1
|
The Course of Mechanical Stress: Types, Perception, and Plant Response. BIOLOGY 2023; 12:biology12020217. [PMID: 36829495 PMCID: PMC9953051 DOI: 10.3390/biology12020217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Mechanical stimuli, together with the corresponding plant perception mechanisms and the finely tuned thigmomorphogenetic response, has been of scientific and practical interest since the mid-17th century. As an emerging field, there are many challenges in the research of mechanical stress. Indeed, studies on different plant species (annual/perennial) and plant organs (stem/root) using different approaches (field, wet lab, and in silico/computational) have delivered insufficient findings that frequently impede the practical application of the acquired knowledge. Accordingly, the current work distils existing mechanical stress knowledge by bringing in side-by-side the research conducted on both stem and roots. First, the various types of mechanical stress encountered by plants are defined. Second, plant perception mechanisms are outlined. Finally, the different strategies employed by the plant stem and roots to counteract the perceived mechanical stresses are summarized, depicting the corresponding morphological, phytohormonal, and molecular characteristics. The comprehensive literature on both perennial (woody) and annual plants was reviewed, considering the potential benefits and drawbacks of the two plant types, which allowed us to highlight current gaps in knowledge as areas of interest for future research.
Collapse
|
2
|
Dimitrova A, Sferra G, Scippa GS, Trupiano D. Network-Based Analysis to Identify Hub Genes Involved in Spatial Root Response to Mechanical Constrains. Cells 2022; 11:3121. [PMID: 36231084 PMCID: PMC9564363 DOI: 10.3390/cells11193121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Previous studies report that the asymmetric response, observed along the main poplar woody bent root axis, was strongly related to both the type of mechanical forces (compression or tension) and the intensity of force displacement. Despite a large number of targets that have been proposed to trigger this asymmetry, an understanding of the comprehensive and synergistic effect of the antistress spatially related pathways is still lacking. Recent progress in the bioinformatics area has the potential to fill these gaps through the use of in silico studies, able to investigate biological functions and pathway overlaps, and to identify promising targets in plant responses. Presently, for the first time, a comprehensive network-based analysis of proteomic signatures was used to identify functions and pivotal genes involved in the coordinated signalling pathways and molecular activities that asymmetrically modulate the response of different bent poplar root sectors and sides. To accomplish this aim, 66 candidate proteins, differentially represented across the poplar bent root sides and sectors, were grouped according to their abundance profile patterns and mapped, together with their first neighbours, on a high-confidence set of interactions from STRING to compose specific cluster-related subnetworks (I-VI). Successively, all subnetworks were explored by a functional gene set enrichment analysis to identify enriched gene ontology terms. Subnetworks were then analysed to identify the genes that are strongly interconnected with other genes (hub gene) and, thus, those that have a pivotal role in the bent root asymmetric response. The analysis revealed novel information regarding the response coordination, communication, and potential signalling pathways asymmetrically activated along the main root axis, delegated mainly to Ca2+ (for new lateral root formation) and ROS (for gravitropic response and lignin accumulation) signatures. Furthermore, some of the data indicate that the concave side of the bent sector, where the mechanical forces are most intense, communicates to the other (neighbour and distant) sectors, inducing spatially related strategies to ensure water uptake and accompanying cell modification. This information could be critical for understanding how plants maintain and improve their structural integrity-whenever and wherever it is necessary-in natural mechanical stress conditions.
Collapse
Affiliation(s)
| | | | | | - Dalila Trupiano
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| |
Collapse
|
3
|
De Zio E, Montagnoli A, Karady M, Terzaghi M, Sferra G, Antoniadi I, Scippa GS, Ljung K, Chiatante D, Trupiano D. Reaction Wood Anatomical Traits and Hormonal Profiles in Poplar Bent Stem and Root. FRONTIERS IN PLANT SCIENCE 2020; 11:590985. [PMID: 33363556 PMCID: PMC7754185 DOI: 10.3389/fpls.2020.590985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/05/2020] [Indexed: 05/27/2023]
Abstract
Reaction wood (RW) formation is an innate physiological response of woody plants to counteract mechanical constraints in nature, reinforce structure and redirect growth toward the vertical direction. Differences and/or similarities between stem and root response to mechanical constraints remain almost unknown especially in relation to phytohormones distribution and RW characteristics. Thus, Populus nigra stem and root subjected to static non-destructive mid-term bending treatment were analyzed. The distribution of tension and compression forces was firstly modeled along the main bent stem and root axis; then, anatomical features, chemical composition, and a complete auxin and cytokinin metabolite profiles of the stretched convex and compressed concave side of three different bent stem and root sectors were analyzed. The results showed that in bent stems RW was produced on the upper stretched convex side whereas in bent roots it was produced on the lower compressed concave side. Anatomical features and chemical analysis showed that bent stem RW was characterized by a low number of vessel, poor lignification, and high carbohydrate, and thus gelatinous layer in fiber cell wall. Conversely, in bent root, RW was characterized by high vessel number and area, without any significant variation in carbohydrate and lignin content. An antagonistic interaction of auxins and different cytokinin forms/conjugates seems to regulate critical aspects of RW formation/development in stem and root to facilitate upward/downward organ bending. The observed differences between the response stem and root to bending highlight how hormonal signaling is highly organ-dependent.
Collapse
Affiliation(s)
- Elena De Zio
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Antonio Montagnoli
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Michal Karady
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, Olomouc, Czechia
| | - Mattia Terzaghi
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Gabriella Sferra
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Ioanna Antoniadi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Gabriella S. Scippa
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Donato Chiatante
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Dalila Trupiano
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| |
Collapse
|
4
|
Baesso B, Terzaghi M, Chiatante D, Scippa GS, Montagnoli A. WOX genes expression during the formation of new lateral roots from secondary structures in Populus nigra (L.) taproot. Sci Rep 2020; 10:18890. [PMID: 33144589 PMCID: PMC7641218 DOI: 10.1038/s41598-020-75150-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 10/08/2020] [Indexed: 11/28/2022] Open
Abstract
Despite the large amounts of data available on lateral root formation, little is known about their initiation from secondary structures. In the present work, we applied a bending treatment to Populus nigra (L.) woody taproots to induce the formation of new lateral roots. The development of lateral roots was monitored by stereomicroscopic examination of cross-sections. Tissues were sampled from the bending zone in the proximity of the vascular cambium before (time 0) and after the application of bending at three different time points (24, 48, and 72 h) and analyzed for the expression of P. nigra WOX homologs. The initiation of new lateral roots was observed to originate from the vascular cambium zone and was followed by primordium formation and root emergence. PnWOX4a, PnWOX4b, PnWOX5a, PnWOX5b, PnWOX11/12a, and PnWOX11/12b were shown to be expressed during the formation of new lateral roots at different developmental stages. The mechanical stress simulated by bending treatment was shown to activate the molecular mechanism leading to the expression of WOX genes, which are hypothesized to control SLR formation in the cambium zone of poplar taproot.
Collapse
Affiliation(s)
- Barbara Baesso
- Department of Biotechnology and Life Science, University of Insubria, Via Dunant, 3, 21100, Varese, VA, Italy
| | - Mattia Terzaghi
- Department of Chemistry and Biology 'A. Zambelli', University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Donato Chiatante
- Department of Biotechnology and Life Science, University of Insubria, Via Dunant, 3, 21100, Varese, VA, Italy
| | - Gabriella Stefania Scippa
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090, Pesche, IS, Italy
| | - Antonio Montagnoli
- Department of Biotechnology and Life Science, University of Insubria, Via Dunant, 3, 21100, Varese, VA, Italy.
| |
Collapse
|
5
|
Lebrun M, De Zio E, Miard F, Scippa GS, Renzone G, Scaloni A, Bourgerie S, Morabito D, Trupiano D. Amending an As/Pb contaminated soil with biochar, compost and iron grit: effect on Salix viminalis growth, root proteome profiles and metal(loid) accumulation indexes. CHEMOSPHERE 2020; 244:125397. [PMID: 31812046 DOI: 10.1016/j.chemosphere.2019.125397] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/13/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
There is currently a large amount of research being done into the phytoremediation of polluted soils. Plant installation in contaminated soils may require the application of soil amendments, such as biochar, compost and/or iron grit, which can improve the soil conditions and reduce the metal (loid) phytoavailability and mobility. The beneficial effects of these amendments on soil properties, plant growth and metal (loid) accumulation ability have already been described, although their effect on the plants response machinery has been poorly studied. This study aimed to assess the effect of these amendments on Salix viminalis growth and metal (loid) accumulation, as well as elucidating associated molecular mechanisms. The results showed that the amendment applications improved plant growth by three fold, except for the biochar plus iron combination. It also revealed that metal (loid)s were not effectively translocated from the roots to the shoots (translocation factors <1), their bioaccumulation peaked in the roots, and increased in the presence of iron-based amendments. Corresponding proteomic profiles revealed 34 protein spots differentially represented and suggested that plants counteracted metal (loid)-induced oxidative stress after the addition of biochar and/or compost by eliciting proper defense and signaling pathways, and by redirecting the metabolic fluxes towards primary and secondary metabolism. However, they did highlight the occurrence of oxidative stress markers when the biochar plus iron amendment was applied, which could be both the cause and result of protein degradation impairment.
Collapse
Affiliation(s)
- Manhattan Lebrun
- Department of Biosciences and Territory, University of Molise, 86090, Pesche, IS, Italy; LBLGC-EA 1207, INRA USC1328, Orléans University, Rue de Chartres, BP 6759, 45067, Orléans Cedex, France
| | - Elena De Zio
- Department of Biosciences and Territory, University of Molise, 86090, Pesche, IS, Italy
| | - Florie Miard
- LBLGC-EA 1207, INRA USC1328, Orléans University, Rue de Chartres, BP 6759, 45067, Orléans Cedex, France
| | - Gabriella S Scippa
- Department of Biosciences and Territory, University of Molise, 86090, Pesche, IS, Italy
| | - Giovanni Renzone
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147, Napoli, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147, Napoli, Italy
| | - Sylvain Bourgerie
- LBLGC-EA 1207, INRA USC1328, Orléans University, Rue de Chartres, BP 6759, 45067, Orléans Cedex, France
| | - Domenico Morabito
- LBLGC-EA 1207, INRA USC1328, Orléans University, Rue de Chartres, BP 6759, 45067, Orléans Cedex, France
| | - Dalila Trupiano
- Department of Biosciences and Territory, University of Molise, 86090, Pesche, IS, Italy.
| |
Collapse
|
6
|
De Zio E, Trupiano D, Karady M, Antoniadi I, Montagnoli A, Terzaghi M, Chiatante D, Ljung K, Scippa GS. Tissue-specific hormone profiles from woody poplar roots under bending stress. PHYSIOLOGIA PLANTARUM 2019; 165:101-113. [PMID: 30187489 DOI: 10.1111/ppl.12830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/16/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Elena De Zio
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Dalila Trupiano
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Michal Karady
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Ioanna Antoniadi
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Antonio Montagnoli
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Mattia Terzaghi
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Donato Chiatante
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Gabriella S Scippa
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| |
Collapse
|
7
|
Chiatante D, Rost T, Bryant J, Scippa GS. Regulatory networks controlling the development of the root system and the formation of lateral roots: a comparative analysis of the roles of pericycle and vascular cambium. ANNALS OF BOTANY 2018; 122:697-710. [PMID: 29394314 PMCID: PMC6215048 DOI: 10.1093/aob/mcy003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/08/2018] [Indexed: 05/07/2023]
Abstract
Background The production of a new lateral root from parental root primary tissues has been investigated extensively, and the most important regulatory mechanisms are now well known. A first regulatory mechanism is based on the synthesis of small peptides which interact ectopically with membrane receptors to elicit a modulation of transcription factor target genes. A second mechanism involves a complex cross-talk between plant hormones. It is known that lateral roots are formed even in parental root portions characterized by the presence of secondary tissues, but there is not yet agreement about the putative tissue source providing the cells competent to become founder cells of a new root primordium. Scope We suggest models of possible regulatory mechanisms for inducing specific root vascular cambium (VC) stem cells to abandon their activity in the production of xylem and phloem elements and to start instead the construction of a new lateral root primordium. Considering the ontogenic nature of the VC, the models which we suggest are the result of a comparative review of mechanisms known to control the activity of stem cells in the root apical meristem, procambium and VC. Stem cells in the root meristems can inherit various competences to play different roles, and their fate could be decided in response to cross-talk between endogenous and exogenous signals. Conclusions We have found a high degree of relatedness among the regulatory mechanisms controlling the various root meristems. This fact suggests that competence to form new lateral roots can be inherited by some stem cells of the VC lineage. This kind of competence could be represented by a sensitivity of specific stem cells to factors such as those presented in our models.
Collapse
Affiliation(s)
- Donato Chiatante
- Dipartimento di Biotecnologie e Scienze della Vita, University of Insubria, Varese, Italy
| | - Thomas Rost
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - John Bryant
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | |
Collapse
|
8
|
Ben Abdallah M, Trupiano D, Polzella A, De Zio E, Sassi M, Scaloni A, Zarrouk M, Ben Youssef N, Scippa GS. Unraveling physiological, biochemical and molecular mechanisms involved in olive (Olea europaea L. cv. Chétoui) tolerance to drought and salt stresses. JOURNAL OF PLANT PHYSIOLOGY 2018; 220:83-95. [PMID: 29161576 DOI: 10.1016/j.jplph.2017.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 05/26/2023]
Abstract
Olive (Olea europaea L.) is an economically important crop for the Mediterranean basin, where prolonged drought and soil salinization may occur. This plant has developed a series of mechanisms to tolerate and grow under these adverse conditions. By using an integrated approach, we described in Chétoui olive cultivar the changes in plant growth, oxidative damage and osmolyte accumulation in leaves, in combination with corresponding changes in physiological parameters and proteome. Our results showed, under both stress conditions, a greater growth reduction of the aboveground plant organs than of the underground counterparts. This was associated with a reduction of all photosynthetic parameters, the integrity of photosystem II and leaf nitrogen content, and corresponding representation of photosynthetic apparatus proteins, Calvin-Benson cycle and nitrogen metabolism. The most significant changes were observed under the salinity stress condition. Oxidative stress was also observed, in particular, lipid peroxidation, which could be tentatively balanced by a concomitant photoprotective/antioxidative increase of carotenoid levels. At the same time, various compensative mechanisms to cope with nitrogen source demands and to control plant cell osmolarity were also shown by olive plants under these stresses. Taken together, these findings suggest that the Chétoui variety is moderately sensitive to both drought and salt stress, although it has greater ability to tolerate water depletion.
Collapse
Affiliation(s)
- Mariem Ben Abdallah
- Laboratory of Olive Biotechnology, University Tunis El Manar, Biotechnology Center of Borj-Cedria, 2050 Hammam-Lif, Tunisia
| | - Dalila Trupiano
- Department of Bioscience and Territory, University of Molise, 86090 Pesche, Italy.
| | - Antonella Polzella
- Department of Bioscience and Territory, University of Molise, 86090 Pesche, Italy
| | - Elena De Zio
- Department of Bioscience and Territory, University of Molise, 86090 Pesche, Italy
| | - Mauro Sassi
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Napoli, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Napoli, Italy
| | - Mokhtar Zarrouk
- Laboratory of Olive Biotechnology, University Tunis El Manar, Biotechnology Center of Borj-Cedria, 2050 Hammam-Lif, Tunisia
| | - Nabil Ben Youssef
- Laboratory of Olive Biotechnology, University Tunis El Manar, Biotechnology Center of Borj-Cedria, 2050 Hammam-Lif, Tunisia; Department of Biology, College of Sciences, University of Dammam, 31451 Dammam, Saudi Arabia
| | | |
Collapse
|
9
|
De Zio E, Trupiano D, Montagnoli A, Terzaghi M, Chiatante D, Grosso A, Marra M, Scaloni A, Scippa GS. Poplar woody taproot under bending stress: the asymmetric response of the convex and concave sides. ANNALS OF BOTANY 2016; 118:865-883. [PMID: 27558889 PMCID: PMC5055640 DOI: 10.1093/aob/mcw159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/03/2016] [Accepted: 07/20/2016] [Indexed: 05/09/2023]
Abstract
Background and Aims Progress has been made in understanding the physiological and molecular basis of root response to mechanical stress, especially in the model plant Arabidopsis thaliana, in which bending causes the initiation of lateral root primordia toward the convex side of the bent root. In the case of woody roots, it has been reported that mechanical stress induces an asymmetric distribution of lateral roots and reaction wood formation, but the mechanisms underlying these responses are largely unknown. In the present work, the hypothesis was tested that bending could determine an asymmetric response in the two sides of the main root axis as cells are stretched on the convex side and compressed on the concave side. Methods Woody taproots of 20 seedlings were bent to an angle of 90° using a steel net. Changes in the anatomy, lignin and phytohormone content and proteome expression in the two sides of the bent root were analysed; anatomical changes, including dissimilarities and similarities to those found in poplar bent woody stem, were also considered. Key Results Compression forces at the concave side of poplar root induced the formation of reaction wood which presented a high lignin content and was associated with the induction of cambium cell activity. Auxin seemed to be the main hormone triggering lignin deposition and cell wall strengthening in the concave sides. Abscisic acid appeared to function in the water stress response induced by xylem structures and/or osmotic alterations in the compression sides, whereas gibberellins may control cell elongation and gravitropisms. Conclusions Poplar root reaction wood showed characteristics different from those produced in bent stem. Besides providing biomechanical functions, a bent root ensures water uptake and transport in the deforming condition induced by tension and compression forces by two different strategies: an increase in xylem thickness in the compressed side, and lateral root formation in the tension side.
Collapse
Affiliation(s)
- Elena De Zio
- Dipartimento di Bioscienze e Territorio, University of Molise, 86090 Pesche (IS), Italy
| | - Dalila Trupiano
- Dipartimento di Bioscienze e Territorio, University of Molise, 86090 Pesche (IS), Italy
| | - Antonio Montagnoli
- Dipartimento di Biotecnologie e Scienze della Vita, University of Insubria, 21100 Varese, Italy
| | - Mattia Terzaghi
- Dipartimento di Biotecnologie e Scienze della Vita, University of Insubria, 21100 Varese, Italy
| | - Donato Chiatante
- Dipartimento di Biotecnologie e Scienze della Vita, University of Insubria, 21100 Varese, Italy
| | - Alessandro Grosso
- Dipartimento di Biologia, University of Rome ‘Tor Vergata’, 00133 Rome, Italy
| | - Mauro Marra
- Dipartimento di Biologia, University of Rome ‘Tor Vergata’, 00133 Rome, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Napoli, Italy
| | - Gabriella S. Scippa
- Dipartimento di Bioscienze e Territorio, University of Molise, 86090 Pesche (IS), Italy
| |
Collapse
|
10
|
C C, D T, G L, G A, D V, A F, T L, V DF, G L, G R, S S, R T. Challenging synergistic activity of poplar-bacteria association for the Cd phytostabilization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:19546-19561. [PMID: 26268621 DOI: 10.1007/s11356-015-5097-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/20/2015] [Indexed: 06/04/2023]
Abstract
The synergistic activity between plants and microorganisms may contribute to the implementation of proactive management strategies in the stabilization of contaminated sites, although heavy metals, such as cadmium (Cd), are potentially toxic to them. The aim of this study was to evaluate the degree of tolerance to Cd contamination (supplying twice 40 mg kg(-1) of Cd) in poplar cuttings [clone I-214, P. × euramericana (Dode) Guinier] inoculated or not with two concentrations of Serratia marcescens strain (1 × 10(7) CFU/g and 2 × 10(7) CFU/g of potting mix). The response of the plant-bacteria system to excess Cd was investigated with special reference to the structural traits of plants and the functional efficiency of bacteria. Bacterial colonization and substrate components were previously assessed in order to define the best solution for formulating the experimental plant growth media. The tested plant-bacteria association, especially when bacteria were provided in double concentration, stimulated specific tolerance mechanisms to Cd through the promotion of the poplar growth. Inoculated plants produced larger leaves and increased stem diameter, while roots grew longer and wider in Cd-treated plants. The effect of bacterial inoculum on plant growth traits and metal partitioning in plant organs was assessed in order to define the potential of this poplar clone to be a suitable candidate for phytostabilization of Cd-contaminated soil. The final effect of the inoculation with bacteria, which alleviated the metal load and Cd phytotoxicity due to their bioaccumulation ability, suggests promising phytostabilization potential of these plant-bacteria associations.
Collapse
Affiliation(s)
- Cocozza C
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, 86090, Pesche, Italy.
| | - Trupiano D
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, 86090, Pesche, Italy
| | - Lustrato G
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, 86090, Pesche, Italy
| | - Alfano G
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, 86090, Pesche, Italy
| | - Vitullo D
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, 86100, Campobasso, Italy
| | - Falasca A
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, 86090, Pesche, Italy
| | - Lomaglio T
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, 86090, Pesche, Italy
| | - De Felice V
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, 86090, Pesche, Italy
| | - Lima G
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, 86100, Campobasso, Italy
| | - Ranalli G
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, 86090, Pesche, Italy
| | - Scippa S
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, 86090, Pesche, Italy
| | - Tognetti R
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, 86090, Pesche, Italy
- The EFI Project Centre on Mountain Forests (MOUNTFOR), Edmund Mach Foundation, 38010, San Michele all'Adige, Italy
| |
Collapse
|
11
|
Rossi M, Trupiano D, Tamburro M, Ripabelli G, Montagnoli A, Chiatante D, Scippa GS. MicroRNAs expression patterns in the response of poplar woody root to bending stress. PLANTA 2015; 242:339-351. [PMID: 25963516 DOI: 10.1007/s00425-015-2311-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
The paper reports for the first time, in poplar woody root, the expression of five mechanically-responsive miRNAs. The observed highly complex expression pattern of these miRNAs in the bent root suggest that their expression is not only regulated by tension and compression forces highlighting their role in several important processes, i.e., lateral root formation, lignin deposition, and response to bending stress. Mechanical stress is one of the major abiotic stresses significantly affecting plant stability, growth, survival, and reproduction. Plants have developed complex machineries to detect mechanical perturbations and to improve their anchorage. MicroRNAs (miRNAs), small non-coding RNAs (18-24 nucleotides long), have been shown to regulate various stress-responsive genes, proteins and transcription factors, and play a crucial role in counteracting adverse conditions. Several mechanical stress-responsive miRNAs have been identified in the stem of Populus trichocarpa plants subjected to bending stress. However, despite the pivotal role of woody roots in plant anchorage, molecular mechanisms regulating poplar woody root responses to mechanical stress have still been little investigated. In the present paper, we investigate the spatial and temporal expression pattern of five mechanically-responsive miRNAs in three regions of bent poplar woody taproot and unstressed controls by quantitative RT-PCR analysis. Alignment of the cloned and sequenced amplified fragments confirmed that their nucleotide sequences are homologous to the mechanically-responsive miRNAs identified in bent poplar stem. Computational analysis identified putative target genes for each miRNA in the poplar genome. Additional miRNA target sites were found in several mechanical stress-related factors previously identified in poplar root and a subset of these was further analyzed for expression at the mRNA or protein level. Integrating the results of miRNAs expression patterns and target gene functions with our previous morphological and proteomic data, we concluded that the five miRNAs play crucial regulatory roles in reaction woody formation and lateral root development in mechanically-stressed poplar taproot.
Collapse
Affiliation(s)
- Miriam Rossi
- Dipartimento di Bioscienze e Territorio, University of Molise, C.da Fonte Lappone, 86090, Pesche (IS), Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Lomaglio T, Rocco M, Trupiano D, De Zio E, Grosso A, Marra M, Delfine S, Chiatante D, Morabito D, Scippa GS. Effect of short-term cadmium stress on Populus nigra L. detached leaves. JOURNAL OF PLANT PHYSIOLOGY 2015; 182:40-8. [PMID: 26047071 DOI: 10.1016/j.jplph.2015.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 05/09/2023]
Abstract
Pollution by toxic metals, accumulating into soils as result of human activities, is a worldwide major concern in industrial countries. Plants exhibit different degrees of tolerance to heavy metals, as a consequence of their ability to exclude or accumulate them in particular tissues, organs or sub-cellular compartments. Molecular information about cellular processes affected by heavy metals is still largely incomplete. As a fast-growing, highly tolerant perennial plant species, poplar has become a model for environmental stress response investigations. To study the short-term effects of cadmium accumulation in leaves, we analyzed photosystem II (PSII) quantum yield, hydrogen peroxide (H2O2) generation, hormone levels variation, as well as proteome profile alteration of 50μM CdSO4 vacuum-infiltrated poplar (Populus nigra L.) detached leaves. Cadmium management brought about an early and sustained production of hydrogen peroxide, an increase of abscisic acid, ethylene and gibberellins content, as well as a decrease in cytokinins and auxin levels, whereas photosynthetic electron transport was unaffected. Proteomic analysis revealed that twenty-one proteins were differentially induced in cadmium-treated leaves. Identification of fifteen polypeptides allowed to ascertain that most of them were involved in stress response while the remaining ones were involved in photosynthetic carbon metabolism and energy production.
Collapse
Affiliation(s)
- Tonia Lomaglio
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Pesche Italy
| | - Mariapina Rocco
- Dipartimento per la Biologia, Geologia e l'Ambiente, Università del Sannio, Benevento, Italy
| | - Dalila Trupiano
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Pesche Italy
| | - Elena De Zio
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Pesche Italy
| | - Alessandro Grosso
- Dipartimento di Biologia, Università di Roma Tor Vergata, Roma, Italy
| | - Mauro Marra
- Dipartimento di Biologia, Università di Roma Tor Vergata, Roma, Italy
| | - Sebastiano Delfine
- Dipartimento di Agricoltura, Ambientee Alimenti, Università degli Studi del Molise, Campobasso, Italy
| | - Donato Chiatante
- Dipartimento di Biotecnologia e Scienze della Vita, Università dell' Insubria, Varese, Italy
| | - Domenico Morabito
- Université d'Orléans, INRA, LBLGC, EA 1207, Laboratoire de Biologie des Ligneux et des Grandes Cultures, Orléans, France
| | | |
Collapse
|
13
|
Romeo S, Trupiano D, Ariani A, Renzone G, Scippa GS, Scaloni A, Sebastiani L. Proteomic analysis of Populus × euramericana (clone I-214) roots to identify key factors involved in zinc stress response. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1054-63. [PMID: 24974332 DOI: 10.1016/j.jplph.2014.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/20/2014] [Accepted: 03/23/2014] [Indexed: 05/12/2023]
Abstract
Contamination of soil and water by heavy metals has become a widespread problem; environmental pollution by high zinc (Zn) concentration occurs frequently. Although poplar (Populus spp.) has been identified as suitable for phytoremediation approaches, its response to high Zn concentrations are still not clearly understood. For this reason, we investigated the effects of Zn in Populus×euramericana clone I-214 roots by proteomic analysis. Comparative experiments were conducted on rooted woody cuttings grown in nutrient solutions containing 1mM (treatment) or 1μM (control) Zn concentrations. A gel-based proteomic approach coupled with morphological and chemical analysis was used to identify differentially represented proteins in treated roots and to investigate the effect of Zn treatment on the poplar root system. Data shows that Zn was accumulated preferentially in roots, that the antioxidant system, the carbohydrate/energy and amino acid metabolisms were the main pathways modulated by Zn excess, and that mitochondria and vacuoles were the cellular organelles predominately affected by Zn stress. A coordination between cell death and proliferation/growth seems to occur under this condition to counteract the Zn-induced damage.
Collapse
Affiliation(s)
- Stefania Romeo
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Dalila Trupiano
- Dipartimento di Bioscienze e Territorio, University of Molise, 86090 Pesche, IS, Italy
| | - Andrea Ariani
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Giovanni Renzone
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Napoli, Italy
| | - Gabriella S Scippa
- Dipartimento di Bioscienze e Territorio, University of Molise, 86090 Pesche, IS, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Napoli, Italy
| | - Luca Sebastiani
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
| |
Collapse
|