1
|
Zhang J, Li X, Zhang C, Liu X, Wang CL. PpyLTP36 and PpyLTP39 are involved in the transmembrane transport of cuticular wax and are associated with the occurrence of pear fruit russeting. Int J Biol Macromol 2024; 278:134771. [PMID: 39151864 DOI: 10.1016/j.ijbiomac.2024.134771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Non-specific lipid-transfer proteins (nsLTPs) are a group of small, cysteine-rich proteins that are involved in the transport of cuticular wax and other lipid compounds. Accumulating evidence suggests that dynamic changes in cuticular waxes are strongly associated with fruit russeting, an undesirable visual quality that negatively affects consumer appeal in pears. Currently, the regulatory role of nsLTPs in cuticular wax deposition and pear fruit skin russeting remains unclear. Here, we characterized the variations of cuticular waxes in non-treated (russeted) and preharvest bagging treated (non-russeted) pear fruits throughout fruit development and confirmed that the contents of cuticular waxes were significantly negatively correlated with the occurrence of pear fruit russeting. Based on RNA-Sequencing (RNA-Seq) and quantitative real-time PCR (qRT-PCR) analyses, two nsLTP genes (PpyLTP36 and PpyLTP39) were identified, which exhibited high expression levels in non-russeted pear fruit skins and were significantly repressed during fruit skin russeting. Subcellular localization analysis demonstrated that PpyLTP36 and PpyLTP39 were localized to the plasma membrane (PM). Further, transient Virus-Induced Gene Silencing (VIGS) analyses of PpyLTP36 and PpyLTP39 in pear fruits significantly reduced cuticular wax deposition. In conclusion, PpyLTP36 and PpyLTP39 are involved in the transmembrane transport of cuticular wax and are associated with pear fruit skin russeting.
Collapse
Affiliation(s)
- Jing Zhang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| | - Xi Li
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| | - Chen Zhang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| | - Xiao Liu
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| | - Chun-Lei Wang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China.
| |
Collapse
|
2
|
Xu W, Peng X, Li Y, Zeng X, Yan W, Wang C, Wang CR, Chen S, Xu C, Tang X. OsSNDP4, a Sec14-nodulin Domain Protein, is Required for Pollen Development in Rice. RICE (NEW YORK, N.Y.) 2024; 17:54. [PMID: 39207611 PMCID: PMC11362464 DOI: 10.1186/s12284-024-00730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Pollen is encased in a robust wall that shields the male gametophyte from various stresses and aids in pollination. The pollen wall consists of gametophyte-derived intine and sporophyte-derived exine. The exine is mainly composed of sporopollenin, which is biopolymers of aliphatic lipids and phenolics. The process of exine formation has been the subject of extensive research, yet the underlying molecular mechanisms remain elusive. In this study, we identified a rice mutant of the OsSNDP4 gene that is impaired in pollen development. We demonstrated that OsSNDP4, a putative Sec14-nodulin domain protein, exhibits a preference for binding to phosphatidylinositol (3)-phosphate [PI(3)P], a lipid primarily found in endosomal and vacuolar membranes. The OsSNDP4 protein was detected in association with the endoplasmic reticulum (ER), vacuolar membranes, and the nucleus. OsSNDP4 expression was detected in all tested organs but was notably higher in anthers during exine development. Loss of OsSNDP4 function led to abnormal vacuole dynamics, inhibition in Ubisch body development, and premature degradation of cellular contents and organelles in the tapetal cells. Microspores from the ossndp4 mutant plant displayed abnormal exine formation, abnormal vacuole enlargement, and ultimately, pollen abortion. RNA-seq assay revealed that genes involved in the biosynthesis of fatty acid and secondary metabolites, the biosynthesis of lipid polymers, and exosome formation were enriched among the down-regulated genes in the mutant anthers, which correlated with the morphological defects observed in the mutant anthers. Base on these findings, we propose that OsSNDP4 regulates pollen development by binding to PI(3)P and influencing the dynamics of membrane systems. The involvement of membrane systems in the regulation of sporopollenin biosynthesis, Ubisch body formation, and exine formation provides a novel mechanism regulating pollen wall development.
Collapse
Affiliation(s)
- Weitao Xu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaoqun Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yiqi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xinhuang Zeng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Changjian Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Cheng Rui Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shunquan Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China.
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China.
| |
Collapse
|
3
|
Wang W, Wang H, Ren X, Zhang W, Li Q. Organophosphate esters uptake, translocation and accumulation in rice ( Oryza sativa L.): impacts of lipid transporters and chemical properties. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1171-1183. [PMID: 38888146 DOI: 10.1039/d4em00132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
To explore key factors involved in the uptake, translocation and accumulation of organophosphate esters (OPEs), computer simulation analysis and hydroponic experiments were executed. Lipid transporters with stocky-like active (SAC) cavities usually showed stronger binding affinities with the OPEs, especially when the SAC cavities belong to the Fish Trap model according to molecular docking. In our hydroponic trial, the binding affinity and gene expression of the lipid transporters and log Kow of the OPEs could be charged to the uptake, translocation and accumulation of the OPEs; however, these three factors played various important roles in roots and shoots. In detail, the effect of gene expression and binding affinity were stronger than log Kow in roots uptake and accumulation, but the result was the opposite in the shoots translocation. Transporters OsTIL and OsLTPL1 among all investigated transporters could play key roles in transporter-mediated OPE uptake, translocation and accumulation in the roots and shoots. OsMLP could be involved in the bidirected vertical translocation of the OPEs. OsLTP2 and OsLTP4 mainly acted as transporters of the OPEs in roots.
Collapse
Affiliation(s)
- Wenxuan Wang
- University of Science and Technology Beijing, School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, China.
| | - Haiou Wang
- University of Science and Technology Beijing, School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, China.
| | - Xiaoyu Ren
- University of Science and Technology Beijing, School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, China.
| | - Wenxiao Zhang
- University of Science and Technology Beijing, School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, China.
| | - Qian Li
- University of Science and Technology Beijing, School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, China.
| |
Collapse
|
4
|
Baguma JK, Mukasa SB, Nuwamanya E, Alicai T, Omongo CA, Ochwo-Ssemakula M, Ozimati A, Esuma W, Kanaabi M, Wembabazi E, Baguma Y, Kawuki RS. Identification of Genomic Regions for Traits Associated with Flowering in Cassava ( Manihot esculenta Crantz). PLANTS (BASEL, SWITZERLAND) 2024; 13:796. [PMID: 38592820 PMCID: PMC10974989 DOI: 10.3390/plants13060796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 04/11/2024]
Abstract
Flowering in cassava (Manihot esculenta Crantz) is crucial for the generation of botanical seed for breeding. However, genotypes preferred by most farmers are erect and poor at flowering or never flower. To elucidate the genetic basis of flowering, 293 diverse cassava accessions were evaluated for flowering-associated traits at two locations and seasons in Uganda. Genotyping using the Diversity Array Technology Pty Ltd. (DArTseq) platform identified 24,040 single-nucleotide polymorphisms (SNPs) distributed on the 18 cassava chromosomes. Population structure analysis using principal components (PCs) and kinships showed three clusters; the first five PCs accounted for 49.2% of the observed genetic variation. Linkage disequilibrium (LD) estimation averaged 0.32 at a distance of ~2850 kb (kilo base pairs). Polymorphism information content (PIC) and minor allele frequency (MAF) were 0.25 and 0.23, respectively. A genome-wide association study (GWAS) analysis uncovered 53 significant marker-trait associations (MTAs) with flowering-associated traits involving 27 loci. Two loci, SNPs S5_29309724 and S15_11747301, were associated with all the traits. Using five of the 27 SNPs with a Phenotype_Variance_Explained (PVE) ≥ 5%, 44 candidate genes were identified in the peak SNP sites located within 50 kb upstream or downstream, with most associated with branching traits. Eight of the genes, orthologous to Arabidopsis and other plant species, had known functional annotations related to flowering, e.g., eukaryotic translation initiation factor and myb family transcription factor. This study identified genomic regions associated with flowering-associated traits in cassava, and the identified SNPs can be useful in marker-assisted selection to overcome hybridization challenges, like unsynchronized flowering, and candidate gene validation.
Collapse
Affiliation(s)
- Julius K. Baguma
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (E.N.); (M.O.-S.)
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Settumba B. Mukasa
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (E.N.); (M.O.-S.)
| | - Ephraim Nuwamanya
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (E.N.); (M.O.-S.)
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Titus Alicai
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Christopher Abu Omongo
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
- National Agricultural Research Organisation (NARO), Entebbe P.O. Box 295, Uganda;
| | - Mildred Ochwo-Ssemakula
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (E.N.); (M.O.-S.)
| | - Alfred Ozimati
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
- School of Biological Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Williams Esuma
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
- National Agricultural Research Organisation (NARO), Entebbe P.O. Box 295, Uganda;
| | - Michael Kanaabi
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Enoch Wembabazi
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Yona Baguma
- National Agricultural Research Organisation (NARO), Entebbe P.O. Box 295, Uganda;
| | - Robert S. Kawuki
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
- National Agricultural Research Organisation (NARO), Entebbe P.O. Box 295, Uganda;
| |
Collapse
|
5
|
Zhu F, Cao MY, Zhu PX, Zhang QP, Lam HM. Non-specific LIPID TRANSFER PROTEIN 1 enhances immunity against tobacco mosaic virus in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5236-5254. [PMID: 37246636 DOI: 10.1093/jxb/erad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are small, cysteine-rich proteins that play significant roles in biotic and abiotic stress responses; however, the molecular mechanism of their functions against viral infections remains unclear. In this study, we employed virus-induced gene-silencing and transgenic overexpression to functionally analyse a type-I nsLTP in Nicotiana benthamiana, NbLTP1, in the immunity response against tobacco mosaic virus (TMV). NbLTP1 was inducible by TMV infection, and its silencing increased TMV-induced oxidative damage and the production of reactive oxygen species (ROS), compromised local and systemic resistance to TMV, and inactivated the biosynthesis of salicylic acid (SA) and its downstream signaling pathway. The effects of NbLTP1-silencing were partially restored by application of exogenous SA. Overexpressing NbLTP1 activated genes related to ROS scavenging to increase cell membrane stability and maintain redox homeostasis, confirming that an early ROS burst followed by ROS suppression at the later phases of pathogenesis is essential for resistance to TMV infection. The cell-wall localization of NbLTP1 was beneficial to viral resistance. Overall, our results showed that NbLTP1 positively regulates plant immunity against viral infection through up-regulating SA biosynthesis and its downstream signaling component, NONEXPRESSOR OF PATHOGENESIS-RELATED 1 (NPR1), which in turn activates pathogenesis-related genes, and by suppressing ROS accumulation at the later phases of viral pathogenesis.
Collapse
Affiliation(s)
- Feng Zhu
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Meng-Yao Cao
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Peng-Xiang Zhu
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Qi-Ping Zhang
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
6
|
Uemura Y, Kimura S, Ohta T, Suzuki T, Mase K, Kato H, Sakaoka S, Uefune M, Komine Y, Hotta K, Shimizu M, Morikami A, Tsukagoshi H. A very long chain fatty acid responsive transcription factor, MYB93, regulates lateral root development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1408-1427. [PMID: 37247130 DOI: 10.1111/tpj.16330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Lateral roots (LRs) are critical to root system architecture development in plants. Although the molecular mechanisms by which auxin regulates LR development have been extensively studied, several additional regulatory systems are hypothesized to be involved. Recently, the regulatory role of very long chain fatty acids (VLCFAs) has been shown in LR development. Our analysis showed that LTPG1 and LTPG2, transporters of VLCFAs, are specifically expressed in the developing LR primordium (LRP), while the number of LRs is reduced in the ltpg1/ltpg2 double mutant. Moreover, late LRP development was hindered when the VLCFA levels were reduced by the VLCFA synthesis enzyme mutant, kcs1-5. However, the details of the regulatory mechanisms of LR development controlled by VLCFAs remain unknown. In this study, we propose a novel method to analyze the LRP development stages with high temporal resolution using a deep neural network and identify a VLCFA-responsive transcription factor, MYB93, via transcriptome analysis of kcs1-5. MYB93 showed a carbon chain length-specific expression response following treatment of VLCFAs. Furthermore, myb93 transcriptome analysis suggested that MYB93 regulated the expression of cell wall organization genes. In addition, we also found that LTPG1 and LTPG2 are involved in LR development through the formation of root cap cuticle, which is different from transcriptional regulation by VLCFAs. Our results suggest that VLCFA is a regulator of LRP development through transcription factor-mediated regulation of gene expression and the transportation of VLCFAs is also involved in LR development through root cap cuticle formation.
Collapse
Affiliation(s)
- Yuta Uemura
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Saori Kimura
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Tomomichi Ohta
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 478-8501, Japan
| | - Kosuke Mase
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Hiroyuki Kato
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Satomi Sakaoka
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Masayoshi Uefune
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Yuki Komine
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Kazuhiro Hotta
- Department of Electrical and Electronic Engineering, Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Motoyuki Shimizu
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Atsushi Morikami
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Hironaka Tsukagoshi
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| |
Collapse
|
7
|
Sharma P, Lakra N, Goyal A, Ahlawat YK, Zaid A, Siddique KHM. Drought and heat stress mediated activation of lipid signaling in plants: a critical review. FRONTIERS IN PLANT SCIENCE 2023; 14:1216835. [PMID: 37636093 PMCID: PMC10450635 DOI: 10.3389/fpls.2023.1216835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/19/2023] [Indexed: 08/29/2023]
Abstract
Lipids are a principal component of plasma membrane, acting as a protective barrier between the cell and its surroundings. Abiotic stresses such as drought and temperature induce various lipid-dependent signaling responses, and the membrane lipids respond differently to environmental challenges. Recent studies have revealed that lipids serve as signal mediators forreducing stress responses in plant cells and activating defense systems. Signaling lipids, such as phosphatidic acid, phosphoinositides, sphingolipids, lysophospholipids, oxylipins, and N-acylethanolamines, are generated in response to stress. Membrane lipids are essential for maintaining the lamellar stack of chloroplasts and stabilizing chloroplast membranes under stress. However, the effects of lipid signaling targets in plants are not fully understood. This review focuses on the synthesis of various signaling lipids and their roles in abiotic stress tolerance responses, providing an essential perspective for further investigation into the interactions between plant lipids and abiotic stress.
Collapse
Affiliation(s)
- Parul Sharma
- Department of Botany and Plant Physiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Nita Lakra
- Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh (CCS) Haryana Agricultural University, Hisar, India
| | - Alisha Goyal
- Division of Crop Improvement, Indian Council of Agricultural Research (ICAR)—Central Soil Salinity Research Institute, Karnal, India
| | - Yogesh K. Ahlawat
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, India
- Department of Botany, Government Gandhi Memorial (GGM) Science College, Cluster University Jammu, Jammu, India
| | | |
Collapse
|
8
|
Chen Q, Li L, Qi X, Fang H, Yu X, Bai Y, Chen Z, Liu Q, Liu D, Liang C. The non-specific lipid transfer protein McLTPII.9 of Mentha canadensis is involved in peltate glandular trichome density and volatile compound metabolism. FRONTIERS IN PLANT SCIENCE 2023; 14:1188922. [PMID: 37324667 PMCID: PMC10264783 DOI: 10.3389/fpls.2023.1188922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
Mentha canadensis L. is an important spice crop and medicinal herb with high economic value. The plant is covered with peltate glandular trichomes, which are responsible for the biosynthesis and secretion of volatile oils. Plant non-specific lipid transfer proteins (nsLTPs) belong to a complex multigenic family involved in various plant physiological processes. Here, we cloned and identified a non-specific lipid transfer protein gene (McLTPII.9) from M. canadensis, which may positively regulate peltate glandular trichome density and monoterpene metabolism. McLTPII.9 was expressed in most M. canadensis tissues. The GUS signal driven by the McLTPII.9 promoter in transgenic Nicotiana tabacum was observed in stems, leaves, and roots; it was also expressed in trichomes. McLTPII.9 was associated with the plasma membrane. Overexpression of McLTPII.9 in peppermint (Mentha piperita. L) significantly increased the peltate glandular trichome density and total volatile compound content compared with wild-type peppermint; it also altered the volatile oil composition. In McLTPII.9-overexpressing (OE) peppermint, the expression levels of several monoterpenoid synthase genes and glandular trichome development-related transcription factors-such as limonene synthase (LS), limonene-3-hydroxylase (L3OH), geranyl diphosphate synthase (GPPS), HD-ZIP3, and MIXTA-exhibited varying degrees of alteration. McLTPII.9 overexpression resulted in both a change in expression of genes for terpenoid biosynthetic pathways which corresponded with an altered terpenoid profile in OE plants. In addition, peltate glandular trichome density was altered in the OE plants as well as the expression of genes for transcription factors that were shown to be involved in trichome development in plants.
Collapse
Affiliation(s)
- Qiutong Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, Jiangsu, China
| | - Li Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, Jiangsu, China
| | - Xiwu Qi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, Jiangsu, China
| | - Hailing Fang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, Jiangsu, China
| | - Xu Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, Jiangsu, China
| | - Yang Bai
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, Jiangsu, China
| | - Zequn Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, Jiangsu, China
| | - Qun Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, Jiangsu, China
| | - Dongmei Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, Jiangsu, China
| | - Chengyuan Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, Jiangsu, China
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Santos-Silva CAD, Ferreira-Neto JRC, Amador VC, Bezerra-Neto JP, Vilela LMB, Binneck E, Rêgo MDS, da Silva MD, Mangueira de Melo ALT, da Silva RH, Benko-Iseppon AM. From Gene to Transcript and Peptide: A Deep Overview on Non-Specific Lipid Transfer Proteins (nsLTPs). Antibiotics (Basel) 2023; 12:antibiotics12050939. [PMID: 37237842 DOI: 10.3390/antibiotics12050939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Non-specific lipid transfer proteins (nsLTPs) stand out among plant-specific peptide superfamilies due to their multifaceted roles in plant molecular physiology and development, including their protective functions against pathogens. These antimicrobial agents have demonstrated remarkable efficacy against bacterial and fungal pathogens. The discovery of plant-originated, cysteine-rich antimicrobial peptides such as nsLTPs has paved the way for exploring the mentioned organisms as potential biofactories for synthesizing antimicrobial compounds. Recently, nsLTPs have been the focus of a plethora of research and reviews, providing a functional overview of their potential activity. The present work compiles relevant information on nsLTP omics and evolution, and it adds meta-analysis of nsLTPs, including: (1) genome-wide mining in 12 plant genomes not studied before; (2) latest common ancestor analysis (LCA) and expansion mechanisms; (3) structural proteomics, scrutinizing nsLTPs' three-dimensional structure/physicochemical characteristics in the context of nsLTP classification; and (4) broad nsLTP spatiotemporal transcriptional analysis using soybean as a study case. Combining a critical review with original results, we aim to integrate high-quality information in a single source to clarify unexplored aspects of this important gene/peptide family.
Collapse
Affiliation(s)
| | | | - Vinícius Costa Amador
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | | | - Lívia Maria Batista Vilela
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | - Eliseu Binneck
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Soja, Londrina 86085-981, Brazil
| | - Mireli de Santana Rêgo
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | - Manassés Daniel da Silva
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | | | - Rahisa Helena da Silva
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | - Ana Maria Benko-Iseppon
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| |
Collapse
|
10
|
Li J, Wang Q, Wang Y, Wu X, Liu Y, Wan M, Wang L, Wang X, Zhang C, Wang X, Tang X, Heng W. Identification of nsLTP family in Chinese white pear (Pyrus bretschneideri) reveals its potential roles in russet skin formation. PLANTA 2023; 257:113. [PMID: 37165276 DOI: 10.1007/s00425-023-04153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
MAIN CONCLUSION Identification of PbLTP genes in pear and functional characterization of PbLTP4 in the transport of suberin monomers of russet skin formation. Non-specific lipid-transfer protein (nsLTP) is an abundant and diverse alkaline small molecule protein in the plant kingdom with complex and diverse biophysiological functions, such as transfer of phospholipids, reproductive development, pathogen defence and abiotic stress response. Up to now, only a tiny fraction of nsLTPs have been functionally identified, and the distribution of nsLTPs in pear (Pyrus bretschneideri) (PbLTPs) has not been fully characterized. In this study, the genome-wide analysis of the nsLTP gene family in the pear genome identified 67 PbLTP proteins, which could be divided into six types (1, 2, C, D, E, and G). Similar intron/exon structural patterns were observed in the same type, strongly supporting their close evolutionary relationship. In addition, PbLTP4 was highly expressed in russet pear skin compared with green skin, which was located in the plasma membrane. Coexpression network analysis showed that PbLTP4 closely related to suberin biosynthetic genes. The biological function of PbLTP4 in promoting suberification has been demonstrated by overexpression in Arabidopsis. Identification of suberin monomers showed that PbLTP4 promotes suberification by regulating 9,12-octadecadienoic acid and hexadecanoic acid transport. These results provide helpful insights into the characteristics of PbLTP genes and their biological function in the transport of suberin monomers of russet skin formation.
Collapse
Affiliation(s)
- Jiawei Li
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Qi Wang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yajing Wang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Xinyi Wu
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yaping Liu
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Minchen Wan
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Lindu Wang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Xiexuan Wang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Cheng Zhang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Xueqian Wang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Xiaomei Tang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China.
| | - Wei Heng
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China.
| |
Collapse
|
11
|
Tian R, Jiang J, Bo S, Zhang H, Zhang X, Hearne SJ, Tang J, Ding D, Fu Z. Multi-omic characterization of the maize GPI synthesis mutant gwt1 with defects in kernel development. BMC PLANT BIOLOGY 2023; 23:191. [PMID: 37038106 PMCID: PMC10084604 DOI: 10.1186/s12870-023-04188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Glycosylphosphatidylinositol (GPI) and GPI-anchored proteins (GAPs) are important for cell wall formation and reproductive development in Arabidopsis. However, monocot counterparts that function in kernel endosperm development have yet to be discovered. Here, we performed a multi-omic analysis to explore the function of GPI related genes on kernel development in maize. RESULTS In maize, 48 counterparts of human GPI synthesis and lipid remodeling genes were identified, in which null mutation of the glucosaminyl-phosphatidylinositol O-acyltransferase1 gene, ZmGWT1, caused a kernel mutant (named gwt1) with defects in the basal endosperm transport layer (BETL). We performed plasma membrane (PM) proteomics to characterize the potential GAPs involved in kernel development. In total, 4,981 proteins were successfully identified in 10-DAP gwt1 kernels of mutant and wild-type (WT), including 1,638 membrane-anchored proteins with different posttranslational modifications. Forty-seven of the 256 predicted GAPs were differentially accumulated between gwt1 and WT. Two predicted BETL-specific GAPs (Zm00001d018837 and Zm00001d049834), which kept similar abundance at general proteome but with significantly decreased abundance at membrane proteome in gwt1 were highlighted. CONCLUSIONS Our results show the importance of GPI and GAPs for endosperm development and provide candidate genes for further investigation of the regulatory network in which ZmGWT1 participates.
Collapse
Affiliation(s)
- Runmiao Tian
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jianjun Jiang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shirong Bo
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hui Zhang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuehai Zhang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Sarah Jane Hearne
- CIMMYT, KM 45 Carretera Mexico-Veracruz, El Batan, Texcoco, Edo. De Mexico, 56237, Mexico
| | - Jihua Tang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Dong Ding
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Zhiyuan Fu
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
12
|
A Systematic Investigation of Lipid Transfer Proteins Involved in Male Fertility and Other Biological Processes in Maize. Int J Mol Sci 2023; 24:ijms24021660. [PMID: 36675174 PMCID: PMC9864150 DOI: 10.3390/ijms24021660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Plant lipid transfer proteins (LTPs) play essential roles in various biological processes, including anther and pollen development, vegetative organ development, seed development and germination, and stress response, but the research progress varies greatly among Arabidopsis, rice and maize. Here, we presented a preliminary introduction and characterization of the whole 65 LTP genes in maize, and performed a phylogenetic tree and gene ontology analysis of the LTP family members in maize. We compared the research progresses of the reported LTP genes involved in male fertility and other biological processes in Arabidopsis and rice, and thus provided some implications for their maize orthologs, which will provide useful clues for the investigation of LTP transporters in maize. We predicted the functions of LTP genes based on bioinformatic analyses of their spatiotemporal expression patterns by using RNA-seq and qRT-PCR assays. Finally, we discussed the advances and challenges in substrate identification of plant LTPs, and presented the future research directions of LTPs in plants. This study provides a basic framework for functional research and the potential application of LTPs in multiple plants, especially for male sterility research and application in maize.
Collapse
|
13
|
Renzaglia KS, Ashton NW, Suh DY. Sporogenesis in Physcomitrium patens: Intergenerational collaboration and the development of the spore wall and aperture. Front Cell Dev Biol 2023; 11:1165293. [PMID: 37123413 PMCID: PMC10133578 DOI: 10.3389/fcell.2023.1165293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
Although the evolution of spores was critical to the diversification of plants on land, sporogenesis is incompletely characterized for model plants such as Physcomitrium patens. In this study, the complete process of P. patens sporogenesis is detailed from capsule expansion to mature spore formation, with emphasis on the construction of the complex spore wall and proximal aperture. Both diploid (sporophytic) and haploid (spores) cells contribute to the development and maturation of spores. During capsule expansion, the diploid cells of the capsule, including spore mother cells (SMCs), inner capsule wall layer (spore sac), and columella, contribute a locular fibrillar matrix that contains the machinery and nutrients for spore ontogeny. Nascent spores are enclosed in a second matrix that is surrounded by a thin SMC wall and suspended in the locular material. As they expand and separate, a band of exine is produced external to a thin foundation layer of tripartite lamellae. Dense globules assemble evenly throughout the locule, and these are incorporated progressively onto the spore surface to form the perine external to the exine. On the distal spore surface, the intine forms internally, while the spiny perine ornamentation is assembled. The exine is at least partially extrasporal in origin, while the perine is derived exclusively from outside the spore. Across the proximal surface of the polar spores, an aperture begins formation at the onset of spore development and consists of an expanded intine, an annulus, and a central pad with radiating fibers. This complex aperture is elastic and enables the proximal spore surface to cycle between being compressed (concave) and expanded (rounded). In addition to providing a site for water intake and germination, the elastic aperture is likely involved in desiccation tolerance. Based on the current phylogenies, the ancestral plant spore contained an aperture, exine, intine, and perine. The reductive evolution of liverwort and hornwort spores entailed the loss of perine in both groups and the aperture in liverworts. This research serves as the foundation for comparisons with other plant groups and for future studies of the developmental genetics and evolution of spores across plants.
Collapse
Affiliation(s)
- Karen S. Renzaglia
- Department of Plant Biology, Southern Illinois University, Carbondale, IL, United States
- *Correspondence: Karen S. Renzaglia,
| | - Neil W. Ashton
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Dae-Yeon Suh
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| |
Collapse
|
14
|
Gao H, Ma K, Ji G, Pan L, Zhou Q. Lipid transfer proteins involved in plant-pathogen interactions and their molecular mechanisms. MOLECULAR PLANT PATHOLOGY 2022; 23:1815-1829. [PMID: 36052490 PMCID: PMC9644281 DOI: 10.1111/mpp.13264] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Nonspecific lipid transfer proteins (LTPs) are small, cysteine-rich proteins that play numerous functional roles in plant growth and development, including cutin wax formation, pollen tube adhesion, cell expansion, seed development, germination, and adaptation to changing environmental conditions. LTPs contain eight conserved cysteine residues and a hydrophobic cavity that provides a wide variety of lipid-binding specificities. As members of the pathogenesis-related protein 14 family (PR14), many LTPs inhibit fungal or bacterial growth, and act as positive regulators in plant disease resistance. Over the past decade, these essential immunity-related roles of LTPs in plant immune processes have been documented in a growing body of literature. In this review, we summarize the roles of LTPs in plant-pathogen interactions, emphasizing the underlying molecular mechanisms in plant immune responses and specific LTP functions.
Collapse
Affiliation(s)
- Hang Gao
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Kang Ma
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Guojie Ji
- Experimental Teaching Center of Biology and Basic MedicineSanquan College of Xinxiang Medical UniversityXinxiangHenanChina
| | - Liying Pan
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Qingfeng Zhou
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| |
Collapse
|
15
|
Niñoles R, Planes D, Arjona P, Ruiz-Pastor C, Chazarra R, Renard J, Bueso E, Forment J, Serrano R, Kranner I, Roach T, Gadea J. Comparative analysis of wild-type accessions reveals novel determinants of Arabidopsis seed longevity. PLANT, CELL & ENVIRONMENT 2022; 45:2708-2728. [PMID: 35672914 DOI: 10.1111/pce.14374] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Understanding the genetic factors involved in seed longevity is of paramount importance in agricultural and ecological contexts. The polygenic nature of this trait suggests that many of them remain undiscovered. Here, we exploited the contrasting seed longevity found amongst Arabidopsis thaliana accessions to further understand this phenomenon. Concentrations of glutathione were higher in longer-lived than shorter-lived accessions, supporting that redox poise plays a prominent role in seed longevity. However, high seed permeability, normally associated with shorter longevity, is also present in long-lived accessions. Dry seed transcriptome analysis indicated that the contribution to longevity of stored messenger RNA (mRNAs) is complex, including mainly accession-specific mechanisms. The detrimental effect on longevity caused by other factors may be counterbalanced by higher levels of specific mRNAs stored in dry seeds, for instance those of heat-shock proteins. Indeed, loss-of-function mutant analysis demonstrated that heat-shock factors HSF1A and 1B contributed to longevity. Furthermore, mutants of the stress-granule zinc-finger protein TZF9 or the spliceosome subunits MOS4 or MAC3A/MAC3B, extended seed longevity, positioning RNA as a novel player in the regulation of seed viability. mRNAs of proteins with putative relevance to longevity were also abundant in shorter-lived accessions, reinforcing the idea that resistance to ageing is determined by multiple factors.
Collapse
Affiliation(s)
- Regina Niñoles
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Dolores Planes
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Paloma Arjona
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Carmen Ruiz-Pastor
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Rubén Chazarra
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Joan Renard
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Eduardo Bueso
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Javier Forment
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Ramón Serrano
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Ilse Kranner
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Thomas Roach
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - José Gadea
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| |
Collapse
|
16
|
Serra O, Geldner N. The making of suberin. THE NEW PHYTOLOGIST 2022; 235:848-866. [PMID: 35510799 PMCID: PMC9994434 DOI: 10.1111/nph.18202] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/15/2022] [Indexed: 05/27/2023]
Abstract
Outer protective barriers of animals use a variety of bio-polymers, based on either proteins (e.g. collagens), or modified sugars (e.g. chitin). Plants, however, have come up with a particular solution, based on the polymerisation of lipid-like precursors, giving rise to cutin and suberin. Suberin is a structural lipophilic polyester of fatty acids, glycerol and some aromatics found in cell walls of phellem, endodermis, exodermis, wound tissues, abscission zones, bundle sheath and other tissues. It deposits as a hydrophobic layer between the (ligno)cellulosic primary cell wall and plasma membrane. Suberin is highly protective against biotic and abiotic stresses, shows great developmental plasticity and its chemically recalcitrant nature might assist the sequestration of atmospheric carbon by plants. The aim of this review is to integrate the rapidly accelerating genetic and cell biological discoveries of recent years with the important chemical and structural contributions obtained from very diverse organisms and tissue layers. We critically discuss the order and localisation of the enzymatic machinery synthesising the presumed substrates for export and apoplastic polymerisation. We attempt to explain observed suberin linkages by diverse enzyme activities and discuss the spatiotemporal relationship of suberin with lignin and ferulates, necessary to produce a functional suberised cell wall.
Collapse
Affiliation(s)
- Olga Serra
- Laboratori del SuroDepartment of BiologyUniversity of GironaCampus MontiliviGirona17003Spain
| | - Niko Geldner
- Department of Plant Molecular BiologyUniversity of LausanneUNIL‐Sorge, Biophore BuildingLausanne1015Switzerland
| |
Collapse
|
17
|
Genome-Wide Identification and Expression Analysis of nsLTP Gene Family in Rapeseed (Brassica napus) Reveals Their Critical Roles in Biotic and Abiotic Stress Responses. Int J Mol Sci 2022; 23:ijms23158372. [PMID: 35955505 PMCID: PMC9368849 DOI: 10.3390/ijms23158372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022] Open
Abstract
Non-specific lipid transfer proteins (nsLTPs) are small cysteine-rich basic proteins which play essential roles in plant growth, development and abiotic/biotic stress response. However, there is limited information about the nsLTP gene (BnLTP) family in rapeseed (Brassica napus). In this study, 283 BnLTP genes were identified in rapeseed, which were distributed randomly in 19 chromosomes of rapeseed. Phylogenetic analysis showed that BnLTP proteins were divided into seven groups. Exon/intron structure and MEME motifs both remained highly conserved in each BnLTP group. Segmental duplication and hybridization of rapeseed’s two sub-genomes mainly contributed to the expansion of the BnLTP gene family. Various potential cis-elements that respond to plant growth, development, biotic/abiotic stresses, and phytohormone signals existed in BnLTP gene promoters. Transcriptome analysis showed that BnLTP genes were expressed in various tissues/organs with different levels and were also involved in the response to heat, drought, NaCl, cold, IAA and ABA stresses, as well as the treatment of fungal pathogens (Sclerotinia sclerotiorum and Leptosphaeria maculans). The qRT-PCR assay validated the results of RNA-seq expression analysis of two top Sclerotinia-responsive BnLTP genes, BnLTP129 and BnLTP161. Moreover, batches of BnLTPs might be regulated by BnTT1 and BnbZIP67 to play roles in the development, metabolism or adaptability of the seed coat and embryo in rapeseed. This work provides an important basis for further functional study of the BnLTP genes in rapeseed quality improvement and stress resistance.
Collapse
|
18
|
Missaoui K, Gonzalez-Klein Z, Jemli S, Garrido-Arandia M, Diaz-Perales A, Tome-Amat J, Brini F. Identification and molecular characterization of a novel non-specific lipid transfer protein (TdLTP2) from durum wheat. PLoS One 2022; 17:e0266971. [PMID: 35417502 PMCID: PMC9007336 DOI: 10.1371/journal.pone.0266971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/30/2022] [Indexed: 01/15/2023] Open
Abstract
Non-specific lipid transfer proteins (nsLTPs) are small, cysteine-rich proteins, a part of the pathogenesis-related protein family, and numerous of them act as positive regulators during plant disease resistance, growth, and reproduction. These proteins are involved also in the intracellular transfer of lipids, as well as in plant immune responses. Besides their differences in sequences, they show similar features in their structure. However, they show distinct lipid-binding specificities signifying their various biological roles that dictate further structural study. This study reports the identification, in silico characterization and purification of a novel member of the nsLTP2 protein family from durum wheat, TdLTP2. It was generated and purified using the combination of gel filtration chromatography and reverse-phase high-performance liquid chromatography (RP-HPLC). Its identity was detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry (MALDI-TOF). TdLTP2 had been expressed in different stress to detect its localization; therefore, fluor-immunolocalization studies accomplished this data. In this approach, to assess the allergenicity of TdLTP2, thirty patients with baker’s asthma were enrolled and ELISA to detect the presence of specific IgE antibodies tested their sera. Moreover, the lipid-binding properties of TdLTP2 were examined in vitro and validated using a molecular docking study. In summary, our results demonstrate a new addition of member in plant nsLTPs family, TdLTP2, which can develop a better understanding about its biological functions and shed light on future applications.
Collapse
Affiliation(s)
- Khawla Missaoui
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Zulema Gonzalez-Klein
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Sonia Jemli
- Laboratory of Microbial Biotechnology and Enzymes Engineering, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- Department of Biology, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Maria Garrido-Arandia
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Araceli Diaz-Perales
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
- * E-mail: (JTA); (FB)
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- * E-mail: (JTA); (FB)
| |
Collapse
|
19
|
Chen L, Ji C, Zhou D, Gou X, Tang J, Jiang Y, Han J, Liu YG, Chen L, Xie Y. OsLTP47 may function in a lipid transfer relay essential for pollen wall development in rice. J Genet Genomics 2022; 49:481-491. [PMID: 35331929 DOI: 10.1016/j.jgg.2022.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 10/18/2022]
Abstract
In plants, lipid transfer proteins (LTPs) transport pollen wall constituents from the tapetum to the exine, a process essential for pollen wall development. However, the functional cooperation of different LTPs in pollen wall development is not well understood. In this study, we have identified and characterized a grass-specific LTP gene, OsLTP47, an important regulator of pollen wall formation in rice (Oryza sativa). OsLTP47 encodes a membrane-localized LTP and in vitro lipid-binding assays confirms that OsLTP47 has lipid-binding activity. Dysfunction of OsLTP47 causes disordered lipid metabolism and defective pollen walls, leading to male sterility. Yeast two-hybrid and pull-down assays reveal that OsLTP47 physically interacts with another LTP, OsC6. These findings suggest that the plasma membrane-localized OsLTP47 may function as a mediator in a lipid transfer relay through association with cytosolic and/or locular OsC6 for pollen wall development and that various LTPs may function in a coordinated manner to transport lipid molecules during pollen wall development.
Collapse
Affiliation(s)
- Libin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Chonghui Ji
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Degui Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xin Gou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jianian Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yongjie Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jingluan Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
20
|
Shukla V, Barberon M. Building and breaking of a barrier: Suberin plasticity and function in the endodermis. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102153. [PMID: 34861611 DOI: 10.1016/j.pbi.2021.102153] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 05/20/2023]
Abstract
Plant cells coated with hydrophobic compounds constitute a protective barrier to control movement of materials through plant tissues. In roots, the endodermis develops two barriers: the Casparian strips establish an apoplastic barrier and suberin lamellae prevent diffusion through the plasma membrane. Suberin is a complex biopolymer and its deposition is highly responsive to the environment. While the enzymatic framework involved in suberin biosynthesis is well characterized, subsequent steps in suberin formation and regulation remained elusive. Recent publications, studying suberin from a cell biological perspective, have enriched our knowledge on suberin transport and polymerization in the cell wall. These studies have also elucidated the molecular mechanisms controlling suberin biosynthesis and regulation as well as its physiological role in plant abiotic and biotic interactions.
Collapse
Affiliation(s)
- Vinay Shukla
- Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Marie Barberon
- Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland.
| |
Collapse
|
21
|
Amador VC, dos Santos-Silva CA, Vilela LMB, Oliveira-Lima M, de Santana Rêgo M, Roldan-Filho RS, de Oliveira-Silva RL, Lemos AB, de Oliveira WD, Ferreira-Neto JRC, Crovella S, Benko-Iseppon AM. Lipid Transfer Proteins (LTPs)-Structure, Diversity and Roles beyond Antimicrobial Activity. Antibiotics (Basel) 2021; 10:1281. [PMID: 34827219 PMCID: PMC8615156 DOI: 10.3390/antibiotics10111281] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 01/21/2023] Open
Abstract
Lipid transfer proteins (LTPs) are among the most promising plant-exclusive antimicrobial peptides (AMPs). They figure among the most challenging AMPs from the point of view of their structural diversity, functions and biotechnological applications. This review presents a current picture of the LTP research, addressing not only their structural, evolutionary and further predicted functional aspects. Traditionally, LTPs have been identified by their direct isolation by biochemical techniques, whereas omics data and bioinformatics deserve special attention for their potential to bring new insights. In this context, new possible functions have been identified revealing that LTPs are actually multipurpose, with many additional predicted roles. Despite some challenges due to the toxicity and allergenicity of LTPs, a systematic review and search in patent databases, indicate promising perspectives for the biotechnological use of LTPs in human health and also plant defense.
Collapse
Affiliation(s)
- Vinícius Costa Amador
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Carlos André dos Santos-Silva
- Department of Advanced Diagnostics, Institute for Maternal and Child Health-IRCCS, Burlo Garofolo, 34100 Trieste, Italy;
| | - Lívia Maria Batista Vilela
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Marx Oliveira-Lima
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Mireli de Santana Rêgo
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Ricardo Salas Roldan-Filho
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Roberta Lane de Oliveira-Silva
- General Microbiology Laboratory, Agricultural Science Campus, Universidade Federal do Vale do São Francisco, Petrolina 56300-990, Brazil;
| | - Ayug Bezerra Lemos
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Wilson Dias de Oliveira
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - José Ribamar Costa Ferreira-Neto
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Sérgio Crovella
- Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha 1883, Qatar;
| | - Ana Maria Benko-Iseppon
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| |
Collapse
|
22
|
Zhang M, Wei H, Hao P, Wu A, Ma Q, Zhang J, Wang H, Fu X, Ma L, Lu J, Yu S. GhGPAT12/ 25 Are Essential for the Formation of Anther Cuticle and Pollen Exine in Cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:667739. [PMID: 34054906 PMCID: PMC8155372 DOI: 10.3389/fpls.2021.667739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/31/2021] [Indexed: 05/28/2023]
Abstract
Glycerol-3-phosphate acyltransferases (GPATs), critical for multiple biological processes like male fertility, have been extensively characterized. However, their precise functions and underlying regulatory mechanism in cotton anther development are unclear. This research demonstrated the importance of GhGPAT12/25 (a paralogs pair on A12/D12 sub-chromosome of cotton) to regulate the degradation of tapetum, anther cuticle formation, and pollen exine development. GhGPAT12 and GhGPAT25 exhibited specifically detected transcripts in tapetum and pollen exine during the early anther developmental stages. GhGPAT12/25 are sn-2 glycerol-3-phosphate acyltransferases and can transfer the acyl group of palmitoyl-CoA to glycerol-3-phosphate (G3P). CRISPR/Cas9-mediated knockout identified the functional redundancy of GhGPAT12 and GhGPAT25. Knockout of both genes caused completely male sterility associated with abnormal anther cuticle, swollen tapetum, and inviable microspores with defective exine and irregular unrestricted shape. RNA-seq analysis showed that the loss of function of GhGPAT12/25 affects the processes of wax metabolic, glycerol monomer biosynthesis, and transport. Consistently, cuticular waxes were dramatically reduced in mutant anthers. Yeast one-hybrid system (Y1H), virus-induced gene silencing (VIGS), and dual-luciferase (LUC) assays illustrated that GhMYB80s are likely to directly activate the expression of GhGPAT12/25. This study provides important insights for revealing the regulatory mechanism underlying anther development in cotton.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Pengbo Hao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Aimin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qiang Ma
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Jingjing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaokang Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jianhua Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
23
|
Desnoyer N, Palanivelu R. Bridging the GAPs in plant reproduction: a comparison of plant and animal GPI-anchored proteins. PLANT REPRODUCTION 2020; 33:129-142. [PMID: 32945906 DOI: 10.1007/s00497-020-00395-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/07/2020] [Indexed: 05/29/2023]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GAPs) are a unique type of membrane-associated proteins in eukaryotes. GPI and GAP biogenesis and function have been well studied in non-plant models and play an important role in the fertility of mouse sperm and egg. Although GPI and GAP biogenesis and function in plants are less known, they are critical for flowering plant reproduction because of their essential roles in the fertility of the male and female gametophytes. In Eukaryotes, GPI, a glycolipid molecule, can be post-translationally attached to proteins to serve as an anchor in the plasma membrane. GPI-anchoring, compared to other modes of membrane attachment and lipidation processes, localizes proteins to the extracellular portion of the plasma membrane and confers several unique attributes including specialized sorting during secretion, molecular painting onto membranes, and enzyme-mediated release of protein through anchor cleavage. While the biosynthesis, structure, and role of GPI are mostly studied in mammals, yeast and protists, the function of GPI and GAPs in plants is being discovered, particularly in gametophyte development and function. Here, we review GPI biosynthesis, protein attachment, and remodeling in plants with insights about this process in mammals. Additionally, we summarize the reproductive phenotypes of all loss of function mutations in Arabidopsis GPI biosynthesis and GAP genes and compare these to the reproductive phenotypes seen in mice to serve as a framework to identify gaps in our understanding of plant GPI and GAPs. In addition, we present an analysis on the gametophyte expression of all Arabidopsis GAPs to assist in further research on the role of GPI and GAPs in all aspects of the gametophyte generation in the life cycle of a plant.
Collapse
Affiliation(s)
- Nicholas Desnoyer
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| | | |
Collapse
|
24
|
Dos Santos-Silva CA, Zupin L, Oliveira-Lima M, Vilela LMB, Bezerra-Neto JP, Ferreira-Neto JR, Ferreira JDC, de Oliveira-Silva RL, Pires CDJ, Aburjaile FF, de Oliveira MF, Kido EA, Crovella S, Benko-Iseppon AM. Plant Antimicrobial Peptides: State of the Art, In Silico Prediction and Perspectives in the Omics Era. Bioinform Biol Insights 2020; 14:1177932220952739. [PMID: 32952397 PMCID: PMC7476358 DOI: 10.1177/1177932220952739] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Even before the perception or interaction with pathogens, plants rely on constitutively guardian molecules, often specific to tissue or stage, with further expression after contact with the pathogen. These guardians include small molecules as antimicrobial peptides (AMPs), generally cysteine-rich, functioning to prevent pathogen establishment. Some of these AMPs are shared among eukaryotes (eg, defensins and cyclotides), others are plant specific (eg, snakins), while some are specific to certain plant families (such as heveins). When compared with other organisms, plants tend to present a higher amount of AMP isoforms due to gene duplications or polyploidy, an occurrence possibly also associated with the sessile habit of plants, which prevents them from evading biotic and environmental stresses. Therefore, plants arise as a rich resource for new AMPs. As these molecules are difficult to retrieve from databases using simple sequence alignments, a description of their characteristics and in silico (bioinformatics) approaches used to retrieve them is provided, considering resources and databases available. The possibilities and applications based on tools versus database approaches are considerable and have been so far underestimated.
Collapse
Affiliation(s)
| | - Luisa Zupin
- Genetic Immunology laboratory, Institute for Maternal and Child Health-IRCCS, Burlo Garofolo, Trieste, Italy
| | - Marx Oliveira-Lima
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | | | - José Diogo Cavalcanti Ferreira
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil.,Departamento de Genética, Instituto Federal de Pernambuco, Pesqueira, Brazil
| | | | | | | | | | - Ederson Akio Kido
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil
| | - Sergio Crovella
- Genetic Immunology laboratory, Institute for Maternal and Child Health-IRCCS, Burlo Garofolo, Trieste, Italy.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | | |
Collapse
|
25
|
Zaidi MA, O'Leary SJB, Gagnon C, Chabot D, Wu S, Hubbard K, Tran F, Sprott D, Hassan D, Vucurevich T, Sheedy C, Laroche A, Gleddie S, Robert LS. A triticale tapetal non-specific lipid transfer protein (nsLTP) is translocated to the pollen cell wall. PLANT CELL REPORTS 2020; 39:1185-1197. [PMID: 32638075 DOI: 10.1007/s00299-020-02556-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/05/2020] [Indexed: 05/28/2023]
Abstract
A Triticeae type III non-specific lipid transfer protein (nsLTP) was shown for the first time to be translocated from the anther tapetum to the pollen cell wall. Two anther-expressed non-specific lipid transfer proteins (nsLTPs) were identified in triticale (× Triticosecale Wittmack). LTPc3a and LTPc3b contain a putative signal peptide sequence and eight cysteine residues in a C-Xn-C-Xn-CC-Xn-CXC-Xn-C-Xn-C pattern. These proteins belong to the type III class of nsLTPs which are expressed exclusively in the inflorescence of angiosperms. The level of LTPc3 transcript in the anther was highest at the tetrad and uninucleate microspore stages, and absent in mature pollen. In situ hybridization showed that LTPc3 was expressed in the tapetal layer of the developing triticale anther. The expression of the LTPc3 protein peaked at the uninucleate microspore stage, but was also found to be associated with the mature pollen. Accordingly, an LTPc3a::GFP translational fusion expressed in transgenic Brachypodium distachyon first showed activity in the tapetum, then in the anther locule, and later on the mature pollen grain. Altogether, these results represent the first detailed characterization of a Triticeae anther-expressed type III nsLTP with possible roles in pollen cell wall formation.
Collapse
Affiliation(s)
- Mohsin Abbas Zaidi
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE, C1A 4N6, Canada
| | - Stephen J B O'Leary
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
- Aquatic and Crop Resource Development Research Centre, National Research Council, of Canada, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
| | - Christine Gagnon
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Denise Chabot
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Shaobo Wu
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Chengdu, 610052, Sichuan, China
| | - Keith Hubbard
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Frances Tran
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C and E Trail, Lacombe, AB, T4L 1W1, Canada
| | - Dave Sprott
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Dhuha Hassan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Tara Vucurevich
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, PO Box 3000, Lethbridge, AB, T1J 4B1, Canada
| | - Claudia Sheedy
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, PO Box 3000, Lethbridge, AB, T1J 4B1, Canada
| | - André Laroche
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, PO Box 3000, Lethbridge, AB, T1J 4B1, Canada
| | - Steve Gleddie
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Laurian S Robert
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
26
|
Cheng XQ, Zhang XY, Xue F, Zhu SH, Li YJ, Zhu QH, Liu F, Sun J. Characterization and transcriptome analysis of a dominant genic male sterile cotton mutant. BMC PLANT BIOLOGY 2020; 20:312. [PMID: 32620078 PMCID: PMC7333317 DOI: 10.1186/s12870-020-02522-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/24/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Male sterility is an efficient trait for hybrid seed production and germplasm innovation. Until now, most studies on male sterility were on cytoplasmic and recessive genic sterility, with few on dominant genic male sterility, especially in cotton, due to lack of such mutant. RESULTS We discovered a natural male sterile (MS) Sea Island cotton (G. barbadense) mutant. Genetic analysis showed the mutation was caused by a dominant mutation in a single nuclear gene. Comparative cytological observation of anther sections from MS and wild-type (WT) uncovered cellular differences in anther at and after the tetrad stage of pollen mother cells (PMC). In the MS anthers, the outer wall of pollen grains was free of spinules, the tapetum was vacuolated and showed delayed degradation, consequently, no functional pollen grains. Comparison of transcriptomes from meiosis, tetrad, mononuclear and binuclear pollen, and pollen maturation stages identified 13,783 non-redundant differentially expressed genes (DEGs) between MS and WT. Based on the number of DEGs, analyses of enriched GO terms and KEGG pathways, it was evident that significant transcriptomic changes occurred at and after the tetrad stage, consistent with cytological observation, and that the major differences were on metabolism of starch, sucrose, ascorbate, aldarate, alanine, aspartate and glutamate, and biosynthesis of cutin, suberine and wax. WGCNA analysis identified five modules containing 920 genes highly related to anther development, especially the greenyellow module with 54 genes that was highly associated with PMC meiosis and tetrad formation. A NAC transcription factor (Gh_D11G2469) was identified as a hub gene for this module, which warrants further functional characterization. CONCLUSIONS We demonstrated that the MS trait was controlled by a single dominant nuclear gene and caused by delayed tapetum degradation at the tetrad stage. Comparative transcriptome analysis and gene network construction identified DEGs, enriched GO terms and metabolic pathways, and hub genes potentially associated with anther development and the MS trait. These results contribute to our understanding of dominant genic male sterility (DGMS) and provided source for innovation of cotton germplasm.
Collapse
Affiliation(s)
- Xin-Qi Cheng
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Xinjiang, 832000, Shihezi, China
| | - Xin-Yu Zhang
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Xinjiang, 832000, Shihezi, China
| | - Fei Xue
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Xinjiang, 832000, Shihezi, China
| | - Shou-Hong Zhu
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Xinjiang, 832000, Shihezi, China
| | - Yan-Jun Li
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Xinjiang, 832000, Shihezi, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, 2601, Australia
| | - Feng Liu
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Xinjiang, 832000, Shihezi, China.
| | - Jie Sun
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Xinjiang, 832000, Shihezi, China.
| |
Collapse
|
27
|
Liu Y, Sun J, Zhang M, Yang G, Wang R, Xu J, Li Q, Zhang S, Le W, Hao B, Li Y, Wu J. Identification of key genes related to seedlessness by genome-wide detection of structural variation and transcriptome analysis in 'Shijiwuhe' pear. Gene 2020; 738:144480. [PMID: 32081696 DOI: 10.1016/j.gene.2020.144480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 11/30/2022]
Abstract
Seedless fruits are highly marketable because they are easier to eat than fruits with seeds. 'Shijiwuhe' is a seedless pear cultivar that is a mutant derived from an F1 hybridization population ('Bartlett' x 'Yali'). Little is known about the key genes controlling seedless pear fruit. In this study, field experiments revealed that seedless 'Shijiwuhe' pear was not due to parthenocarpy, and that it was self-incompatible. Single nucleotide polymorphisms (SNPs), small insertions and deletions (InDels) and structural variations (SVs) were characterized using DNA sequencing data between 'Shijiwuhe' and parental cultivars. A total of 1498 genes were found to be affected by SV and over 50% of SVs were located in promoter regions. Transcriptome analysis was conducted at three time points (4, 8, and 12 days after cross-pollination) during early fruit development of 'Shijiwuhe', 'Bartlett', and 'Yali'. In total, 1438 differentially expressed genes (DEGs) were found between 'Shijiwuhe' and parental cultivars 'Bartlett' and 'Yali'. We found 1193 SVs that caused differential expression of genes at 4 DACP. Among them, over 100 genes were in pathways related to seed nutrition and energy storage and 41 candidate genes encoded several important transcription factors, such as MYB, WRKY, NAC, and bHLH, which might play important roles in seed development. The qRT-PCR results also confirmed that the candidate genes with SVs showed differential expression between 'Shijiwuhe' pear and 'Bartlett' or 'Yali'. This study, which combined field experiments, SV detection, and transcriptome analysis might provide an effective way to predict the candidate genes regulating the seedless trait and important gene resources for genetic improvement of pear.
Collapse
Affiliation(s)
- Yueyuan Liu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jieying Sun
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Mingyue Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guangyan Yang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Runze Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jintao Xu
- Changli Institute of Pomology, Hebei Academy of Agricultural and Forestry Sciences, Changli, Hebei 066600, China
| | - Qingyu Li
- Yantai Academy of Agricultural Sciences, Shandong 264000, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wenquan Le
- Changli Institute of Pomology, Hebei Academy of Agricultural and Forestry Sciences, Changli, Hebei 066600, China
| | - Baofeng Hao
- Changli Institute of Pomology, Hebei Academy of Agricultural and Forestry Sciences, Changli, Hebei 066600, China
| | - Yuanjun Li
- Yantai Academy of Agricultural Sciences, Shandong 264000, China
| | - Jun Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
28
|
Alotaibi SS, Elseehy MM, Aljuaid BS, El-Shehawi AM. Transcriptome Analysis of Jojoba ( Simmondsia chinensis) during Seed Development and Liquid Wax Ester Biosynthesis. PLANTS 2020; 9:plants9050588. [PMID: 32375380 PMCID: PMC7284725 DOI: 10.3390/plants9050588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/27/2022]
Abstract
Jojoba is one of the main two known plant source of natural liquid wax ester for use in various applications, including cosmetics, pharmaceuticals, and biofuel. Due to the lack of transcriptomic and genomic data on lipid biosynthesis and accumulation, molecular marker breeding has been used to improve jojoba oil production and quality. In the current study, the transcriptome of developing jojoba seeds was investigated using the Illunina NovaSeq 6000 system, 100 × 106 paired end reads, an average length of 100 bp, and a sequence depth of 12 Gb per sample. A total of 176,106 unigenes were detected with an average contig length of 201 bp. Gene Ontology (GO) showed that the detected unigenes were distributed in the three GO groups biological processes (BP, 5.53%), cellular component (CC, 6.06%), and molecular functions (MF, 5.88%) and distributed in 67 functional groups. The lipid biosynthesis pathway was established based on the expression of lipid biosynthesis genes, fatty acid (FA) biosynthesis, FA desaturation, FA elongation, fatty alcohol biosynthesis, triacylglycerol (TAG) biosynthesis, phospholipid metabolism, wax ester biosynthesis, and lipid transfer and storage genes. The detection of these categories of genes confirms the presence of an efficient lipid biosynthesis and accumulation system in developing jojoba seeds. The results of this study will significantly enhance the current understanding of wax ester biology in jojoba seeds and open new routes for the improvement of jojoba oil production and quality through biotechnology applications.
Collapse
Affiliation(s)
- Saqer S. Alotaibi
- Department of Biotechnology, Faculty of Science, Taif University, Taif 21974, Saudi Arabia;
- Correspondence: (S.S.A.); (A.M.E.-S.)
| | - Mona M. Elseehy
- Department of Genetics, Faculty of Agriculture, University of Alexandria, Alexandria 21545, Egypt;
| | - Bandar S. Aljuaid
- Department of Biotechnology, Faculty of Science, Taif University, Taif 21974, Saudi Arabia;
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, Faculty of Science, Taif University, Taif 21974, Saudi Arabia;
- Department of Genetics, Faculty of Agriculture, University of Alexandria, Alexandria 21545, Egypt;
- Correspondence: (S.S.A.); (A.M.E.-S.)
| |
Collapse
|
29
|
Anjam MS, Shah SJ, Matera C, Różańska E, Sobczak M, Siddique S, Grundler FMW. Host factors influence the sex of nematodes parasitizing roots of Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2020; 43:1160-1174. [PMID: 32103526 DOI: 10.1111/pce.13728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 05/23/2023]
Abstract
Plant-parasitic cyst nematodes induce hypermetabolic syncytial nurse cells in the roots of their host plants. Syncytia are their only food source. Cyst nematodes are sexually dimorphic, with their differentiation into male or female strongly influenced by host environmental conditions. Under favourable conditions with plenty of nutrients, more females develop, whereas mainly male nematodes develop under adverse conditions such as in resistant plants. Here, we developed and validated a method to predict the sex of beet cyst nematode (Heterodera schachtii) during the early stages of its parasitism in the host plant Arabidopsis thaliana. We collected root segments containing male-associated syncytia (MAS) or female-associated syncytia (FAS), isolated syncytial cells by laser microdissection, and performed a comparative transcriptome analysis. Genes belonging to categories of defence, nutrient deficiency, and nutrient starvation were over-represented in MAS as compared with FAS. Conversely, gene categories related to metabolism, modification, and biosynthesis of cell walls were over-represented in FAS. We used β-glucuronidase analysis, qRT-PCR, and loss-of-function mutants to characterize FAS- and MAS-specific candidate genes. Our results demonstrate that various plant-based factors, including immune response, nutrient availability, and structural modifications, influence the sexual fate of the cyst nematodes.
Collapse
Affiliation(s)
- Muhammad Shahzad Anjam
- Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University of Bonn, INRES, Bonn, Germany
| | - Syed Jehangir Shah
- Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University of Bonn, INRES, Bonn, Germany
| | - Christiane Matera
- Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University of Bonn, INRES, Bonn, Germany
| | - Elżbieta Różańska
- Department of Botany, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Miroslaw Sobczak
- Department of Botany, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Shahid Siddique
- Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University of Bonn, INRES, Bonn, Germany
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Florian M W Grundler
- Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University of Bonn, INRES, Bonn, Germany
| |
Collapse
|
30
|
Ali MA, Abbas A, Azeem F, Shahzadi M, Bohlmann H. The Arabidopsis GPI-Anchored LTPg5 Encoded by At3g22600 Has a Role in Resistance against a Diverse Range of Pathogens. Int J Mol Sci 2020; 21:E1774. [PMID: 32150834 PMCID: PMC7084707 DOI: 10.3390/ijms21051774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 01/22/2023] Open
Abstract
Arabidopsis contains 34 genes for glycosylphosphatidylinositol (GPI)-anchored LTPg proteins. A motif analysis has placed these into four groups. With one exception, all are produced with a signal peptide and are most likely attached to the cell membrane via the GPI anchor. Several of the LTPg genes across the four groups are downregulated in syncytia induced by the beet cyst nematode Heterodera schachtii. We have here studied At3g22600 encoding LTPg5, which is the most strongly downregulated LTPg gene. It is mainly expressed in roots, and a promoter::GUS line was used to confirm the downregulation in syncytia and also showed downregulation in galls of the root knot nematode Meloidogyne incognita. In contrast, infection with bacteria (Pseudomonas syringae) and fungi (Botrytis cinerea) led to the induction of the gene in leaves. This diverse regulation of LTPg5 indicated a role in resistance, which we confirmed with overexpression lines and a T-DNA mutant. The overexpression lines were more resistant to both nematode species and to P. syringae and B. cinerea, while a knock-out mutant was more susceptible to H. schachtii and P. syringae. Thus, LTPg5 encoded by At3g22600 is part of the Arabidopsis resistance mechanism against pathogens. LTPg5 has probably no direct antimicrobial activity but could perhaps act by associating with a receptor-like kinase, leading to the induction of defense genes such as PR1.
Collapse
Affiliation(s)
- Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan; (A.A.); (M.S.)
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38040, Pakistan
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Amjad Abbas
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan; (A.A.); (M.S.)
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Farrukh Azeem
- Plant Biotechnology Lab, Department of Bioinformatics and Biotechnology, GC University, Faisalabad 38040, Pakistan;
| | - Mahpara Shahzadi
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan; (A.A.); (M.S.)
- Grassland Economics and Systems Analysis Laboratory, College of Pastoral Agriculture Science and Technology, Lanzhou University, Gansu 730000, China
| | - Holger Bohlmann
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| |
Collapse
|
31
|
Akhiyarova GR, Finkina EI, Ovchinnikova TV, Veselov DS, Kudoyarova GR. Role of Pea LTPs and Abscisic Acid in Salt-Stressed Roots. Biomolecules 2019; 10:E15. [PMID: 31877653 PMCID: PMC7022384 DOI: 10.3390/biom10010015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/25/2022] Open
Abstract
Lipid transfer proteins (LTPs) are a class of small, cationic proteins that bind and transfer lipids and play an important role in plant defense. However, their precise biological role in plants under adverse conditions including salinity and possible regulation by stress hormone abscisic acid (ABA) remains unknown. In this work, we studied the localization of LTPs and ABA in the roots of pea plants using specific antibodies. Presence of LTPs was detected on the periphery of the cells mainly located in the phloem. Mild salt stress (50 mM NaCI) led to slowing plant growth and higher immunostaining for LTPs in the phloem. The deposition of suberin in Casparian bands located in the endoderma revealed with Sudan III was shown to be more intensive under salt stress and coincided with the increased LTP staining. All obtained data suggest possible functions of LTPs in pea roots. We assume that these proteins can participate in stress-induced pea root suberization or in transport of phloem lipid molecules. Salt stress increased ABA immunostaining in pea root cells but its localization was different from that of the LTPs. Thus, we failed to confirm the hypothesis regarding the direct influence of ABA on the level of LTPs in the salt-stressed root cells.
Collapse
Affiliation(s)
- Guzel R. Akhiyarova
- Ufa Institute of Biology, Ufa Federal Research Centre, RAS, Prospekt Oktyabrya, 69, Ufa 450054, Russia; (G.R.A.); (D.S.V.)
| | - Ekaterina I. Finkina
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str, 16/10, Moscow 117997, Russia; (E.I.F.); (T.V.O.)
| | - Tatiana V. Ovchinnikova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str, 16/10, Moscow 117997, Russia; (E.I.F.); (T.V.O.)
| | - Dmitry S. Veselov
- Ufa Institute of Biology, Ufa Federal Research Centre, RAS, Prospekt Oktyabrya, 69, Ufa 450054, Russia; (G.R.A.); (D.S.V.)
| | - Guzel R. Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Centre, RAS, Prospekt Oktyabrya, 69, Ufa 450054, Russia; (G.R.A.); (D.S.V.)
| |
Collapse
|
32
|
Li Y, Qin T, Wei C, Sun J, Dong T, Zhou R, Chen Q, Wang Q. Using Transcriptome Analysis to Screen for Key Genes and Pathways Related to Cytoplasmic Male Sterility in Cotton ( Gossypium hirsutum L.). Int J Mol Sci 2019; 20:ijms20205120. [PMID: 31623069 PMCID: PMC6830320 DOI: 10.3390/ijms20205120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 12/19/2022] Open
Abstract
Cotton (Gossypium hirsutum L.) is one of the most important cash crops worldwide. Cytoplasmic male sterility (CMS) is an excellent breeding system for exploitation of heterosis, which has great potential to increase crop yields. To understand the molecular mechanism of CMS in cotton, we compared transcriptome, cytomorphological, physiological and bioinformatics data between the CMS line C2P5A and its maintainer line C2P5B. By using high-throughput sequencing technology, 178,166 transcripts were assembled and 2013 differentially expression genes (DEGs) were identified at three different stages of C2P5A anther development. In this study, we identified DEGs associated with reactive oxygen species (ROS), peroxisomes, aldehyde dehydrogenases (ALDH), cytochrome oxidase subunit VI, and cytochrome P450, and DEGs associated with tapetum development, Jojoba acyl-CoA reductase-related male sterility protein, basic helix-loop-helix (bHLH) and MYB transcription factors. The abnormal expression of one of these genes may be responsible for the CMS C2P5A line. In gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, DEGs were mainly related to carbohydrate metabolism, amino acid metabolism, transport and catabolism, and signal transduction. Carbohydrate metabolism provides energy for anther development, starch and sucrose metabolism, fatty acid biosynthesis and metabolism and ascorbate and aldarate metabolism. These results showed that numerous genes and multiple complex metabolic pathways regulate cotton anther development. Weighted correlation network analysis (WGCNA) indicated that three modules, ‘turquoise,’ ‘blue,’ and ‘green,’ were specific for the CMS C2P5A line. The ‘turquoise’ and ‘blue’ modules were mainly related to carbohydrate metabolism, amino acid metabolism, energy metabolism, peroxisomes, pyruvate metabolism as well as fatty acid degradation. The ‘green’ module was mainly related to energy metabolism, carbon metabolism, translation, and lipid metabolism. RNA-sequencing and WGCNA polymerization modules were screened for key genes and pathways related to CMS in cotton. This study presents a new perspective for further research into the metabolic pathways of pollen abortion in the CMS C2P5A line and also provides a theoretical basis for its breeding and production.
Collapse
Affiliation(s)
- Yuqing Li
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830000, China.
- School of Life Science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding of Henan Province/Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang 453003, China.
| | - Tengfei Qin
- School of Life Science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding of Henan Province/Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang 453003, China.
| | - Chunyan Wei
- School of Life Science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding of Henan Province/Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang 453003, China.
| | - Jialiang Sun
- School of Life Science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding of Henan Province/Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang 453003, China.
| | - Tao Dong
- School of Life Science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding of Henan Province/Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang 453003, China.
| | - Ruiyang Zhou
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530006, China.
| | - Quanjia Chen
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830000, China.
| | - Qinglian Wang
- School of Life Science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding of Henan Province/Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang 453003, China.
| |
Collapse
|
33
|
Rojas M, Jimenez-Bremont F, Villicaña C, Carreón-Palau L, Arredondo-Vega BO, Gómez-Anduro G. Involvement of OpsLTP1 from Opuntia streptacantha in abiotic stress adaptation and lipid metabolism. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:816-829. [PMID: 31138396 DOI: 10.1071/fp18280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
Plant lipid transfer proteins (LTPs) exhibit the ability to transfer lipids between membranes in vitro, and have been implicated in diverse physiological processes associated to plant growth, reproduction, development, biotic and abiotic stress responses. However, their mode of action is not yet fully understood. To explore the functions of the OpsLTP1 gene encoding a LTP from cactus pear Opuntia streptacantha Lem., we generated transgenic Arabidopsis thaliana (L.) Heynh. plants to overexpress OpsLTP1 and contrasted our results with the loss-of-function mutant ltp3 from A. thaliana under abiotic stress conditions. The ltp3 mutant seeds showed impaired germination under salt and osmotic treatments, in contrast to OpsLTP1 overexpressing lines that displayed significant increases in germination rate. Moreover, stress recovery assays showed that ltp3 mutant seedlings were more sensitive to salt and osmotic treatments than wild-type plants suggesting that AtLTP3 is required for stress-induced responses, while the OpsLTP1 overexpressing line showed no significant differences. In addition, OpsLTP1 overexpressing and ltp3 mutant seeds stored lower amount of total lipids compared with wild-type seeds, showing changes primarily on 16C and 18C fatty acids. However, ltp3 mutant also lead changes in lipid profile and no over concrete lipids which may suggest a compensatory activation of other LTPs. Interestingly, linoleic acid (18:2ω6) was consistently increased in neutral, galactoglycerolipids and phosphoglycerolipids of OpsLTP1 overexpressing line indicating a role of OpsLTP1 in the modulation of lipid composition in A. thaliana.
Collapse
Affiliation(s)
- Mario Rojas
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Apdo, Postal 128, 23096 La Paz, B.C.S., México
| | - Francisco Jimenez-Bremont
- Instituto Potosino de Investigación Científica y Tecnológica. Camino a la Presa San José 2055, Col. Lomas 4 sección CP. 78216, San Luis Potosí, S.L.P., México
| | - Claudia Villicaña
- CONACYT-Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a Eldorado Km. 5.5, Apartado Postal 32-A. C. P. 80110, Culiacán, Sinaloa, México
| | - Laura Carreón-Palau
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Apdo, Postal 128, 23096 La Paz, B.C.S., México
| | - Bertha Olivia Arredondo-Vega
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Apdo, Postal 128, 23096 La Paz, B.C.S., México
| | - Gracia Gómez-Anduro
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Apdo, Postal 128, 23096 La Paz, B.C.S., México; and Corresponding author.
| |
Collapse
|
34
|
Finkina EI, Melnikova DN, Bogdanov IV, Ovchinnikova TV. Peptides of the Innate Immune System of Plants. Part II. Biosynthesis, Biological Functions, and Possible Practical Applications. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019020043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Li G, Hou M, Liu Y, Pei Y, Ye M, Zhou Y, Huang C, Zhao Y, Ma H. Genome-wide identification, characterization and expression analysis of the non-specific lipid transfer proteins in potato. BMC Genomics 2019; 20:375. [PMID: 31088347 PMCID: PMC6518685 DOI: 10.1186/s12864-019-5698-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plant non-specific lipid transfer proteins (nsLTPs) are small, basic proteins that are abundant in higher plants. They have been reported to play an important role in various plant physiological processes, such as lipid transfer, signal transduction, and pathogen defense. To date, a comprehensive analysis of the potato nsLTP gene family is still lacking after the completion of potato (Solanum tuberosum L.) genome sequencing. A genome-wide characterization, classification and expression analysis of the StnsLTP gene family was performed in this study. RESULTS In this study, a total of 83 nsLTP genes were identified and categorized into eight types based on Boutrot's method. Multiple characteristics of these genes, including phylogeny, gene structures, conserved motifs, protein domains, chromosome locations, and cis-elements in the promoter sequences, were analyzed. The chromosome distribution and the collinearity analyses suggested that the expansion of the StnsLTP gene family was greatly enhanced by the tandem duplications. Ka/Ks analysis showed that 47 pairs of duplicated genes tended to undergo purifying selection during evolution. Moreover, the expression of StnsLTP genes in various tissues was analyzed by using RNA-seq data and verified by quantitative real-time PCR, revealing that the StnsLTP genes were mainly expressed in younger tissues. These results indicated that StnsLTPs may played significant and functionally varied roles in the development of different tissues. CONCLUSION In this study, we comprehensively analyzed nsLTPs in potato, providing valuable information to better understand the functions of StnsLTPs in different tissues and pathways, especially in response to abiotic stress.
Collapse
Affiliation(s)
- Guojun Li
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Menglu Hou
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yaxue Liu
- Innovation Experimental College, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yue Pei
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Minghui Ye
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yao Zhou
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chenxi Huang
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yaqi Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Haoli Ma
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
36
|
Li D, Cheng Y, Guan J. Effects of 1-methylcyclopropene on surface wax and related gene expression in cold-stored 'Hongxiangsu' pears. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2438-2446. [PMID: 30362118 DOI: 10.1002/jsfa.9452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Surface wax protects fruit from dehydration and pathogen erosion during storage. The surface wax of pears changes greatly during storage. In this work, the effect of ethylene action inhibitor 1-methylcyclopropene on wax accumulation and related gene expression in 'Hongxiangsu' pears during cold storage was investigated. RESULTS The alkanes, alkenes, fatty acids, esters, aldehydes and triterpenoids on the fruit surface accumulated and peaked at day 180, but fatty alcohols decreased before day 90 and then increased in the control. Treatment with 1-MCP (1.0 µL L-1 ) reduced surface wax at day 180 of storage. Compared with the control, the wax crystals became smaller in 1-MCP-treated fruit on days 90 and 270. The 1-MCP decreased the expression levels of ethylene synthesis, perception and signal genes ACS1, ACO1, ERS1, ETR2, ERF1 and wax-related genes (LACS1, LACS2, KCS2, KCS9, KCS20, FDH, CER6, CER10, LTPG1, LTP3, LTP4, ABCG11 and ABCG12). CONCLUSION These results suggested that 1-MCP suppressed ethylene synthesis and signal-pathway and wax-related gene expression; it also reduced the wax and the size of crystals on the fruit surface in cold-stored 'Hongxiangsu' pears. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dan Li
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, China
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Yudou Cheng
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
- Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, Hebei, China
| | - Junfeng Guan
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
- Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, Hebei, China
| |
Collapse
|
37
|
D'Agostino N, Buonanno M, Ayoub J, Barone A, Monti SM, Rigano MM. Identification of non-specific Lipid Transfer Protein gene family members in Solanum lycopersicum and insights into the features of Sola l 3 protein. Sci Rep 2019; 9:1607. [PMID: 30733555 PMCID: PMC6367377 DOI: 10.1038/s41598-018-38301-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 12/21/2018] [Indexed: 01/11/2023] Open
Abstract
Non-specific lipid transfer proteins (nsLTPs) are characterized by an eight-cysteine motif backbone that is stabilized by four disulphide bonds. The strong interest towards this protein family is mainly due to the fact that nsLTPs are involved in many biological processes and have been identified as major human allergens. Since tomato (Solanum lycopersicum L.) is one of the most consumed and allergenic vegetables, a full characterization of this family is needed. In this study, hidden Markov model profiles were used to identify nsLTPs within the tomato protein complement. Following manual curation, 64 nsLTP genes were classified into six sub-families. Furthermore, nsLTP gene structure, distribution and arrangement along tomato chromosomes were investigated. Available RNA-seq expression profile data and Real-Time PCR analyses were used to derive expression patterns of tomato nsLTPs in different tissues/organs. Non-specific LTP genes with high level of expression in tomato fruits were filtered out since they could play a key role in tomato allergenicity. Among these genes was Solyc10g075090 that encodes the allergen Sola l 3. Finally, cloning, heterologous expression, purification and biochemical characterization of the recombinant protein Sola l 3 was performed.
Collapse
Affiliation(s)
- Nunzio D'Agostino
- CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano Faiano, Italy.
| | | | - Joëlle Ayoub
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
- University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
38
|
Zhou K. Glycosylphosphatidylinositol-Anchored Proteins in Arabidopsis and One of Their Common Roles in Signaling Transduction. FRONTIERS IN PLANT SCIENCE 2019; 10:1022. [PMID: 31555307 PMCID: PMC6726743 DOI: 10.3389/fpls.2019.01022] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/22/2019] [Indexed: 05/17/2023]
Abstract
Diverse proteins are found modified with glycosylphosphatidylinositol (GPI) at their carboxyl terminus in eukaryotes, which allows them to associate with membrane lipid bilayers and anchor on the external surface of the plasma membrane. GPI-anchored proteins (GPI-APs) play crucial roles in various processes, and more and more GPI-APs have been identified and studied. In this review, previous genomic and proteomic predictions of GPI-APs in Arabidopsis have been updated, which reveal their high abundance and complexity. From studies of individual GPI-APs in Arabidopsis, certain GPI-APs have been found associated with partner receptor-like kinases (RLKs), targeting RLKs to their subcellular localization and helping to recognize extracellular signaling polypeptide ligands. Interestingly, the association might also be involved in ligand selection. The analyses suggest that GPI-APs are essential and widely involved in signal transduction through association with RLKs.
Collapse
|
39
|
Wang J, Lin W, Yin Z, Wang L, Dong S, An J, Lin Z, Yu H, Shi L, Lin S, Chen S. Comprehensive evaluation of fuel properties and complex regulation of intracellular transporters for high oil production in developing seeds of Prunus sibirica for woody biodiesel. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:6. [PMID: 30622648 PMCID: PMC6318995 DOI: 10.1186/s13068-018-1347-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/24/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Based on our previous studies of 17 Prunus sibirica germplasms, one plus tree with high quality and quantity of seed oils has emerged as novel potential source of biodiesel. To better develop P. sibirica seed oils as woody biodiesel, a concurrent exploration of oil content, FA composition, biodiesel yield and fuel properties as well as prediction model construction for fuel properties was conducted on developing seeds to determine the optimal seed harvest time for producing high-quality biodiesel. Oil synthesis required supply of carbon source, energy and FA, but their transport mechanisms still remains enigmatic. Our recent 454 sequencing of P. sibirica could provide long-read sequences to identify membrane transporters for a better understanding of regulatory mechanism for high oil production in developing seeds. RESULTS To better develop the seed oils of P. sibirica as woody biodiesel, we firstly focused on a temporal and comparative evaluation of growth tendency, oil content, FA composition, biodiesel yield and fuel properties as well as model construction for biodiesel property prediction in different developing seeds from P. sibirica plus tree (accession AS-80), revealing that the oils from developing seeds harvested after 60 days after flowering (DAF) could be as novel potential feedstock for producing biodiesel with ideal fuel property. To gain new insight into membrane transport mechanism for high oil yield in developing seeds of P. sibirica, we presented a global analysis of transporter based on our recent 454 sequencing data of P. sibirica. We annotated a total of 116 genes for membrane-localized transporters at different organelles (plastid, endoplasmatic reticulum, tonoplast, mitochondria and peroxisome), of which some specific transporters were identified to be involved in carbon allocation, metabolite transport and energy supply for oil synthesis by both RT-PCR and qRT-PCR. Importantly, the transporter-mediated model was well established for high oil synthesis in developing P. sibirica seeds. Our findings could help to reveal molecular mechanism of increased oil production and may also present strategies for engineering oil accumulation in oilseed plants. CONCLUSIONS This study presents a temporal and comparative evaluation of developing P. sibirica seed oils as a potential feedstock for producing high-quality biodiesel and a global identification for membrane transporters was to gain better insights into regulatory mechanism of high oil production in developing seeds of P. sibirica. Our findings may present strategies for developing woody biodiesel resources and engineering oil accumulation.
Collapse
Affiliation(s)
- Jia Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Weijun Lin
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Zhongdong Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Libing Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - ShuBin Dong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Jiyong An
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Zixin Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Haiyan Yu
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - Lingling Shi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Shanzhi Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
40
|
Fahlberg P, Buhot N, Johansson ON, Andersson MX. Involvement of lipid transfer proteins in resistance against a non-host powdery mildew in Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2019; 20:69-77. [PMID: 30102837 PMCID: PMC6430466 DOI: 10.1111/mpp.12740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Non-specific lipid transfer proteins (LTPs) are involved in the transport of lipophilic compounds to the cuticular surface in epidermal cells and in the defence against pathogens. The role of glycophosphatidylinositol (GPI)-anchored LTPs (LTPGs) in resistance against non-host mildews in Arabidopsis thaliana was investigated using reverse genetics. Loss of either LTPG1, LTPG2, LTPG5 or LTPG6 increased the susceptibility to penetration of the epidermal cell wall by Blumeria graminis f. sp. hordei (Bgh). However, no impact on pre-penetration defence against another non-host mildew, Erysiphe pisi (Ep), was observed. LTPG1 was localized to papillae at the sites of Bgh penetration. This study shows that, in addition to the previously known functions, LTPGs contribute to pre-invasive defence against certain non-host powdery mildew pathogens.
Collapse
Affiliation(s)
- Per Fahlberg
- Department of Biology and Environmental SciencesUniversity of GothenburgGothenburgSE‐405 30GöteborgSweden
| | - Nathalie Buhot
- Department of Biology and Environmental SciencesUniversity of GothenburgGothenburgSE‐405 30GöteborgSweden
| | - Oskar N. Johansson
- Department of Biology and Environmental SciencesUniversity of GothenburgGothenburgSE‐405 30GöteborgSweden
| | - Mats X. Andersson
- Department of Biology and Environmental SciencesUniversity of GothenburgGothenburgSE‐405 30GöteborgSweden
| |
Collapse
|
41
|
Lee SB, Suh MC. Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein 15 affects seed coat permeability in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1206-1217. [PMID: 30242928 DOI: 10.1111/tpj.14101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 05/02/2023]
Abstract
The hydrophobic biopolymer suberin, which is deposited in the root endodermis and seed coats, functions as an extracellular barrier against uncontrolled water, gas, and ion loss. Suberin monomers synthesized in the endoplasmic reticulum (ER) are exported through the plasma membrane to the apoplast. However, limited information is available about the molecular mechanisms underlying suberin monomer export and assembly. In this study, we investigated the in planta role of LTPG15 encoding a glycosylphosphatidylinositol (GPI)-anchored lipid transfer protein. LTPG15 was predominantly expressed in the root endodermis and seed coat. Fluorescent signals from LTPG15:eYFP were detected in the plasma membrane in tobacco epidermis. Disruption of LTPG15 caused a significant decrease in the levels of fatty acids (C20-C24), primary alcohols (C20 and C22), ω-hydroxy fatty acids (C22 and C24), and α,ω-alkanediols (C20 and C22), but an increase in the amounts of primary alcohols and hydroxy fatty acids with C16 and C18 in seed coats. The mutant phenotype was restored to that of the wild type (WT) by the expression of LTPG15 driven by its own promoter. Seed coats of ltpg15 had an increase in permeability to tetrazolium salts compared with WT seed coats. ltpg15 seeds were more sensitive than WT seeds to inhibition of germination and seedling establishment by salt and osmotic stress treatments. Taken together, our results indicate that LTPG15 is involved in suberin monomer export in seed coats, and this highlights the role of Type G non-specific lipid transfer proteins (LTPGs) in very-long-chain fatty acids and their derivatives' export for suberin polyester formation.
Collapse
Affiliation(s)
- Saet B Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Korea
| | - Mi-Chung Suh
- Department of Life Science, Sogang University, Seoul, 04107, Korea
| |
Collapse
|
42
|
Kouidri A, Whitford R, Suchecki R, Kalashyan E, Baumann U. Genome-wide identification and analysis of non-specific Lipid Transfer Proteins in hexaploid wheat. Sci Rep 2018; 8:17087. [PMID: 30459322 PMCID: PMC6244205 DOI: 10.1038/s41598-018-35375-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/26/2018] [Indexed: 01/17/2023] Open
Abstract
Non-specific Lipid Transfer Proteins (nsLTPs) are involved in numerous biological processes. To date, only a fraction of wheat (Triticum aestivum L.) nsLTPs (TaLTPs) have been identified, and even fewer have been functionally analysed. In this study, the identification, classification, phylogenetic reconstruction, chromosome distribution, functional annotation and expression profiles of TaLTPs were analysed. 461 putative TaLTPs were identified from the wheat genome and classified into five types (1, 2, C, D and G). Phylogenetic analysis of the TaLTPs along with nsLTPs from Arabidopsis thaliana and rice, showed that all five types were shared across species, however, some type 2 TaLTPs formed wheat-specific clades. Gene duplication analysis indicated that tandem duplications contributed to the expansion of this gene family in wheat. Analysis of RNA sequencing data showed that TaLTPs were expressed in most tissues and stages of wheat development. Further, we refined the expression profile of anther-enriched expressed genes, and identified potential cis-elements regulating their expression specificity. This analysis provides a valuable resource towards elucidating the function of TaLTP family members during wheat development, aids our understanding of the evolution and expansion of the TaLTP gene family and, additionally, provides new information for developing wheat male-sterile lines with application to hybrid breeding.
Collapse
Affiliation(s)
- Allan Kouidri
- University of Adelaide, School of Agriculture, Food & Wine, Waite Campus, Urrbrae, South Australia, 5064, Australia
| | - Ryan Whitford
- University of Adelaide, School of Agriculture, Food & Wine, Waite Campus, Urrbrae, South Australia, 5064, Australia
| | - Radoslaw Suchecki
- University of Adelaide, School of Agriculture, Food & Wine, Waite Campus, Urrbrae, South Australia, 5064, Australia
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Waite Campus, Urrbrae, South Australia, 5064, Australia
| | - Elena Kalashyan
- University of Adelaide, School of Agriculture, Food & Wine, Waite Campus, Urrbrae, South Australia, 5064, Australia
| | - Ute Baumann
- University of Adelaide, School of Agriculture, Food & Wine, Waite Campus, Urrbrae, South Australia, 5064, Australia.
| |
Collapse
|
43
|
Yang Y, Bao S, Zhou X, Liu J, Zhuang Y. The key genes and pathways related to male sterility of eggplant revealed by comparative transcriptome analysis. BMC PLANT BIOLOGY 2018; 18:209. [PMID: 30249187 PMCID: PMC6154905 DOI: 10.1186/s12870-018-1430-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/17/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Male sterility (MS) is an effective tool for hybrid production. Although MS has been widely reported in other plants, such as Arabidopsis and rice, the molecular mechanism of MS in eggplant is largely unknown. To understand the mechanism, the comparative transcriptomic file of MS line and its maintainer line was analyzed with the RNA-seq technology. RESULTS A total of 11,7695 unigenes were assembled and 19,652 differentially expressed genes (DEGs) were obtained. The results showed that 1,716 DEGs were shared in the three stages. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that these DEGs were mainly involved in oxidation-reduction, carbohydrate and amino acid metabolism. Moreover, transcriptional regulation was also the impact effector for MS and anther development. Weighted correlation network analysis (WGCNA) showed two modules might be responsible for MS, which was similar to hierarchical cluster analysis. CONCLUSIONS A number of genes and pathways associated with MS were found in this study. This study threw light on the molecular mechanism of MS and identified several key genes related to MS in eggplant.
Collapse
Affiliation(s)
- Yan Yang
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014 China
| | - Shengyou Bao
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014 China
| | - Xiaohui Zhou
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014 China
| | - Jun Liu
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014 China
| | - Yong Zhuang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014 China
| |
Collapse
|
44
|
Hairat S, Baranwal VK, Khurana P. Identification of Triticum aestivum nsLTPs and functional validation of two members in development and stress mitigation roles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:418-430. [PMID: 30077133 DOI: 10.1016/j.plaphy.2018.07.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/19/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Role of plant nsLTP in biotic stress is well reported; however, their role during abiotic stress is far from clear. This study comprises genome-wide identification of LTPs and characterizes the regulation and function of two Triticum aestivum lipid transfer proteins, TaLTP40 and TaLTP75, under stresses that influence membrane fluidity. A total of 105 LTP gene family members have been identified. The selected LTPs for functional validation were highly expressed during salt, cold and drought stress. Further, selected LTPs showed differential expression thermotolerant and thermosusceptible wheat cultivars. Higher expression of many TaLTPs was observed under different abiotic stresses in thermotolerant wheat cultivars as compared to thermosusceptible cultivars. TaLTPs regulation was correlated with light energy distribution studies under similar stress conditions. Cellular localization revealed localization of different TaLTPs to the tonoplast membrane along with the organelles involved in the secretory pathway. Induction of TaLTPs was observed upon treatment with dimethylsulphoxide. TaLTP40 and TaLTP75 overexpressing transgenic Arabidopsis showed a constitutively enhanced salt tolerance. Both the TaLTP40 and TaLTP75 overexpressing lines performed better in terms of chlorophyll a fluorescence, total chlorophyll content, membrane injury index, total biomass, percentage germination, percentage survival and relative growth rate. Hence, our analyses indicate that TaLTPs expression might be driven by change in membrane fluidity and could be involved in transferring membrane lipids to the biological membranes thus imparting tolerance to various abiotic stresses.
Collapse
Affiliation(s)
- Suboot Hairat
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Vinay Kumar Baranwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India; Department of Botany, Swami Devanand Post Graduate College, Math-Lar, Sonarbari Road, Lar, Deoria, 274502, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
45
|
Ji J, Lv H, Yang L, Fang Z, Zhuang M, Zhang Y, Liu Y, Li Z. Genome-wide identification and characterization of non-specific lipid transfer proteins in cabbage. PeerJ 2018; 6:e5379. [PMID: 30128186 PMCID: PMC6089208 DOI: 10.7717/peerj.5379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/14/2018] [Indexed: 12/28/2022] Open
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are a group of small, secreted proteins that can reversibly bind and transport hydrophobic molecules. NsLTPs play an important role in plant development and resistance to stress. To date, little is known about the nsLTP family in cabbage. In this study, a total of 89 nsLTP genes were identified via comprehensive research on the cabbage genome. These cabbage nsLTPs were classified into six types (1, 2, C, D, E and G). The gene structure, physical and chemical characteristics, homology, conserved motifs, subcellular localization, tertiary structure and phylogeny of the cabbage nsLTPs were comprehensively investigated. Spatial expression analysis revealed that most of the identified nsLTP genes were positively expressed in cabbage, and many of them exhibited patterns of differential and tissue-specific expression. The expression patterns of the nsLTP genes in response to biotic and abiotic stresses were also investigated. Numerous nsLTP genes in cabbage were found to be related to the resistance to stress. Moreover, the expression patterns of some nsLTP paralogs in cabbage showed evident divergence. This study promotes the understanding of nsLTPs characteristics in cabbage and lays the foundation for further functional studies investigating cabbage nsLTPs.
Collapse
Affiliation(s)
- Jialei Ji
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mu Zhuang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yumei Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhansheng Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
46
|
Yeats TH, Bacic A, Johnson KL. Plant glycosylphosphatidylinositol anchored proteins at the plasma membrane-cell wall nexus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:649-669. [PMID: 29667761 DOI: 10.1111/jipb.12659] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/16/2018] [Indexed: 05/17/2023]
Abstract
Approximately 1% of plant proteins are predicted to be post-translationally modified with a glycosylphosphatidylinositol (GPI) anchor that tethers the polypeptide to the outer leaflet of the plasma membrane. Whereas the synthesis and structure of GPI anchors is largely conserved across eukaryotes, the repertoire of functional domains present in the GPI-anchored proteome has diverged substantially. In plants, this includes a large fraction of the GPI-anchored proteome being further modified with plant-specific arabinogalactan (AG) O-glycans. The importance of the GPI-anchored proteome to plant development is underscored by the fact that GPI biosynthetic null mutants exhibit embryo lethality. Mutations in genes encoding specific GPI-anchored proteins (GAPs) further supports their contribution to diverse biological processes, occurring at the interface of the plasma membrane and cell wall, including signaling, cell wall metabolism, cell wall polymer cross-linking, and plasmodesmatal transport. Here, we review the literature concerning plant GPI-anchored proteins, in the context of their potential to act as molecular hubs that mediate interactions between the plasma membrane and the cell wall, and their potential to transduce the signal into the protoplast and, thereby, activate signal transduction pathways.
Collapse
Affiliation(s)
- Trevor H Yeats
- School of Integrated Plant Sciences, Section of Plant Biology, Cornell University, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Antony Bacic
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Kim L Johnson
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
47
|
Edqvist J, Blomqvist K, Nieuwland J, Salminen TA. Plant lipid transfer proteins: are we finally closing in on the roles of these enigmatic proteins? J Lipid Res 2018; 59:1374-1382. [PMID: 29555656 PMCID: PMC6071764 DOI: 10.1194/jlr.r083139] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/23/2018] [Indexed: 12/22/2022] Open
Abstract
The nonspecific lipid transfer proteins (LTPs) are small compact proteins folded around a tunnel-like hydrophobic cavity, making them suitable for lipid binding and transport. LTPs are encoded by large gene families in all land plants, but they have not been identified in algae or any other organisms. Thus, LTPs are considered key proteins for plant survival on and colonization of land. LTPs are abundantly expressed in most plant tissues, both above and below ground. They are usually localized to extracellular spaces outside the plasma membrane. Although the in vivo functions of LTPs remain unclear, accumulating evidence suggests a role for LTPs in the transfer and deposition of monomers required for assembly of the waterproof lipid barriers, such as cutin and cuticular wax, suberin, and sporopollenin, formed on many plant surfaces. Some LTPs may be involved in other processes, such as signaling during pathogen attacks. Here, we present the current status of LTP research with a focus on the role of these proteins in lipid barrier deposition and cell expansion. We suggest that LTPs facilitate extracellular transfer of barrier materials and adhesion between barriers and extracellular materials. A growing body of research may uncover the true role of LTPs in plants.
Collapse
Affiliation(s)
| | | | - Jeroen Nieuwland
- Faculty of Computing, Engineering, and Science, University of South Wales, CF37 1DL Pontypridd, United Kingdom
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland
| |
Collapse
|
48
|
Deciphering the Evolution and Development of the Cuticle by Studying Lipid Transfer Proteins in Mosses and Liverworts. PLANTS 2018; 7:plants7010006. [PMID: 29342939 PMCID: PMC5874595 DOI: 10.3390/plants7010006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/10/2017] [Accepted: 01/11/2018] [Indexed: 12/26/2022]
Abstract
When plants conquered land, they developed specialized organs, tissues, and cells in order to survive in this new and harsh terrestrial environment. New cell polymers such as the hydrophobic lipid-based polyesters cutin, suberin, and sporopollenin were also developed for protection against water loss, radiation, and other potentially harmful abiotic factors. Cutin and waxes are the main components of the cuticle, which is the waterproof layer covering the epidermis of many aerial organs of land plants. Although the in vivo functions of the group of lipid binding proteins known as lipid transfer proteins (LTPs) are still rather unclear, there is accumulating evidence suggesting a role for LTPs in the transfer and deposition of monomers required for cuticle assembly. In this review, we first present an overview of the data connecting LTPs with cuticle synthesis. Furthermore, we propose liverworts and mosses as attractive model systems for revealing the specific function and activity of LTPs in the biosynthesis and evolution of the plant cuticle.
Collapse
|
49
|
Meng C, Yan Y, Liu Z, Chen L, Zhang Y, Li X, Wu L, Zhang G, Wang X, Ma Z. Systematic Analysis of Cotton Non-specific Lipid Transfer Protein Family Revealed a Special Group That Is Involved in Fiber Elongation. FRONTIERS IN PLANT SCIENCE 2018; 9:1285. [PMID: 30283464 PMCID: PMC6156462 DOI: 10.3389/fpls.2018.01285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/16/2018] [Indexed: 05/17/2023]
Abstract
Non-specific lipid transfer proteins (nsLTPs) had been previously isolated from cotton fiber but their functions were unclear so far. Bioinformatic analysis of the tetraploid cotton genome database identified 138 nsLTP genes, falling into the 11 groups as reported previously. Different from Arabidopsis, cacao, and other crops, cotton type XI genes were considerably expanded and diverged earlier on chromosome At11, Dt11, and Dt08. Corresponding to the type XI genes, the type XI proteins (GhLtpXIs) all contained an extra N-terminal cap resulting in larger molecular weight. The research revealed that the expression of type XI genes was dramatically increased in fibers of tetraploid cotton compared with the two diploid progenitors. High-level of GhLtpXIs expression was observed in long-fibered cotton cultivars during fiber elongation. Ectopic expression of GhLtpXIs in Arabidopsis significantly enhanced trichome length, suggesting that GhLtpXIs promoted fiber elongation. Overall, the findings of this research provide insights into phenotypic evolution of Gossypium species and regulatory mechanism of nsLTPs during fiber development. HIGHLIGHT A specific group, type XI nsLTPs, was identified with predominant expression in elongating fibers of Gossypium hirsutum based on evolutionary, transcriptional, and functional analyses.
Collapse
|
50
|
Cao X, Fan G, Dong Y, Zhao Z, Deng M, Wang Z, Liu W. Proteome Profiling of Paulownia Seedlings Infected with Phytoplasma. FRONTIERS IN PLANT SCIENCE 2017; 8:342. [PMID: 28344590 PMCID: PMC5344924 DOI: 10.3389/fpls.2017.00342] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/27/2017] [Indexed: 05/29/2023]
Abstract
Phytoplasma is an insect-transmitted pathogen that causes witches' broom disease in many plants. Paulownia witches' broom is one of the most destructive diseases threatening Paulownia production. The molecular mechanisms associated with this disease have been investigated by transcriptome sequencing, but changes in protein abundance have not been investigated with isobaric tags for relative and absolute quantitation. Previous results have shown that methyl methane sulfonate (MMS) can help Paulownia seedlings recover from the symptoms of witches' broom and reinstate a healthy morphology. In this study, a transcriptomic-assisted proteomic technique was used to analyze the protein changes in phytoplasma-infected Paulownia tomentosa seedlings, phytoplasma-infected seedlings treated with 20 and 60 mg·L-1 MMS, and healthy seedlings. A total of 2,051 proteins were obtained, 879 of which were found to be differentially abundant in pairwise comparisons between the sample groups. Among the differentially abundant proteins, 43 were related to Paulownia witches' broom disease and many of them were annotated to be involved in photosynthesis, expression of dwarf symptom, energy production, and cell signal pathways.
Collapse
Affiliation(s)
- Xibing Cao
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
- College of Forestry, Henan Agricultural UniversityZhengzhou, China
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
- College of Forestry, Henan Agricultural UniversityZhengzhou, China
| | - Yanpeng Dong
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
- College of Forestry, Henan Agricultural UniversityZhengzhou, China
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
- College of Forestry, Henan Agricultural UniversityZhengzhou, China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
- College of Forestry, Henan Agricultural UniversityZhengzhou, China
| | - Zhe Wang
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
| | - Wenshan Liu
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
- College of Forestry, Henan Agricultural UniversityZhengzhou, China
| |
Collapse
|