera), a deciduous arboreal plant of the Moraceae family, is distinguished by its leaves, which are abundant in proteins, polysaccharides, and flavonoids, positioning it as a novel feedstock. NAC transcription factors, exclusive to plant species, are crucial in regulating growth, development, and response to biotic and abiotic stress. However, extensive characterization of the NAC family within paper mulberry is lacking. In this study, 79 BpNAC genes were identified from the paper mulberry genome, with an uneven distribution across 13 chromosomes. A comprehensive, genome-wide analysis of BpNACs was performed, including investigating gene structures, promoter regions, and chromosomal locations. Phylogenetic tree analysis, alongside comparisons with Arabidopsis thaliana NACs, allowed for categorizing these genes into 16 subfamilies in alignment with gene structure and motif conservation. Collinearity analysis suggested a significant homologous relationship between the NAC genes of paper mulberry and those in Morus notabilis, Ficus hispida, Antiaris toxicaria, and Cannabis sativa. Integrating transcriptome data and Se content revealed that 12 BpNAC genes were associated with selenium biosynthesis. Subsequent RT-qPCR analysis corroborated the correlation between BpNAC59, BpNAC62 with sodium selenate, and BpNAC55 with sodium selenite. Subcellular localization experiments revealed the nuclear functions of BpNAC59 and BpNAC62. This study highlights the potential BpNAC transcription factors involved in selenium metabolism, providing a foundation for strategically breeding selenium-fortified paper mulberry.
Collapse
Affiliation(s)
- Longfei Guo
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Shiming Deng
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Jitao Li
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Xianchen Bu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Changye Zhu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, 445000, Hubei, China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Qiangwen Chen
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, Hubei, China.
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, 445000, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
5
|
Wang B, Zhu F, Zheng X, Yang L, Diao Y, Hu Z. Evaluation and validation of suitable reference genes for quantitative real-time PCR analysis in lotus (Nelumbo nucifera Gaertn.). Sci Rep 2024; 14:10857. [PMID: 38740848 DOI: 10.1038/s41598-024-61806-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
The qRT-PCR technique has been regarded as an important tool for assessing gene expression diversity. Selection of appropriate reference genes is essential for validating deviation and obtaining reliable and accurate results. Lotus (Nelumbo nucifera Gaertn) is a common aquatic plant with important aesthetic, commercial, and cultural values. Twelve candidate genes, which are typically used as reference genes for qRT-PCR in other plants, were selected for this study. These candidate reference genes were cloned with, specific primers designed based on published sequences. In particular, the expression level of each gene was examined in different tissues and growth stages of Lotus. Notably, the expression stability of these candidate genes was assessed using the software programs geNorm and NormFinder. As a result, the most efficient reference genes for rootstock expansion were TBP and UBQ. In addition, TBP and EF-1α were the most efficient reference genes in various floral tissues, while ACT and GAPDH were the most stable genes at all developmental stages of the seed. CYP and GAPDH were the best reference genes at different stages of leaf development, but TUA was the least stable. Meanwhile, the gene expression profile of NnEXPA was analyzed to confirm the validity of the findings. It was concluded that, TBP and GAPDH were identified as the best reference genes. The results of this study may help researchers to select appropriate reference genes and thus obtain credible results for further quantitative RT-qPCR gene expression analyses in Lotus.
Collapse
Affiliation(s)
- Bin Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Fenglin Zhu
- Anhui University of Science and Technology, Medical College, Huainan, 232001, People's Republic of China
| | - Xingwen Zheng
- Guangchang County White Lotus Industrial Development Center, Guangchang, 344900, P.R. China
| | - Liangbo Yang
- Guangchang County White Lotus Industrial Development Center, Guangchang, 344900, P.R. China
| | - Ying Diao
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.
| | - Zhongli Hu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Science, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
6
|
Chang B, Qiu X, Yang Y, Zhou W, Jin B, Wang L. Genome-wide analyses of the GbAP2 subfamily reveal the function of GbTOE1a in salt and drought stress tolerance in Ginkgo biloba. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112027. [PMID: 38354754 DOI: 10.1016/j.plantsci.2024.112027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/03/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The APETALA2 (AP2) transcription factors play crucial roles in plant growth and stage transition. Ginkgo biloba is an important medicinal plant renowned for the rich flavonoid content in its leaves. In this study, 18 GbAP2s were identified from the G. biloba genome and classified into three clusters. We found that the members of the euAP2 cluster, including four TOEs (GbTOE1a/1b/1c/3), exhibited a higher expression level in most samples compared to other members. Specifically, GbTOE1a may have a positive regulatory role in salt and drought stress responses. The overexpression of GbTOE1a in G. biloba calli resulted in a significant increase in the flavonoid content and upregulation of flavonoid biosynthesis genes, including PAL, 4CL, CHS, F3H, FLSs, F3'Hs, OMT, and DFRs. By contrast, the silencing of GbTOE1a in seedlings decreased the flavonoid content and the expression of flavonoid synthesizing genes. In addition, the silenced seedlings exhibited decreased antioxidant levels and a higher sensitivity to salt and drought treatments, suggesting a crucial role of GbTOE1a in G. biloba salt and drought tolerance. To the best of our knowledge, this was the first investigation into the identification and characterization of GbAP2s in G. biloba. Our results lay a foundation for further research on the regulatory role of the AP2 family in flavonoid synthesis and stress responses.
Collapse
Affiliation(s)
- Bang Chang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Xinyu Qiu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Yi Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Wanxiang Zhou
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Biao Jin
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Li Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
7
|
He H, Li Q, Fang L, Yang W, Xu F, Yan Y, Mao R. Comprehensive analysis of NAC transcription factors in Scutellaria baicalensis and their response to exogenous ABA and GA 3. Int J Biol Macromol 2023:125290. [PMID: 37302633 DOI: 10.1016/j.ijbiomac.2023.125290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
The NAC is a plant-specific family of transcription factor that plays important roles in various biological processes. Scutellaria baicalensis Georgi, belongs to the Lamiaceae family and has been widely used as a traditional herb with a wide range of pharmacological activities, including antitumor, heat-clearing, and detoxifying functions. However, no study on the NAC family in S. baicalensis has been conducted to date. In the present study, we identified 56 SbNAC genes using genomic and transcriptome analyses. These 56 SbNACs were unevenly distributed across nine chromosomes and were phylogenetically divided into six clusters. Cis-element analysis identified plant growth and development-, phytohormone-, light-, and stress-responsive elements were present in SbNAC genes promoter regions. Protein-protein interaction analysis was performed using Arabidopsis homologous proteins. Potential transcription factors, including bHLH, ERF, MYB, WRKY, and bZIP, were identified and constructed a regulatory network with SbNAC genes. The expression of 12 flavonoid biosynthetic genes was significantly upregulated with abscisic acid (ABA) and gibberellin (GA3) treatments. Eight SbNAC genes (SbNAC9/32/33/40/42/43/48/50) also exhibited notable variation with two phytohormone treatments, among which SbNAC9 and SbNAC43 showed the most significant variation and deserved further study. Additionally, SbNAC44 displayed a positive correlation with C4H3, PAL5, OMT3, and OMT6, while SbNAC25 had negatively correlated with OMT2, CHI, F6H2, and FNSII-2. This study constitutes the first analysis of SbNAC genes and lays the basis foundation for further functional studies of SbNAC genes family members, while it may also facilitate the genetic improvement of plants and breeding of elite S. baicalensis varieties.
Collapse
Affiliation(s)
- Huan He
- College of Life Sciences, Yan'an University, Yan'an 716000, Shaanxi, China
| | - Qiuyue Li
- College of Life Sciences, Yan'an University, Yan'an 716000, Shaanxi, China
| | - Liang Fang
- College of Life Sciences, Yan'an University, Yan'an 716000, Shaanxi, China
| | - Wen Yang
- College of Life Sciences, Yan'an University, Yan'an 716000, Shaanxi, China
| | - Feican Xu
- College of Life Sciences, Yan'an University, Yan'an 716000, Shaanxi, China
| | - Yan Yan
- College of Life Sciences, Yan'an University, Yan'an 716000, Shaanxi, China; Shaanxi Key Laboratory of Chinese Jujube, Yan'an 716000, Shaanxi, China
| | - Renjun Mao
- College of Life Sciences, Yan'an University, Yan'an 716000, Shaanxi, China; Shaanxi Key Laboratory of Chinese Jujube, Yan'an 716000, Shaanxi, China.
| |
Collapse
|