1
|
Argyriou AA, Dermitzakis EV, Rikos D, Xiromerisiou G, Soldatos P, Litsardopoulos P, Vikelis M. Effects of OnabotulinumtoxinA on Allodynia and Interictal Burden of Patients with Chronic Migraine. Toxins (Basel) 2024; 16:106. [PMID: 38393184 PMCID: PMC10891839 DOI: 10.3390/toxins16020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND We primarily aimed to ascertain whether treatment with OnabotulinumtoxinA (BoNTA) might influence the extent of the interictal burden and cutaneous allodynia in patients with chronic migraine (CM). METHODS Seventy CM patients, who received three consecutive cycles of BoNTA, were studied. The interictal burden was assessed with the Migraine Interictal Burden Scale (MIBS-4), while cutaneous allodynia was examined with the Allodynia Symptom Checklist (ASC-12) together with PI-NRS VAS to obtain hair brushing scores, and then these were compared from baseline (T0) to the last efficacy evaluation follow-up (T1). Efficacy outcomes, mostly mean headache days (MHD) and "Headache Impact Test" scores, were also assessed between T0 and T1. RESULTS BONTA improved the interictal burden, with a decrease in MIBS-4 scoring by an average of -7 at T1, compared to baseline (p < 0.001). The percentage of patients with a moderate/severe interictal burden was substantially decreased. Likewise, BoNTA reduced the extent of cutaneous allodynia, with a significant reduction in both the ASC-12 (1 vs. 6; p < 0.001) and PI-NRS VAS (1 vs. 5; p < 0.001) to hair brushing median scores at T1, compared to baseline. Reduced MHD rates were significantly associated with a smaller interictal burden at T1. The efficacy of BoNTA, with a significant reduction in MHD and HIT-6 scores at T1 compared to T0, was re-confirmed. CONCLUSIONS BoNTA resulted in a statistically significant reduction in the interictal burden and also improved cutaneous allodynia. The reduction in ictal burden was associated with the down-scaling of the interictal burden. Hence, BoNTA improved the full spectrum of migraine impairment by diminishing the clinical expression of central sensitization.
Collapse
Affiliation(s)
- Andreas A Argyriou
- Headache Outpatient Clinic, Department of Neurology, Agios Andreas General Hospital of Patras, 26335 Patras, Greece
| | | | | | - Georgia Xiromerisiou
- Department of Neurology, University Hospital of Larissa, University of Thessaly, 41110 Larissa, Greece
| | | | - Pantelis Litsardopoulos
- Headache Outpatient Clinic, Department of Neurology, Agios Andreas General Hospital of Patras, 26335 Patras, Greece
| | - Michail Vikelis
- Headache Clinic, Mediterraneo Hospital, 16675 Athens, Greece
| |
Collapse
|
2
|
Yang DG, Gao YY, Yin ZQ, Wang XR, Meng XS, Zou TF, Duan YJ, Chen YL, Liao CZ, Xie ZL, Fan XD, Sun L, Han JH, Yang XX. Roxadustat alleviates nitroglycerin-induced migraine in mice by regulating HIF-1α/NF-κB/inflammation pathway. Acta Pharmacol Sin 2023; 44:308-320. [PMID: 35948752 PMCID: PMC9889379 DOI: 10.1038/s41401-022-00941-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Sensitization of central pain and inflammatory pathways play essential roles in migraine, a primary neurobiological headache disorder. Since hypoxia-inducible factor-1α (HIF-1α) is implicated in neuroprotection and inflammation inhibition, herein we investigated the role of HIF-1α in migraine. A chronic migraine model was established in mice by repeated injection of nitroglycerin (10 mg/kg, i.p.) every other day for 5 total injections. In the prevention and acute experiments, roxadustat, a HIF-1α stabilizer, was orally administered starting before or after nitroglycerin injection, respectively. Pressure application measurement, and tail flick and light-aversive behaviour tests were performed to determine the pressure pain threshold, thermal nociceptive sensitivity and migraine-related light sensitivity. At the end of experiments, mouse serum samples and brain tissues were collected for analyses. We showed that roxadustat administration significantly attenuated nitroglycerin-induced basal hypersensitivity and acute hyperalgesia by improving central sensitization. Roxadustat administration also decreased inflammatory cytokine levels in serum and trigeminal nucleus caudalis (TNC) through NF-κB pathway. Consistent with the in vivo results showing that roxadustat inhibited microglia activation, roxadustat (2, 10, and 20 μM) dose-dependently reduced ROS generation and inflammation in LPS-stimulated BV-2 cells, a mouse microglia cell line, by inhibiting HIF-1α/NF-κB pathway. Taken together, this study demonstrates that roxadustat administration ameliorates migraine-like behaviours and inhibits central pain sensitization in nitroglycerin-injected mice, which is mainly mediated by HIF-1α/NF-κB/inflammation pathway, suggesting the potential of HIF-1α activators as therapeutics for migraine.
Collapse
Affiliation(s)
- Dai-Gang Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yong-Yao Gao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ze-Qun Yin
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xue-Rui Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xian-She Meng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ting-Feng Zou
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ya-Jun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yuan-Li Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chen-Zhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhou-Ling Xie
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiao-Dong Fan
- Department of General Gynecology, Tianjin Central Hospital of Gynecology and Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, China
| | - Lu Sun
- Department of General Gynecology, Tianjin Central Hospital of Gynecology and Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, China
| | - Ji-Hong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
- College of Life Sciences, Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, 300071, China.
| | - Xiao-Xiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
3
|
Al Qawasmeh M, Ahmed YB, Al-Bzour AN, Al-Majali GN, Alzghoul SM, Al-Khalili AA, Ibrahim RB, Hamza AI, Al-Mannai RS, Refaie H, Alhayek K, Kofahi R, Leffler A, El Salem K. Meta-analytical evidence of functional and structural abnormalities associated with pain processing in migraine patients: An activation likelihood estimation. Medicine (Baltimore) 2022; 101:e31206. [PMID: 36316871 PMCID: PMC9622585 DOI: 10.1097/md.0000000000031206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Migraine is a primary headache disorder that causes debilitating throbbing pain. Several functional MRI (fMRI) and voxel-based morphometry (VBM) studies have been used to investigate the structural and functional alteration in migraine. Here, we aim to study the converged brain regions of functional and structural abnormalities in gray matter volume (GMV) associated with pain processing and management in migraineurs and healthy controls (HC). METHODS A systematic search through PubMed and Sleuth was carried out for peer-reviewed functional and structural neuroimaging studies on migraine patients and HC yielded a total of 1136 studies. We performed an activation likelihood estimation (ALE) meta-analysis on VBM and pain stimulation task-based fMRI studies to investigate the converged areas of GMV and functional abnormalities between migraineurs and HC. We performed two subgroup analyses between migraine with aura (MwA) and migraine without aura (MwoA) relative to HC, and between chronic migraine (CM) and episodic migraine (EM) compared to HC. RESULTS The total sample included 16 fMRI and 22 VBM studies, consisting of 1295 migraine patients, compared to 995 HC. In fMRI analysis, ALE maps for pain stimulation tasks revealed hyperactivation in migraineurs in the substantia nigra compared to HC, whereas hypoactivation was seen in the cerebellum. For the VBM analysis, ALE clusters of increased GMV in migraineurs were observed in the parahippocampus and putamen nucleus. Whereas clusters of reduced GMV in migraineurs were seen in the frontal gyri. Compared to HC, MwoA patients showed a GMV reduction in the insula, and anterior cingulate, whereas MwA patients showed GMV reduction in the cerebellum, cingulate gyrus, and insula. CM patients showed decreased GMV in the precentral gyrus, whereas EM patients showed decreased GMV in the parahippocampus, and inferior frontal gyrus when compared to HC. CONCLUSIONS Our findings represent a potential biomarker for the diagnosis and management of migraine, by showing clustered brain regions of abnormal patterns of activation and GMV changes between migraineurs and HC which might be associated with hyposensitivity to pain in migraineurs. Further studies are required to determine disease progression or therapeutic interventions' effect on migraine.
Collapse
Affiliation(s)
- Majdi Al Qawasmeh
- Department of Neurosciences, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Yaman B. Ahmed
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
- *Correspondence: Yaman B. Ahmed, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan (e-mail: )
| | - Ayah N. Al-Bzour
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Saja M. Alzghoul
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Anas A. Al-Khalili
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ruaa B. Ibrahim
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ammar I. Hamza
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ramaz S. Al-Mannai
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Haneen Refaie
- Department of Neurosciences, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Kefah Alhayek
- Department of Neurosciences, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Raed Kofahi
- Department of Neurosciences, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Khalid El Salem
- Department of Neurosciences, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
4
|
Zhang L, Yu W, Xu M, Cui F, Song W, Yan M, Cao Z, Zhang Z. The hypothalamus may mediate migraine and ictal photophobia: evidence from Granger causality analysis. Neurol Sci 2022; 43:6021-6030. [DOI: 10.1007/s10072-022-06245-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/21/2022] [Indexed: 01/03/2023]
|
5
|
Di Antonio S, Castaldo M, Ponzano M, Bovis F, Hugo Villafañe J, Torelli P, Finocchi C, Arendt‐Nielsen L. Trigeminal and cervical sensitization during the four phases of the migraine cycle in patients with episodic migraine. Headache 2022; 62:176-190. [DOI: 10.1111/head.14261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Stefano Di Antonio
- Department of Health Science and Technology Center for Pain and Neuroplasticity School of Medicine Aalborg University Aalborg Denmark
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health University of Genoa Genoa Italy
| | - Matteo Castaldo
- Department of Health Science and Technology Center for Pain and Neuroplasticity School of Medicine Aalborg University Aalborg Denmark
| | - Marta Ponzano
- Department of Health Sciences Section of Biostatistics University of Genoa Genoa Italy
| | - Francesca Bovis
- Department of Health Sciences Section of Biostatistics University of Genoa Genoa Italy
| | | | - Paola Torelli
- Headache Centre Department of Medicine and Surgery University of Parma Parma Italy
| | - Cinzia Finocchi
- Headache Centre IRCCS Ospedale Policlinico San Martino Genoa Italy
| | - Lars Arendt‐Nielsen
- Department of Health Science and Technology Center for Pain and Neuroplasticity School of Medicine Aalborg University Aalborg Denmark
- Department of Medical Gastroenterology Mech‐Sense Aalborg University Hospital Aalborg Denmark
| |
Collapse
|
6
|
Xu A, Larsen B, Henn A, Baller EB, Scott JC, Sharma V, Adebimpe A, Basbaum AI, Corder G, Dworkin RH, Edwards RR, Woolf CJ, Eickhoff SB, Eickhoff CR, Satterthwaite TD. Brain Responses to Noxious Stimuli in Patients With Chronic Pain: A Systematic Review and Meta-analysis. JAMA Netw Open 2021; 4:e2032236. [PMID: 33399857 PMCID: PMC7786252 DOI: 10.1001/jamanetworkopen.2020.32236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IMPORTANCE Functional neuroimaging is a valuable tool for understanding how patients with chronic pain respond to painful stimuli. However, past studies have reported heterogenous results, highlighting opportunities for a quantitative meta-analysis to integrate existing data and delineate consistent associations across studies. OBJECTIVE To identify differential brain responses to noxious stimuli in patients with chronic pain using functional magnetic resonance imaging (fMRI) while adhering to current best practices for neuroimaging meta-analyses. DATA SOURCES All fMRI experiments published from January 1, 1990, to May 28, 2019, were identified in a literature search of PubMed/MEDLINE, EMBASE, Web of Science, Cochrane Library, PsycINFO, and SCOPUS. STUDY SELECTION Experiments comparing brain responses to noxious stimuli in fMRI between patients and controls were selected if they reported whole-brain results, included at least 10 patients and 10 healthy control participants, and used adequate statistical thresholding (voxel-height P < .001 or cluster-corrected P < .05). Two independent reviewers evaluated titles and abstracts returned by the search. In total, 3682 abstracts were screened, and 1129 full-text articles were evaluated. DATA EXTRACTION AND SYNTHESIS Thirty-seven experiments from 29 articles met inclusion criteria for meta-analysis. Coordinates reporting significant activation differences between patients with chronic pain and healthy controls were extracted. These data were meta-analyzed using activation likelihood estimation. Data were analyzed from December 2019 to February 2020. MAIN OUTCOMES AND MEASURES A whole-brain meta-analysis evaluated whether reported differences in brain activation in response to noxious stimuli between patients and healthy controls were spatially convergent. Follow-up analyses examined the directionality of any differences. Finally, an exploratory (nonpreregistered) region-of-interest analysis examined differences within the pain network. RESULTS The 37 experiments from 29 unique articles included a total of 511 patients and 433 controls (944 participants). Whole-brain meta-analyses did not reveal significant differences between patients and controls in brain responses to noxious stimuli at the preregistered statistical threshold. However, exploratory analyses restricted to the pain network revealed aberrant activity in patients. CONCLUSIONS AND RELEVANCE In this systematic review and meta-analysis, preregistered, whole-brain analyses did not reveal aberrant fMRI activity in patients with chronic pain. Exploratory analyses suggested that subtle, spatially diffuse differences may exist within the pain network. Future work on chronic pain biomarkers may benefit from focus on this core set of pain-responsive areas.
Collapse
Affiliation(s)
- Anna Xu
- Department of Psychiatry, University of Pennsylvania, Philadelphia
| | - Bart Larsen
- Department of Psychiatry, University of Pennsylvania, Philadelphia
| | - Alina Henn
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen University, Aachen, Germany
| | - Erica B. Baller
- Department of Psychiatry, University of Pennsylvania, Philadelphia
- Department of Psychiatry, Massachusetts General Hospital, Boston
- Department of Psychiatry, Harvard University, Boston, Massachusetts
| | - J. Cobb Scott
- Department of Psychiatry, University of Pennsylvania, Philadelphia
- VISN4 Mental Illness Research, Education, and Clinical Center at the Corporal Michael J. Crescenz VA (Veterans Affairs) Medical Center, Philadelphia, Pennsylvania
| | - Vaishnavi Sharma
- Department of Psychiatry, University of Pennsylvania, Philadelphia
| | - Azeez Adebimpe
- Department of Psychiatry, University of Pennsylvania, Philadelphia
| | | | - Gregory Corder
- Department of Psychiatry, University of Pennsylvania, Philadelphia
| | - Robert H. Dworkin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Robert R. Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Clifford J. Woolf
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour Sections, Research Centre Jülich, Jülich, Germany
| | - Claudia R. Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behaviour Sections, Research Centre Jülich, Jülich, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | | |
Collapse
|
7
|
Qin ZX, Su JJ, He XW, Zhu Q, Cui YY, Zhang JL, Wang MX, Gao TT, Tang W, Hu Y, Liu YS, Qiao Y, Liu JR, Li JQ, Du XX. Altered resting-state functional connectivity between subregions in the thalamus and cortex in migraine without aura. Eur J Neurol 2020; 27:2233-2241. [PMID: 32562320 DOI: 10.1111/ene.14411] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/14/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE Migraine is a complex and disabling neurological disorder, the exact neurological mechanisms of which remain unclear. The thalamus is considered to be the hub of the central processing and integration of nociceptive information, as well as the modulation of these processes. METHODS A total of 48 migraineurs without aura (MWoAs) during the interictal phase and 48 age- and sex-matched healthy controls underwent resting-state functional magnetic resonance imaging scans. We utilized masked independent component analysis and seed-based functional connectivity (FC) to investigate whether MWoAs exhibited abnormal FC between subregions in the thalamus and the cortex regions. RESULTS The MWoAs showed significantly weaker FC between the anterior dorsal thalamic nucleus and left precuneus. Additionally, MWoAs exhibited significantly reduced FC between the ventral posterior nucleus (VPN) and left precuneus, right inferior parietal lobule (R-IPL) and right middle frontal gyrus. Furthermore, the FC Z-scores between the VPN and R-IPL were negatively correlated with pain intensity in MWoAs. The disease duration of patients was negatively correlated with the FC Z-scores between the VPN and R-IPL. CONCLUSION These altered thalamocortical connectivity patterns may contribute to multisensory integration abnormalities, deficits in pain attention, cognitive evaluation and pain modulation. Pain sensitivity and disease duration are closely tied to abnormal FC between the VPN and R-IPL. Remarkably, recurrent headache attacks might contribute to this maladaptive functional plasticity closely related to pain intensity.
Collapse
Affiliation(s)
- Z X Qin
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai
| | - J J Su
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - X W He
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Q Zhu
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai
| | - Y Y Cui
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai
| | - J L Zhang
- Clinical Science, Philips Healthcare, Shanghai
| | - M X Wang
- College of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - T T Gao
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai
| | - W Tang
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai
| | - Y Hu
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Y S Liu
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Y Qiao
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - J R Liu
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - J Q Li
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai
| | - X X Du
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai
| |
Collapse
|
8
|
Qu Z, Liu L, Zhao L, Xu X, Li Z, Zhu Y, Zhang C, Jing X, Wang X, Li B, Zhang CS, Fisher M, Wang L. Prophylactic Electroacupuncture on the Upper Cervical Segments Decreases Neuronal Discharges of the Trigeminocervical Complex in Migraine-Affected Rats: An in vivo Extracellular Electrophysiological Experiment. J Pain Res 2020; 13:25-37. [PMID: 32021392 PMCID: PMC6960663 DOI: 10.2147/jpr.s226922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/24/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose This rat experiment aims to demonstrate the efficacy of electrical acupuncture in preventing migraine attacks by stimulating the acupoint GB20. Introduction Migraine, which takes 2ed at level four causes of GBD’s disease hierarchy, becomes a public health issue. It is important for physicians to supplement their knowledge of its treatment and consider alternative methods of therapy, such as acupuncture. However, the neurobiological and pathophysiological mechanisms of this prophylactic effect were unclear. The trigeminocervical complex is thought to be an important relay station in migraine pathophysiology as the key nuclei of the trigeminovascular system and the brainstem descending pain modulation system. Methods There were six groups involved in this study: control, model, electroacupuncture, non-acupoint electroacupuncture, saline+electroacupuncture and saline+non-acupoint electroacupuncture. We injected saline or inflammatory soup into dura mater to induce control or migraine in the rats. The mechanical pain threshold and the single-cell extraneural neurophysiology of the C1 spinal dorsal horn neurons in the trigeminocervical complex were detected. Results Pre-electroacupuncture could significantly increase the mechanical pain threshold of the periorbital region receptive field of the trigeminal nerve and decrease the discharges of neurons in the trigeminocervical complex. Acupuncture also reversed the abnormal skin pain response of the periorbital region receptive field of the trigeminal nerve caused by low-intensity stimulation. Discussion We believe that our study makes a significant contribution to the literature because it is the first of its kind to use GB20 to provide relief from migraine attacks and mechanical cephalic cutaneous hypersensitivity by regulating the neuronal discharge from trigeminocervical complex.
Collapse
Affiliation(s)
- Zhengyang Qu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| | - Lu Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China.,Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Luopeng Zhao
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China.,Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, People's Republic of China
| | - Xiaobai Xu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| | - Zhijuan Li
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| | - Yupu Zhu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| | - Chen Zhang
- Acupuncture and Moxibustion Department, Beijing Massage Hospital, Beijing, People's Republic of China
| | - Xianghong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Xiaoyu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Bin Li
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| | - Claire Suiqing Zhang
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Marc Fisher
- Division of Stroke and Cerebrovascular Diseases, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Linpeng Wang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| |
Collapse
|
9
|
Lipton RB, Fanning KM, Buse DC, Martin VT, Hohaia LB, Adams AM, Reed ML, Goadsby PJ. Migraine progression in subgroups of migraine based on comorbidities: Results of the CaMEO Study. Neurology 2019; 93:e2224-e2236. [PMID: 31690685 PMCID: PMC6937494 DOI: 10.1212/wnl.0000000000008589] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/26/2019] [Indexed: 02/04/2023] Open
Abstract
Objective To test the hypothesis that statistically defined subgroups of migraine (based on constellations of comorbidities and concomitant conditions; henceforth comorbidities), previously identified using Chronic Migraine Epidemiology and Outcomes (CaMEO) Study data, differ in prognosis, as measured by rates of progression from episodic migraine (EM) to chronic migraine (CM). Methods The onset of CM was assessed up to 4 times over 12 months in individuals with EM and ≥1 comorbidity at baseline, based on constellations of comorbidities (comorbidity classes). The “fewest comorbidities” class served as reference. Individuals completing ≥1 follow-up survey from the web-based CaMEO Study were included. Covariates included sociodemographic variables and headache characteristics. Sex, income, cutaneous allodynia, and medication overuse were modeled as binary variables; age, body mass index, headache-related disability (Migraine Disability Assessment [MIDAS]), and Migraine Symptom Severity Scale as continuous variables. CM onset was assessed using discrete time analysis. Results In the final sociodemographic model, all comorbidity classes had significantly elevated hazard ratios (HRs) for risk of progression to CM from EM, relative to fewest comorbidities. HRs for CM onset ranged from 5.34 (95% confidence interval [CI] 3.89–7.33; p ≤ 0.001) for most comorbidities to 1.53 (95% CI 1.17–2.01; p < 0.05) for the respiratory class. After adjusting for headache covariates independently, each comorbidity class significantly predicted CM onset, although HRs were attenuated. Conclusions Subgroups of migraine identified by comorbidity classes at cross-section predicted progression from EM (with ≥1 comorbidity at baseline) to CM. The relationship of comorbidity group to CM onset remained after adjusting for indicators of migraine severity, such as MIDAS. Clinicaltrials.gov identifier NCT01648530.
Collapse
Affiliation(s)
- Richard B Lipton
- From the Albert Einstein College of Medicine (R.B.L., D.C.B.), Bronx, NY; Vedanta Research (K.M.F., M.L.R.), Chapel Hill, NC; University of Cincinnati Headache and Facial Pain Center (V.T.M.), University of Cincinnati College of Medicine, OH; CHC Group, LLC (L.B.H.), North Wales, PA; Allergan plc (A.M.A.), Irvine, CA; NIHR-Wellcome Trust King's Clinical Research Facility (P.J.G.), King's College, London, UK; and Department of Neurology (P.J.G.), University of California, San Francisco.
| | - Kristina M Fanning
- From the Albert Einstein College of Medicine (R.B.L., D.C.B.), Bronx, NY; Vedanta Research (K.M.F., M.L.R.), Chapel Hill, NC; University of Cincinnati Headache and Facial Pain Center (V.T.M.), University of Cincinnati College of Medicine, OH; CHC Group, LLC (L.B.H.), North Wales, PA; Allergan plc (A.M.A.), Irvine, CA; NIHR-Wellcome Trust King's Clinical Research Facility (P.J.G.), King's College, London, UK; and Department of Neurology (P.J.G.), University of California, San Francisco
| | - Dawn C Buse
- From the Albert Einstein College of Medicine (R.B.L., D.C.B.), Bronx, NY; Vedanta Research (K.M.F., M.L.R.), Chapel Hill, NC; University of Cincinnati Headache and Facial Pain Center (V.T.M.), University of Cincinnati College of Medicine, OH; CHC Group, LLC (L.B.H.), North Wales, PA; Allergan plc (A.M.A.), Irvine, CA; NIHR-Wellcome Trust King's Clinical Research Facility (P.J.G.), King's College, London, UK; and Department of Neurology (P.J.G.), University of California, San Francisco
| | - Vincent T Martin
- From the Albert Einstein College of Medicine (R.B.L., D.C.B.), Bronx, NY; Vedanta Research (K.M.F., M.L.R.), Chapel Hill, NC; University of Cincinnati Headache and Facial Pain Center (V.T.M.), University of Cincinnati College of Medicine, OH; CHC Group, LLC (L.B.H.), North Wales, PA; Allergan plc (A.M.A.), Irvine, CA; NIHR-Wellcome Trust King's Clinical Research Facility (P.J.G.), King's College, London, UK; and Department of Neurology (P.J.G.), University of California, San Francisco
| | - Lee B Hohaia
- From the Albert Einstein College of Medicine (R.B.L., D.C.B.), Bronx, NY; Vedanta Research (K.M.F., M.L.R.), Chapel Hill, NC; University of Cincinnati Headache and Facial Pain Center (V.T.M.), University of Cincinnati College of Medicine, OH; CHC Group, LLC (L.B.H.), North Wales, PA; Allergan plc (A.M.A.), Irvine, CA; NIHR-Wellcome Trust King's Clinical Research Facility (P.J.G.), King's College, London, UK; and Department of Neurology (P.J.G.), University of California, San Francisco
| | - Aubrey Manack Adams
- From the Albert Einstein College of Medicine (R.B.L., D.C.B.), Bronx, NY; Vedanta Research (K.M.F., M.L.R.), Chapel Hill, NC; University of Cincinnati Headache and Facial Pain Center (V.T.M.), University of Cincinnati College of Medicine, OH; CHC Group, LLC (L.B.H.), North Wales, PA; Allergan plc (A.M.A.), Irvine, CA; NIHR-Wellcome Trust King's Clinical Research Facility (P.J.G.), King's College, London, UK; and Department of Neurology (P.J.G.), University of California, San Francisco
| | - Michael L Reed
- From the Albert Einstein College of Medicine (R.B.L., D.C.B.), Bronx, NY; Vedanta Research (K.M.F., M.L.R.), Chapel Hill, NC; University of Cincinnati Headache and Facial Pain Center (V.T.M.), University of Cincinnati College of Medicine, OH; CHC Group, LLC (L.B.H.), North Wales, PA; Allergan plc (A.M.A.), Irvine, CA; NIHR-Wellcome Trust King's Clinical Research Facility (P.J.G.), King's College, London, UK; and Department of Neurology (P.J.G.), University of California, San Francisco
| | - Peter J Goadsby
- From the Albert Einstein College of Medicine (R.B.L., D.C.B.), Bronx, NY; Vedanta Research (K.M.F., M.L.R.), Chapel Hill, NC; University of Cincinnati Headache and Facial Pain Center (V.T.M.), University of Cincinnati College of Medicine, OH; CHC Group, LLC (L.B.H.), North Wales, PA; Allergan plc (A.M.A.), Irvine, CA; NIHR-Wellcome Trust King's Clinical Research Facility (P.J.G.), King's College, London, UK; and Department of Neurology (P.J.G.), University of California, San Francisco
| |
Collapse
|
10
|
Young WB, Ivan Lopez J, Rothrock JF, Orejudos A, Manack Adams A, Lipton RB, Blumenfeld AM. Effects of onabotulinumtoxinA treatment in patients with and without allodynia: results of the COMPEL study. J Headache Pain 2019; 20:10. [PMID: 30669961 PMCID: PMC6734222 DOI: 10.1186/s10194-018-0952-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/19/2018] [Indexed: 11/10/2022] Open
Abstract
Background OnabotulinumtoxinA is effective in treating chronic migraine (CM), but there are limited data assessing how allodynia affects preventive treatment responses. This subanalysis of the 108-week, multicenter, open-label COMPEL Study assessed the efficacy and safety of onabotulinumtoxinA in people with CM with and without allodynia. Methods Patients (n = 715) were treated with onabotulinumtoxinA 155 U every 12 weeks for 9 treatment cycles. The Allodynia Symptom Checklist was used to identify patients with allodynia (scores ≥3). The primary outcome for this subanalysis was reduction in monthly headache days from baseline for weeks 105 to 108 in groups with and without allodynia. Other outcomes included assessments of moderate to severe headache days, disability (using the Migraine Disability Assessment [MIDAS] questionnaire), and health-related quality of life (Migraine-Specific Quality-of-Life Questionnaire [MSQ] v2). Adverse events and their relation to treatment were recorded. Results OnabotulinumtoxinA was associated with a significant mean (SD) reduction in headache day frequency at week 108 relative to baseline in patients with (n = 289) and without (n = 426) allodynia (− 10.8 [7.1] and − 12.5 [7.4], respectively; both P < 0.001) that was significantly greater in patients without allodynia (P = 0.044 between-subgroup comparison). Moderate to severe headache days were significantly reduced at week 108 in patients with and without allodynia (− 9.6 [6.9] and − 10.5 [7.2]; both P < 0.001); reduction was similar between groups. MIDAS scores improved significantly at week 108 (− 53.0 [50.3] and − 37.7 [53.0]; both P < 0.001), with a significant between-group difference in favor of those with allodynia (P = 0.005). Similarly, MSQ subscale scores (Role Function Preventive, Role Function Restrictive, Emotional Function) significantly improved at week 108 for patients with and without allodynia: 20.6 (21.9) and 16.9 (20.7), 28.0 (23.3) and 24.7 (22.7), and 27.6 (26.5) and 24.9 (26.1), respectively (all P < 0.001). OnabotulinumtoxinA was well tolerated in patients with and without allodynia. Conclusion Results indicate that onabotulinumtoxinA is associated with reductions from baseline in multiple efficacy outcomes for up to 108 weeks whether or not allodynia is present. The allodynia group showed a smaller treatment response for reduction in headache days, but a similar or greater treatment response for improvement in other measures. No new safety concerns were identified. Electronic supplementary material The online version of this article (10.1186/s10194-018-0952-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- William B Young
- Jefferson Hospital for Neuroscience, 900 Walnut Street, Second Floor, Suite #200, Philadelphia, PA, 19107, USA.
| | - J Ivan Lopez
- University of South Alabama College of Medicine, Mobile, AL, USA
| | | | | | | | - Richard B Lipton
- Montefiore Headache Center, Department of Neurology, Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrew M Blumenfeld
- Headache Center of Southern California, The Neurology Center, Carlsbad, CA, USA
| |
Collapse
|
11
|
Walling I, Panse D, Gee L, Maietta T, Kaszuba B, Kumar V, Gannon S, Hellman A, Neubauer P, Frith L, Williams E, Ghoshal G, Shin DS, Burdette C, Qian J, Pilitsis JG. The use of focused ultrasound for the treatment of cutaneous allodynia associated with chronic migraine. Brain Res 2018; 1699:135-141. [DOI: 10.1016/j.brainres.2018.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/11/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
|
12
|
Quantitative sensory testing in patients with migraine: a systematic review and meta-analysis. Pain 2018; 159:1202-1223. [DOI: 10.1097/j.pain.0000000000001231] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Abstract
Migraine is one of the most common neurological disorders. In addition to severe headaches, non-headache symptoms associated with migraine attacks as well as co-morbid disorders frequently aggravate the disabling of migraine patients. Some of these symptoms are related to poor outcomes. In this review, we update the advances of studies on certain non-headache symptoms, including visual disturbance, gastrointestinal symptoms, allodynia, vestibular symptoms, and symptoms of co-morbid restless legs syndrome and psychiatric disorders.
Collapse
Affiliation(s)
- Ping-Kun Chen
- School of Medicine, China Medical University, Taichung, Taiwan.,Bo-Zhi Neurology Clinic, Taichung, Taiwan.,Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Shuu-Jiun Wang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
14
|
Serousova OV, Karpova MI, Dolgushina AI, Vasilenko AF, Markova VV, Altman DS. [Abdominal pain in migraine patients]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:21-25. [PMID: 29053116 DOI: 10.17116/jnevro20171179121-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To study the frequency of comorbid abdominal pain in migraine patients and the influence of that symptom on the formation of disease phenotype. MATERIAL AND METHODS Clinical features of migraine were studied in 66 patients with episodic migraine and 40 patients with chronic migraine. Presence of pain, intensity, duration of seizure-associated abdominal pain and interictal abdominal pain were assessed. RESULTS AND CONCLUSION The frequency of abdominal pain in the painful phase of migraine was >11% and did not depend on the type of migraine. Pain in the abdomen were reported by 88% of patients, with the increase in the frequency in patients with chronic migraine. The intensity and frequency of abdominal pain did not depend on organic pathology of the digestive system. Correlations between the intensity and duration of abdominal pain during the migraine attack phase (k=0.59), between the intensity of associated pain and maladjustment severity (k=0.59), and also between the abdominal pain intensity during the painful phase and in the interictal period were identified. Allodynia developed more frequently in patients with abdominal pain between migraine attacks (РF=0.005). Also relationships between the level of intensity of interictal abdominal pain and the rates of alexithymia (k=0.24), anxiety (k=0.29) and depression (k=0.25) were revealed. The association of abdominal pain with disease severity and allodynia suggests similar development of these symptoms.
Collapse
Affiliation(s)
- O V Serousova
- South Ural State Medical University, Chelyabinsk, Russia
| | - M I Karpova
- South Ural State Medical University, Chelyabinsk, Russia
| | - A I Dolgushina
- South Ural State Medical University, Chelyabinsk, Russia
| | - A F Vasilenko
- South Ural State Medical University, Chelyabinsk, Russia
| | - V V Markova
- South Ural State Medical University, Chelyabinsk, Russia
| | - D Sh Altman
- South Ural State Medical University, Chelyabinsk, Russia
| |
Collapse
|
15
|
Central Sensitization-Based Classification for Temporomandibular Disorders: A Pathogenetic Hypothesis. Pain Res Manag 2017; 2017:5957076. [PMID: 28932132 PMCID: PMC5592418 DOI: 10.1155/2017/5957076] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/03/2017] [Accepted: 07/09/2017] [Indexed: 12/15/2022]
Abstract
Dysregulation of Autonomic Nervous System (ANS) and central pain pathways in temporomandibular disorders (TMD) is a growing evidence. Authors include some forms of TMD among central sensitization syndromes (CSS), a group of pathologies characterized by central morphofunctional alterations. Central Sensitization Inventory (CSI) is useful for clinical diagnosis. Clinical examination and CSI cannot identify the central site(s) affected in these diseases. Ultralow frequency transcutaneous electrical nerve stimulation (ULFTENS) is extensively used in TMD and in dental clinical practice, because of its effects on descending pain modulation pathways. The Diagnostic Criteria for TMD (DC/TMD) are the most accurate tool for diagnosis and classification of TMD. However, it includes CSI to investigate central aspects of TMD. Preliminary data on sensory ULFTENS show it is a reliable tool for the study of central and autonomic pathways in TMD. An alternative classification based on the presence of Central Sensitization and on individual response to sensory ULFTENS is proposed. TMD may be classified into 4 groups: (a) TMD with Central Sensitization ULFTENS Responders; (b) TMD with Central Sensitization ULFTENS Nonresponders; (c) TMD without Central Sensitization ULFTENS Responders; (d) TMD without Central Sensitization ULFTENS Nonresponders. This pathogenic classification of TMD may help to differentiate therapy and aetiology.
Collapse
|
16
|
Grey matter alterations in migraine: A systematic review and meta-analysis. NEUROIMAGE-CLINICAL 2017; 14:130-140. [PMID: 28180071 PMCID: PMC5279908 DOI: 10.1016/j.nicl.2017.01.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/14/2016] [Accepted: 01/18/2017] [Indexed: 01/03/2023]
Abstract
Objectives To summarize and meta-analyze studies on changes in grey matter (GM) in patients with migraine. We aimed to determine whether there are concordant structural changes in the foci, whether structural changes are concordant with functional changes, and provide further understanding of the anatomy and biology of migraine. Methods We searched PubMed and Embase for relevant articles published between January 1985 and November 2015, and examined the references within relevant primary articles. Following exclusion of unsuitable studies, meta-analysis were performed using activation likelihood estimation (ALE). Results Eight clinical studies were analyzed for structural changes, containing a total of 390 subjects (191 patients and 199 controls). Five functional studies were enrolled, containing 93 patients and 96 controls. ALE showed that the migraineurs had concordant decreases in the GM volume (GMV) in the bilateral inferior frontal gyri, the right precentral gyrus, the left middle frontal gyrus and the left cingulate gyrus. GMV decreases in right claustrum, left cingulated gyrus, right anterior cingulate, amygdala and left parahippocampal gyrus are related to estimated frequency of headache attack. Activation was found in the somatosensory, cingulate, limbic lobe, basal ganglia and midbrain in migraine patients. Conclusion GM changes in migraineurs may indicate the mechanism of pain processing and associated symptoms. Changes in the frontal gyrus may predispose a person to pain conditions. The limbic regions may be accumulated damage due to the repetitive occurrence of pain-related processes. Increased activation in precentral gyrus and cingulate opposed to GMV decrease might suggest increased effort duo to disorganization of these areas and/or the use of compensatory strategies involving pain processing in migraine. Knowledge of these structural and functional changes may be useful for monitoring disease progression as well as for therapeutic interventions. There are some concordant structural changes in migraine. Some structural changes like frontal lobe and cingulate are also over-activated in interictal phase. Frontal gyrus may predispose a person to pain condition. Limbic regions may be accumulating brain damage due to pain-related processes.
Collapse
|
17
|
Chong CD, Plasencia JD, Frakes DH, Schwedt TJ. Structural alterations of the brainstem in migraine. NEUROIMAGE-CLINICAL 2016; 13:223-227. [PMID: 28003961 PMCID: PMC5157793 DOI: 10.1016/j.nicl.2016.10.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/12/2016] [Accepted: 10/30/2016] [Indexed: 12/15/2022]
Abstract
Atypical brainstem modulation of pain might contribute to changes in sensory processing typical of migraine. The study objective was to investigate whether migraine is associated with brainstem structural alterations that correlate with this altered pain processing. MRI T1-weighted images of 55 migraine patients and 58 healthy controls were used to: (1) create deformable mesh models of the brainstem that allow for shape analyses; (2) calculate volumes of the midbrain, pons, medulla and the superior cerebellar peduncles; (3) interrogate correlations between regional brainstem volumes, cutaneous heat pain thresholds, and allodynia symptoms. Migraineurs had smaller midbrain volumes (healthy controls = 61.28 mm3, SD = 5.89; migraineurs = 58.80 mm3, SD = 6.64; p = 0.038), and significant (p < 0.05) inward deformations in the ventral midbrain and pons, and outward deformations in the lateral medulla and dorsolateral pons relative to healthy controls. Migraineurs had a negative correlation between ASC-12 allodynia symptom severity with midbrain volume (r = − 0.32; p = 0.019) and a positive correlation between cutaneous heat pain thresholds with medulla (r = 0.337; p = 0.012) and cerebellar peduncle volumes (r = 0.435; p = 0.001). Migraineurs with greater symptoms of allodynia have smaller midbrain volumes and migraineurs with lower heat pain thresholds have smaller medulla and cerebellar peduncles. The brainstem likely plays a role in altered sensory processing in migraine and brainstem structure might reflect severity of allodynia and hypersensitivity to pain in migraine. Migraineurs have less volume in midbrain regions and show morphologic shape indentations in ventral pons and midbrain as well as right and left outward deformations in the lateral aspects of the pons and medulla. Migraineurs with more severe allodynia have less midbrain volume and migraineurs with lower heat pain thresholds have less volume in the cerebellar peduncles and medulla. Brainstem morphological alterations might reflect dysfunctional pain modulation in migraine.
Collapse
Affiliation(s)
| | - Jonathan D Plasencia
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ, USA
| | - David H Frakes
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ, USA; Arizona State University, School of Electrical, Computer and Energy Engineering, Tempe, AZ, USA
| | - Todd J Schwedt
- Mayo Clinic-Arizona, Department of Neurology, Phoenix, AZ, USA
| |
Collapse
|
18
|
Uglem M, Omland P, Engstrøm M, Gravdahl G, Linde M, Hagen K, Sand T. Non-invasive cortical modulation of experimental pain in migraine. Clin Neurophysiol 2016; 127:2362-9. [DOI: 10.1016/j.clinph.2016.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/10/2016] [Accepted: 03/12/2016] [Indexed: 11/29/2022]
|
19
|
Russo A, Esposito F, Conte F, Fratello M, Caiazzo G, Marcuccio L, Giordano A, Tedeschi G, Tessitore A. Functional interictal changes of pain processing in migraine with ictal cutaneous allodynia. Cephalalgia 2016; 37:305-314. [DOI: 10.1177/0333102416644969] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Objective A prospective clinical imaging study has been conducted to investigate pain processing functional pathways during trigeminal heat stimulation (THS) in patients with migraine without aura experiencing ictal cutaneous allodynia (CA) (MwoA CA+). Methods Using whole-brain BOLD-fMRI, functional response to THS at three different intensities (41°, 51° and 53℃) was investigated interictally in 20 adult MwoA CA+ patients compared with 20 MwoA patients without ictal CA (MwoA CA−) and 20 healthy controls (HCs). Secondary analyses evaluated associations between BOLD signal change and clinical features of migraine. Results During moderate-noxious THS (51℃), we observed a significantly greater activation in (a) the anterior cingulate cortex in MwoA CA+ patients compared to HCs and (b) the middle frontal gyrus in MwoA CA+ patients compared to both MwoA CA− patients and HCs. Furthermore, during high-noxious THS (53℃) a significantly decreased activation in the secondary somatosensory cortices was observed in (a) MwoA CA− patients compared to both MwoA CA+ patients and HCs and (b) MwoA CA+ patients compared to HCs. CA severity was positively correlated with the secondary somatosensory cortices activation. Conclusions Our findings suggest that CA may be subtended by both a dysfunctional analgesic compensatory mechanism and an abnormal internal representation of pain in migraine patients.
Collapse
Affiliation(s)
- Antonio Russo
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Italy
- MRI Research Center SUN-FISM, Second University of Naples, Italy
- Institute for Diagnosis and Care ‘Hermitage Capodimonte’, Italy
| | | | - Francesca Conte
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Italy
| | - Michele Fratello
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Italy
- Department of Medicine and Surgery, University of Salerno, Italy
| | | | - Laura Marcuccio
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Italy
| | - Alfonso Giordano
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Italy
- MRI Research Center SUN-FISM, Second University of Naples, Italy
| | - Gioacchino Tedeschi
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Italy
- MRI Research Center SUN-FISM, Second University of Naples, Italy
- Institute for Diagnosis and Care ‘Hermitage Capodimonte’, Italy
| | - Alessandro Tessitore
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Italy
- MRI Research Center SUN-FISM, Second University of Naples, Italy
| |
Collapse
|
20
|
Aronoff GM. What Do We Know About the Pathophysiology of Chronic Pain? Implications for Treatment Considerations. Med Clin North Am 2016; 100:31-42. [PMID: 26614717 DOI: 10.1016/j.mcna.2015.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We discuss the complex features of the pathophysiology of chronic pain and the implications for treatment and provide an overview of nociceptive processes, neuropathic pain, cold hyperalgesia, peripheral nerve injury, wind-up pain, central sensitization, and common clinical presentation and diagnostic criteria. Advanced medicine has proven that chronic pain need not involve any structural pathology as pain is a complex biopsychosocial experience. Treatment of the specific mechanisms responsible for pain should be aimed at preventing and or reducing dysfunctional neuro-plasticity resulting from poorly controlled chronic pain. Further study is needed to reduce the probability and of persistent changes that cause chronic pain.
Collapse
Affiliation(s)
- Gerald M Aronoff
- Carolina Pain Associates, PA, 1900 Randolph Road, Suite 1016, Charlotte, NC 28207, USA.
| |
Collapse
|
21
|
Demarquay G, Mauguière F. Central Nervous System Underpinnings of Sensory Hypersensitivity in Migraine: Insights from Neuroimaging and Electrophysiological Studies. Headache 2015; 56:1418-1438. [PMID: 26350583 DOI: 10.1111/head.12651] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2015] [Indexed: 01/03/2023]
Abstract
Whereas considerable data have been generated about the pathophysiology of pain processing during migraine attacks, relatively little is known about the neural basis of sensory hypersensitivity. In migraine, the term "hypersensitivity" encompasses different and probably distinct pathophysiological aspects of sensory sensitivity. During attacks, many patients have enhanced sensitivity to visual, auditory and/or olfactory stimuli, which can enhance headache while interictally, migraineurs often report abnormal sensitivity to environmental stimuli that can cause nonpainful discomfort. In addition, sensorial stimuli can influence and trigger the onset of migraine attacks. The pathophysiological mechanisms and the origin of such sensitivity (individual predisposition to develop migraine disease or consequence of repeated migraine attacks) are ill understood. Functional neuroimaging and electrophysiological studies allow for noninvasive measures of neuronal responses to external stimuli and have contributed to our understanding of mechanisms underlying sensory hypersensitivity in migraine. The purpose of this review is to present pivotal neuroimaging and neurophysiological studies that explored the basal state of brain responsiveness to sensory stimuli in migraineurs, the alterations in habituation and attention to sensory inputs, the fluctuations of responsiveness to sensory stimuli before and during migraine attacks, and the relations between sensory hypersensitivity and clinical sensory complaints.
Collapse
Affiliation(s)
- Geneviève Demarquay
- Department of Neurology, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon, France and Lyon Neuroscience Research Center (CRNL), Brain Dynamics and Cognition Team (Dycog), INSERM U1028, CNRS UMR5292, Lyon, France.
| | - François Mauguière
- Neurological Hospital Pierre Wertheimer: Functional Neurology and Epilepsy Department, Hospices Civils de Lyon and Claude Bernard Lyon1 University, Lyon, France, and Lyon Neuroscience Research Center (CRNL), Neuropain team, INSERM U1028, CNRS UMR5292, Lyon, France
| |
Collapse
|