1
|
Elizarraraz-Martínez IJ, Rojas-Raya MA, Feregrino-Pérez AA, Partida-Martínez LP, Heil M. Immunity priming and biostimulation by airborne nonanal increase yield of field-grown common bean plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1451864. [PMID: 39568456 PMCID: PMC11577088 DOI: 10.3389/fpls.2024.1451864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/13/2024] [Indexed: 11/22/2024]
Abstract
Introduction Stress-induced volatile organic compounds (VOCs) that induce plant immunity bear potential for biocontrol. Here, we explore the potential of nonanal to enhance the seed yield of common bean (Phaseolus vulgaris) under open field conditions that are realistic for smallholder farmers. Methods and results Using plastic cups with a nonanal-containing lanolin paste as low-cost dispensers, we observed that exposure of Flor de Junio Marcela (FJM) plants over 48h to airborne nonanal was followed by a 3-fold higher expression of pathogenesis-related (PR) genes PR1 and PR4. Both genes further increased their expression in response to subsequent challenge with the fungal pathogen Colletotrichum lindemuthianum. Therefore, we conclude that nonanal causes resistance gene priming. This effect was associated with ca. 2.5-fold lower infection rates and a 2-fold higher seed yield. Offspring of nonanal-exposed FJM plants exhibited a 10% higher emergence rate and a priming of PR1- and PR4-expression, which was associated with decreased infection by C. lindemuthianum and, ultimately, a ca. 3-fold increase in seed yield by anthracnose-infected offspring of nonanal-exposed plants. Seeds of nonanal-exposed and of challenged plants contained significantly more phenolic compounds (increase by ca 40%) and increased antioxidant and radical scavenging activity. Comparative studies including five widely used bean cultivars revealed 2-fold to 3-fold higher seed yield for nonanal-exposed plants. Finally, a cost-benefit analysis indicated a potential economic net profit of nonanal exposure for some, but not all cultivars. Outlook We consider nonanal as a promising candidate for an affordable tool that allows low-income smallholder farmers to increase the yield of an important staple-crop without using pesticides.
Collapse
Affiliation(s)
- Iris J Elizarraraz-Martínez
- Departamento de Ingeniería Genética, Laboratorio de Ecología de Plantas, Centro de Investigación y de Estudios Avanzados (CINVESTAV) - Unidad Irapuato, Irapuato, Mexico
| | - Mariana A Rojas-Raya
- Departamento de Ingeniería Genética, Laboratorio de Ecología de Plantas, Centro de Investigación y de Estudios Avanzados (CINVESTAV) - Unidad Irapuato, Irapuato, Mexico
| | | | - Laila P Partida-Martínez
- Departamento de Ingeniería Genética, Laboratorio de Interacciones Microbianas, Centro de Investigación y de Estudios Avanzados (CINVESTAV)- Unidad Irapuato, Irapuato, Mexico
| | - Martin Heil
- Departamento de Ingeniería Genética, Laboratorio de Ecología de Plantas, Centro de Investigación y de Estudios Avanzados (CINVESTAV) - Unidad Irapuato, Irapuato, Mexico
| |
Collapse
|
2
|
Laupheimer S, Ghirardo A, Kurzweil L, Weber B, Stark TD, Dawid C, Schnitzler J, Hückelhoven R. Blumeria hordei affects volatile emission of susceptible and resistant barley plants and modifies the defense response of recipient plants. PHYSIOLOGIA PLANTARUM 2024; 176:e14646. [PMID: 39648862 PMCID: PMC11626344 DOI: 10.1111/ppl.14646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
The barley powdery mildew disease caused by the biotrophic fungus Blumeria hordei (Bh) poses enormous risks to crop production due to yield and quality losses. Plants and fungi can produce and release volatile organic compounds (VOCs) that serve as signals in plant communication and defense response to protect themselves. The present study aims to identify VOCs released by barley (Hordeum vulgare) during Bh-infection and to decipher VOC-induced disease resistance in receiver plants. VOC profiles of susceptible MLO wild type (MLO WT) and a resistant near-isogenic backcross line (mlo5) were characterized over time (one day or three days after Bh inoculation) using TD-GC/MS. Comparative analysis revealed genotype-dependent VOC profiles and significant differences in emission rates for β-caryophyllene, linalool, (Z)-3-hexenol, and methyl salicylate. Furthermore, susceptible barley plants were exposed to the complex VOC bouquet of MLO WT or mlo5 sender plants in plant-to-plant communication. We found that VOC-induced resistance in receiver plants depended on the sender genotype in a Bh susceptibility assay. Additionally, untargeted metabolomics and gene expression studies provide evidence toward an SA-dependent pathway mediating VOC-induced resistance against powdery mildew. The exogenous application of methyl salicylate resulted in the enhanced expression of the BARLEY CHEMICALLY INDUCED-4 marker gene and induced resistance in receiver plants. The findings suggest genotype-dependent alterations in barley VOC profiles during biotrophic plant-fungus interactions and show a VOC-mediated resistance that shares components with salicylic acid-related pathways. The VOC signals identified here could serve as non-invasive markers for disease progression in barley-powdery mildew interactions and as signals for resistance induction in recipient plants.
Collapse
Affiliation(s)
- Silvana Laupheimer
- Chair of Phytopathology, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation (EUS)Helmholtz Center MunichNeuherbergGermany
| | - Lisa Kurzweil
- Professorship for Functional Phytometabolomics, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Baris Weber
- Research Unit Environmental Simulation (EUS)Helmholtz Center MunichNeuherbergGermany
| | - Timo D. Stark
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Corinna Dawid
- Professorship for Functional Phytometabolomics, TUM School of Life SciencesTechnical University of MunichFreisingGermany
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Jörg‐Peter Schnitzler
- Research Unit Environmental Simulation (EUS)Helmholtz Center MunichNeuherbergGermany
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| |
Collapse
|
3
|
Spreng S, Wannenmacher J, Gastl M, Dawid C, Hofmann T. Quantitative Antioxidant Profiling Throughout Beer Brewing Followed by Discovery and Isolation of Precursors from Barley ( Hordeum vulgare L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13885-13897. [PMID: 38833300 PMCID: PMC11191689 DOI: 10.1021/acs.jafc.4c00998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
The application of high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) revealed the origin and evolution of antioxidants during the brewing process of hopped and unhopped reference beer. As tachioside (3-methoxy-4-hydroxyphenyl-β-d-glucopyranoside), arbutin (4-hydroxyphenyl-β-d-glucopyranoside), and hordatines clearly increased during the fermentation step, the raw material barley was investigated as a source of the corresponding precursors. Therefore, 4-hydroxyphenyl-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranoside, 4-hydroxy-3-methoxyphenyl-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranoside, 4-hydroxy-3-methoxyphenyl-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranoside, and 4-hydroxy-2-methoxyphenyl-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranoside were isolated from barley for the first time, and identified using liquid chromatography-mass spectrometry (LC-MS) and one-dimensional/two-dimensional-nuclear magnetic resonance (1D/2D-NMR) experiments. Moreover, hordatine glucosides A, B, and C were isolated and identified from barley, and hordatine C glucoside was characterized for the first time. A fermentation model followed by HPLC-MS/MS analysis substantiated the release of tachioside from 4-hydroxy-3-methoxyphenyl-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranoside by Saccharomyces cerevisiae. Quantitation experiments monitoring the content in wheat, barley, and different barley malt types demonstrated a wide range of concentrations, providing a basis for further comprehensive investigations to optimize the antioxidant yield in beer to contribute to improved flavor stability.
Collapse
Affiliation(s)
- Stefan Spreng
- Chair
of Food Chemistry and Molecular and Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising, Germany
| | - Julia Wannenmacher
- Chair
of Brewing and Beverage Technology, Technical
University of Munich, Weihenstephaner Steig 20, D-85354 Freising, Germany
| | - Martina Gastl
- Chair
of Brewing and Beverage Technology, Technical
University of Munich, Weihenstephaner Steig 20, D-85354 Freising, Germany
| | - Corinna Dawid
- Chair
of Food Chemistry and Molecular and Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising, Germany
- Bavarian
Center for Biomolecular Mass Spectrometry, Gregor-Mendel-Straße 4, D-85354 Freising, Germany
| | - Thomas Hofmann
- Chair
of Food Chemistry and Molecular and Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising, Germany
- Bavarian
Center for Biomolecular Mass Spectrometry, Gregor-Mendel-Straße 4, D-85354 Freising, Germany
| |
Collapse
|
4
|
Thomas G, Caulfield J, Nikolaeva-Reynolds L, Birkett MA, Vuts J. Solvent Extraction of PDMS Tubing as a New Method for the Capture of Volatile Organic Compounds from Headspace. J Chem Ecol 2024; 50:85-99. [PMID: 38246946 DOI: 10.1007/s10886-024-01469-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Polydimethylsiloxane (PDMS) tubing is increasingly being used to collect volatile organic compounds (VOCs) from static biological headspace. However, analysis of VOCs collected using PDMS tubing often deploys thermal desorption, where samples are considered as 'one-offs' and cannot be used in multiple experiments. In this study, we developed a static headspace VOC collection method using PDMS tubing which is solvent-based, meaning that VOC extracts can be used multiple times and can be linked to biological activity. Using a synthetic blend containing a range of known semiochemicals (allyl isothiocyanate, (Z)-3-hexen-1-ol, 1-octen-3-one, nonanal, (E)-anethol, (S)-bornyl acetate, (E)-caryophyllene and pentadecane) with differing chemical and physicochemical properties, VOCs were collected in static headspace by exposure to PDMS tubing with differing doses, sampling times and lengths. In a second experiment, VOCs from oranges were collected using PDMS sampling of static headspace versus dynamic headspace collection. VOCs were eluted with diethyl ether and analysed using gas chromatography - flame ionization detector (GC-FID) and coupled GC - mass spectrometry. GC-FID analysis of collected samples showed that longer PDMS tubes captured significantly greater quantities of compounds than shorter tubes, and that sampling duration significantly altered the recovery of all tested compounds. Moreover, greater quantities of compounds were recovered from closed compared to open systems. Finally, analysis of orange headspace VOCs showed no qualitative differences in VOCs recovered compared to dynamic headspace collections, although quantities sampled using PDMS tubing were lower. In summary, extraction of PDMS tubing with diethyl ether solvent captures VOCs from the headspace of synthetic blends and biological samples, and the resulting extracts can be used for multiple experiments linking VOC content to biological activity.
Collapse
Affiliation(s)
- Gareth Thomas
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - John Caulfield
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | | | - Michael A Birkett
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - József Vuts
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK.
| |
Collapse
|
5
|
Thomas G, Rusman Q, Morrison WR, Magalhães DM, Dowell JA, Ngumbi E, Osei-Owusu J, Kansman J, Gaffke A, Pagadala Damodaram KJ, Kim SJ, Tabanca N. Deciphering Plant-Insect-Microorganism Signals for Sustainable Crop Production. Biomolecules 2023; 13:997. [PMID: 37371577 PMCID: PMC10295935 DOI: 10.3390/biom13060997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Agricultural crop productivity relies on the application of chemical pesticides to reduce pest and pathogen damage. However, chemical pesticides also pose a range of ecological, environmental and economic penalties. This includes the development of pesticide resistance by insect pests and pathogens, rendering pesticides less effective. Alternative sustainable crop protection tools should therefore be considered. Semiochemicals are signalling molecules produced by organisms, including plants, microbes, and animals, which cause behavioural or developmental changes in receiving organisms. Manipulating semiochemicals could provide a more sustainable approach to the management of insect pests and pathogens across crops. Here, we review the role of semiochemicals in the interaction between plants, insects and microbes, including examples of how they have been applied to agricultural systems. We highlight future research priorities to be considered for semiochemicals to be credible alternatives to the application of chemical pesticides.
Collapse
Affiliation(s)
- Gareth Thomas
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Quint Rusman
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland;
| | - William R. Morrison
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center for Grain and Animal Health Research, 1515 College Ave., Manhattan, KS 66502, USA;
| | - Diego M. Magalhães
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil;
| | - Jordan A. Dowell
- Department of Plant Sciences, University of California, Davis, One Shields Ave., Davis, CA 95616, USA;
| | - Esther Ngumbi
- Department of Entomology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA;
| | - Jonathan Osei-Owusu
- Department of Biological, Physical and Mathematical Sciences, University of Environment and Sustainable Development, Somanya EY0329-2478, Ghana;
| | - Jessica Kansman
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Alexander Gaffke
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center for Medical, Agricultural, and Veterinary Entomology, 6383 Mahan Dr., Tallahassee, FL 32308, USA;
| | | | - Seong Jong Kim
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Natural Products Utilization Research Unit, University, MS 38677, USA;
| | - Nurhayat Tabanca
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158, USA
| |
Collapse
|
6
|
Reshuffle Bonds by Ball Milling: A Mechanochemical Protocol for Charge-Accelerated Aza-Claisen Rearrangements. Molecules 2023; 28:molecules28020807. [PMID: 36677865 PMCID: PMC9860570 DOI: 10.3390/molecules28020807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
This study presents the development of a mechanochemical protocol for a charge-accelerated aza-Claisen rearrangement. The protocol waives the use of commonly applied transition metals, ligands, or pyrophoric Lewis acids, e.g., AlMe3. Based on (heterocyclic) tertiary allylamines and acyl chlorides, the desired tertiary amides were prepared in yields ranging from 17% to 84%. Moreover, the same protocol was applied for a Belluš-Claisen-type rearrangement resulting in the synthesis of a 9-membered lactam without further optimization.
Collapse
|
7
|
de Moraes Pontes JG, da Silva Pinheiro MS, Fill TP. Unveiling Chemical Interactions Between Plants and Fungi Using Metabolomics Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:1-20. [PMID: 37843803 DOI: 10.1007/978-3-031-41741-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Metabolomics has been extensively used in clinical studies in the search for new biomarkers of human diseases. However, this approach has also been highlighted in agriculture and biological sciences, once metabolomics studies have been assisting researchers to deduce new chemical mechanisms involved in biological interactions that occur between microorganisms and plants. In this sense, the knowledge of the biological role of each metabolite (virulence factors, signaling compounds, antimicrobial metabolites, among others) and the affected biochemical pathways during the interaction contribute to a better understand of different ecological relationships established in nature. The current chapter addresses five different applications of the metabolomics approach in fungal-plant interactions research: (1) Discovery of biomarkers in pathogen-host interactions, (2) plant diseases diagnosis, (3) chemotaxonomy, (4) plant defense, and (5) plant resistance; using mass spectrometry and/or nuclear magnetic resonance spectroscopy, which are the techniques most used in metabolomics.
Collapse
Affiliation(s)
- João Guilherme de Moraes Pontes
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Laboratório de Biologia Química Microbiana (LaBioQuiMi), Campinas, SP, Brazil
| | - Mayra Suelen da Silva Pinheiro
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Laboratório de Biologia Química Microbiana (LaBioQuiMi), Campinas, SP, Brazil
| | - Taícia Pacheco Fill
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Laboratório de Biologia Química Microbiana (LaBioQuiMi), Campinas, SP, Brazil.
| |
Collapse
|