1
|
Sun X, Kaiser E, Marcelis LFM, Li T. Leaf Photosynthetic and Photoprotective Acclimation in the Ultraviolet-A1 and Blue Light Regions Follow a Continuous, Shallow Gradient. PLANT, CELL & ENVIRONMENT 2025; 48:1858-1873. [PMID: 39494759 DOI: 10.1111/pce.15256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/01/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Although blue light is known to produce leaves with high photosynthetic capacity, the role of the blue-adjacent UV-A1 (350-400 nm) in driving leaf photosynthetic acclimation is less studied. Tomato plants were grown under hybrid red and blue (RB; 95/5 μmol m-2 s-1), as well as four treatments in which RB was supplemented with 50 μmol m-2 s-1 peaking at 365, 385, 410 and 450 nm, respectively. Acclimation to 365-450 nm led to a shallow gradient increase in trait values (i.e., photosynthetic capacity, pigmentation and dry mass content) as the peak wavelength increased. Furthermore, both UV-A1 and blue light grown leaves showed efficient photoprotection under high light intensity. When treated plants were transferred to fluctuating light for 5 days, leaves from all treatments showed increases in photosynthetic capacity, which were strongest in RB, followed by additional UV-A1 treatments; RB grown leaves showed reductions in maximum quantum yield of photosystem II, while UV-A1 grown leaves showed increases. We conclude that both UV-A1 and blue light effectively trigger photosynthetic and photoprotective acclimation, the extent of acclimation becoming stronger the longer the peak wavelength is. Acclimatory responses to UV-A1 and blue light are thus not distinct from one another, but follow a continuous gradient.
Collapse
Affiliation(s)
- Xuguang Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Tao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Ma J, Zhang J, Xie L, Ye J, Zhou L, Yu D, Wang QW. Light quality regulates growth and flavonoid content in a widespread forest understorey medicinal species Scutellaria Baicalensis Georgi. FRONTIERS IN PLANT SCIENCE 2024; 15:1488649. [PMID: 39737373 PMCID: PMC11683125 DOI: 10.3389/fpls.2024.1488649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025]
Abstract
Introduction Introduction: Light is not only essential for plant photosynthesis and growth, but also acts as a signal to regulate its secondary metabolism. Despite the influence of light quality on the yield and flavonoid compounds in commercial crops is well-documented, its role in regulating wild understorey species, particularly medicine plants whose flavonoid biosynthesis driven by multiple spectral regions of canopy sunlight, is less understood. Methods To address it, we conducted a light-quality manipulation experiment on Scutellaria baicalensis Georgi, a widespread understorey medicinal species, with light-emitting diodes (LED). This study included eight treatments: UV-A (UV-A radiation), CK (control group), Green (monochromatic green light), and different combinations of blue and red light (R0B4: monochromatic blue light; R1B3: 25% Red+75% Blue light; R1B1: 50% Red+50% Blue light; R3B1: 75% Red+25% Blue light; R4B0: monochromatic red light). Results Our results showed that light quality significantly drove morphology, biomass accumulation, and flavonoids biosynthesis in S. baicalensis. R0B4 treatment promoted growth and flavonoids accumulation, including baicalin, and wogonoside concentrations. In contrast, UV-A radiation and green light negatively impacted these parameters compared to CK treatment. Interestingly, plant biomass and flavonoid concentrations were lower in R1B3, R1B1 and R3B1 treatments compared to monochromatic blue or red light. Discussion Our study found that red light may antagonize blue light-stimulated growth and flavonoids accumulation, indicating a complex crosstalk between photoreceptors. These findings highlight the importance of blue light for optimizing the yield and quality of S. baicalensis in the understorey cultivation. It provides practice suggestion for the efficient management and sustainable cultivation of understorey medicinal plants.
Collapse
Affiliation(s)
- Jingran Ma
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
- Changbaishan Xipo National Field Observation and Research Station for Forest Ecosystem, Baishan, China
| | - Jiaxing Zhang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
- Changbaishan Xipo National Field Observation and Research Station for Forest Ecosystem, Baishan, China
| | - Lulu Xie
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Changbaishan Xipo National Field Observation and Research Station for Forest Ecosystem, Baishan, China
| | - Ji Ye
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Li Zhou
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Changbaishan Xipo National Field Observation and Research Station for Forest Ecosystem, Baishan, China
| | - Dapao Yu
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Changbaishan Xipo National Field Observation and Research Station for Forest Ecosystem, Baishan, China
| | - Qing-Wei Wang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Changbaishan Xipo National Field Observation and Research Station for Forest Ecosystem, Baishan, China
| |
Collapse
|
3
|
Leonardelli M, Tissot N, Podolec R, Ares-Orpel F, Glauser G, Ulm R, Demarsy E. Photoreceptor-induced sinapate synthesis contributes to photoprotection in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:1518-1533. [PMID: 38918833 PMCID: PMC11444301 DOI: 10.1093/plphys/kiae352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024]
Abstract
Plants must balance light capture for photosynthesis with protection from potentially harmful ultraviolet (UV) radiation. Photoprotection is mediated by concerted action of photoreceptors, but the underlying molecular mechanisms are not fully understood. In this study, we provide evidence that UV RESISTANCE LOCUS 8 (UVR8) UV-B, phytochrome red, and cryptochrome blue-light photoreceptors converge on the induction of FERULIC ACID 5-HYDROXYLASE 1 (FAH1) that encodes a key enzyme in the phenylpropanoid biosynthesis pathway, leading to the accumulation of UV-absorbing sinapate esters in Arabidopsis (Arabidopsis thaliana). FAH1 induction depends on the basic leucine zipper transcription factors ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOG that function downstream of all 3 photoreceptors. Noticeably, mutants with hyperactive UVR8 signaling rescue fah1 UV sensitivity. Targeted metabolite profiling suggests that this phenotypic rescue is due to the accumulation of UV-absorbing metabolites derived from precursors of sinapate synthesis, namely, coumaroyl glucose and feruloyl glucose. Our genetic dissection of the phenylpropanoid pathway combined with metabolomic and physiological analyses show that both sinapate esters and flavonoids contribute to photoprotection with sinapates playing a major role for UV screening. Our findings indicate that photoreceptor-mediated regulation of FAH1 and subsequent accumulation of sinapate "sunscreen" compounds are key protective mechanisms to mitigate damage, preserve photosynthetic performance, and ensure plant survival under UV.
Collapse
Affiliation(s)
- Manuela Leonardelli
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
| | - Nicolas Tissot
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
| | - Roman Podolec
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland
| | - Florence Ares-Orpel
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Roman Ulm
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland
| | - Emilie Demarsy
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
4
|
Xie G, Zou X, Liang Z, Zhang K, Wu D, Jin H, Wang H, Shen Q. GBF family member PfGBF3 and NAC family member PfNAC2 regulate rosmarinic acid biosynthesis under high light. PLANT PHYSIOLOGY 2024; 195:1728-1744. [PMID: 38441888 DOI: 10.1093/plphys/kiae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/12/2023] [Indexed: 06/02/2024]
Abstract
Rosmarinic acid (RA) is an important medicinal metabolite and a potent food antioxidant. We discovered that exposure to high light intensifies the accumulation of RA in the leaves of perilla (Perilla frutescens (L.) Britt). However, the molecular mechanism underlying RA synthesis in response to high light stress remains poorly understood. To address this knowledge gap, we conducted a comprehensive analysis employing transcriptomic sequencing, transcriptional activation, and genetic transformation techniques. High light treatment for 1 and 48 h resulted in the upregulation of 592 and 1,060 genes, respectively. Among these genes, three structural genes and 93 transcription factors exhibited co-expression. Notably, NAC family member PfNAC2, GBF family member PfGBF3, and cinnamate-4-hydroxylase gene PfC4H demonstrated significant co-expression and upregulation under high light stress. Transcriptional activation analysis revealed that PfGBF3 binds to and activates the PfNAC2 promoter. Additionally, both PfNAC2 and PfGBF3 bind to the PfC4H promoter, thereby positively regulating PfC4H expression. Transient overexpression of PfNAC2, PfGBF3, and PfC4H, as well as stable transgenic expression of PfNAC2, led to a substantial increase in RA accumulation in perilla. Consequently, PfGBF3 acts as a photosensitive factor that positively regulates PfNAC2 and PfC4H, while PfNAC2 also regulates PfC4H to promote RA accumulation under high light stress. The elucidation of the regulatory mechanism governing RA accumulation in perilla under high light conditions provides a foundation for developing a high-yield RA system and a model to understand light-induced metabolic accumulation.
Collapse
Affiliation(s)
- Guanwen Xie
- School of Pharmaceutical Sciences, Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiuzai Zou
- School of Pharmaceutical Sciences, Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zishan Liang
- School of Pharmaceutical Sciences, Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ke Zhang
- School of Pharmaceutical Sciences, Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Duan Wu
- School of Pharmaceutical Sciences, Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Honglei Jin
- School of Pharmaceutical Sciences, Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hongbin Wang
- School of Pharmaceutical Sciences, Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qi Shen
- School of Pharmaceutical Sciences, Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
5
|
Depaepe T, Vanhaelewyn L, Van Der Straeten D. UV-B responses in the spotlight: Dynamic photoreceptor interplay and cell-type specificity. PLANT, CELL & ENVIRONMENT 2023; 46:3194-3205. [PMID: 37554043 DOI: 10.1111/pce.14680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/10/2023]
Abstract
Plants are constantly exposed to a multitude of external signals, including light. The information contained within the full spectrum of light is perceived by a battery of photoreceptors, each with specific and shared signalling outputs. Recently, it has become clear that UV-B radiation is a vital component of the electromagnetic spectrum, guiding growth and being crucial for plant fitness. However, given the large overlap between UV-B specific signalling pathways and other photoreceptors, understanding how plants can distinguish UV-B specific signals from other light components deserves more scrutiny. With recent evidence, we propose that UV-B signalling and other light signalling pathways occur within distinct tissues and cell-types and that the contribution of each pathway depends on the type of response and the developmental stage of the plant. Elucidating the precise site(s) of action of each molecular player within these signalling pathways is key to fully understand how plants are able to orchestrate coordinated responses to light within the whole plant body. Focusing our efforts on the molecular study of light signal interactions to understand plant growth in natural environments in a cell-type specific manner will be a next step in the field of photobiology.
Collapse
Affiliation(s)
- Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
- Department of Agricultural Economics, Ghent University, Coupure Links 653 B-9000, Ghent, Belgium
| | | |
Collapse
|
6
|
UV Radiation Induces Specific Changes in the Carotenoid Profile of Arabidopsis thaliana. Biomolecules 2022; 12:biom12121879. [PMID: 36551307 PMCID: PMC9775031 DOI: 10.3390/biom12121879] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
UV-B and UV-A radiation are natural components of solar radiation that can cause plant stress, as well as induce a range of acclimatory responses mediated by photoreceptors. UV-mediated accumulation of flavonoids and glucosinolates is well documented, but much less is known about UV effects on carotenoid content. Carotenoids are involved in a range of plant physiological processes, including photoprotection of the photosynthetic machinery. UV-induced changes in carotenoid profile were quantified in plants (Arabidopsis thaliana) exposed for up to ten days to supplemental UV radiation under growth chamber conditions. UV induces specific changes in carotenoid profile, including increases in antheraxanthin, neoxanthin, violaxanthin and lutein contents in leaves. The extent of induction was dependent on exposure duration. No individual UV-B (UVR8) or UV-A (Cryptochrome or Phototropin) photoreceptor was found to mediate this induction. Remarkably, UV-induced accumulation of violaxanthin could not be linked to protection of the photosynthetic machinery from UV damage, questioning the functional relevance of this UV response. Here, it is argued that plants exploit UV radiation as a proxy for other stressors. Thus, it is speculated that the function of UV-induced alterations in carotenoid profile is not UV protection, but rather protection against other environmental stressors such as high intensity visible light that will normally accompany UV radiation.
Collapse
|
7
|
UVA-Radiation Exposure of Different Durations Promoted the Growth, Phytochemicals and Glucosinolate Biosynthesis of Chinese Kale. Int J Mol Sci 2022; 23:ijms23147619. [PMID: 35886968 PMCID: PMC9320135 DOI: 10.3390/ijms23147619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/19/2022] Open
Abstract
Ultraviolet-A (UVA) (315–400 nm) is an essential environmental signal that regulates plant development and affects phytochemicals biosynthesis, including glucosinolate biosynthesis. The effects of different UVA (380 ± 10 nm, 40 μmol/m2/s) exposure durations, including 0 h/d (UV0), 6 h/d (UV6) and 12 h/d (UV12), on the growth and phytochemicals of Chinese kale (Brassica alboglabra) under white 250 μmol/m2/s LEDs were investigated. UVA exposure of different durations influenced the growth and phytochemicals biosynthesis of Chinese kale. Prolonging UVA irradiation throughout the growth cycle positively affected the growth and the development of Chinese kale, with evident increases in the dry weights of shoots and roots, plant height, stem diameter, specific leaf weight and flower budding rate. The application of UVA increased the soluble sugar content, whereas higher flavonoid content and antioxidant capacity (FRAP) and lower nitrate content were only observed in Chinese kale exposed to UV6 treatment. Besides, the qPCR assay showed that supplemental UVA-radiation exposure up-regulated the gene expressions of UVR8, transcription factors genes and genes related to the glucosinolate biosynthesis pathway, thereby promoting the accumulation of glucosinolates. Therefore, supplemental UVA-radiation exposure for 12 h/d was more conducive to plant growth, while supplemental UVA-radiation exposure for 6 h/d was better for phytochemical biosynthesis in Chinese kale in an artificial-light plant factory.
Collapse
|
8
|
Pech R, Volná A, Hunt L, Bartas M, Červeň J, Pečinka P, Špunda V, Nezval J. Regulation of Phenolic Compound Production by Light Varying in Spectral Quality and Total Irradiance. Int J Mol Sci 2022; 23:ijms23126533. [PMID: 35742975 PMCID: PMC9223736 DOI: 10.3390/ijms23126533] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Photosynthetically active radiation (PAR) is an important environmental cue inducing the production of many secondary metabolites involved in plant oxidative stress avoidance and tolerance. To examine the complex role of PAR irradiance and specific spectral components on the accumulation of phenolic compounds (PheCs), we acclimated spring barley (Hordeum vulgare) to different spectral qualities (white, blue, green, red) at three irradiances (100, 200, 400 µmol m−2 s−1). We confirmed that blue light irradiance is essential for the accumulation of PheCs in secondary barley leaves (in UV-lacking conditions), which underpins the importance of photoreceptor signals (especially cryptochrome). Increasing blue light irradiance most effectively induced the accumulation of B-dihydroxylated flavonoids, probably due to the significantly enhanced expression of the F3′H gene. These changes in PheC metabolism led to a steeper increase in antioxidant activity than epidermal UV-A shielding in leaf extracts containing PheCs. In addition, we examined the possible role of miRNAs in the complex regulation of gene expression related to PheC biosynthesis.
Collapse
Affiliation(s)
- Radomír Pech
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (R.P.); (A.V.)
| | - Adriana Volná
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (R.P.); (A.V.)
| | - Lena Hunt
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 00 Praha, Czech Republic;
| | - Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.); (J.Č.); (P.P.)
| | - Jiří Červeň
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.); (J.Č.); (P.P.)
| | - Petr Pečinka
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.); (J.Č.); (P.P.)
| | - Vladimír Špunda
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (R.P.); (A.V.)
- Global Change Research Institute, Czech Academy of Sciences, 603 00 Brno, Czech Republic
- Correspondence: (V.Š.); (J.N.)
| | - Jakub Nezval
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (R.P.); (A.V.)
- Correspondence: (V.Š.); (J.N.)
| |
Collapse
|
9
|
Brelsford CC, Trasser M, Paris T, Hartikainen SM, Robson TM. Understorey light quality affects leaf pigments and leaf phenology in different plant functional types. PHYSIOLOGIA PLANTARUM 2022; 174:e13723. [PMID: 35606930 PMCID: PMC9328371 DOI: 10.1111/ppl.13723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/29/2022] [Accepted: 05/22/2022] [Indexed: 05/12/2023]
Abstract
Forest understorey plants receive most sunlight in springtime before canopy closure, and in autumn following leaf-fall. We hypothesised that plant species must adjust their phenological and photoprotective strategies in response to large changes in the spectral composition of the sunlight they receive. Here, we identified how plant species growing in northern deciduous and evergreen forest understoreys differ in their response to blue light and ultraviolet (UV) radiation according to their functional strategy. We installed filters in a forest understorey in southern Finland, to create the following treatments attenuating: UV radiation below 350 nm, all UV radiation (< 400 nm), all blue light and UV radiation (< 500 nm), and a transparent control. In eight species, representing different functional strategies, we assessed leaf optical properties, phenology, and epidermal flavonoid contents over two years. Blue light accelerated leaf senescence in all species measured in the understorey, apart from Quercus robur seedlings, whereas UV radiation only accelerated leaf senescence in Acer platanoides seedlings. More light-demanding species accumulated flavonols in response to seasonal changes in light quality compared to shade-tolerant and wintergreen species and were particularly responsive to blue light. Reduction of blue and UV radiation under shade reveals an important role for microclimatic effects on autumn phenology and leaf photoprotection. An extension of canopy cover under climate change, and its associated suppression of understorey blue light and UV radiation, may delay leaf senescence for understorey species with an autumn niche.
Collapse
Affiliation(s)
- Craig C. Brelsford
- Yield SystemsEspooFinland
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Marieke Trasser
- Gregor Mendel Institute of Molecular Plant BiologyViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Tom Paris
- EcodivNormandie Université, UNIROUENRouenFrance
| | - Saara M. Hartikainen
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - T. Matthew Robson
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
10
|
Wang QW, Liu C, Robson TM, Hikosaka K, Kurokawa H. Leaf density and chemical composition explain variation in leaf mass area with spectral composition among 11 widespread forbs in a common garden. PHYSIOLOGIA PLANTARUM 2021; 173:698-708. [PMID: 34309027 DOI: 10.1111/ppl.13512] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/06/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Leaf mass per area (LMA) is a key leaf functional trait correlated with plant strategies dictating morphology, physiology, and biochemistry. Although sunlight is generally accepted as a dominant factor driving LMA, the contribution of each spectral region of sunlight in shaping LMA is poorly understood. In the present study, we grew 11 widespread forb species in a common garden and dissected the traits underpinning differences in LMA, such as its morphological components (leaf density [LD] and leaf thickness [LT]), macroelement, and metabolite composition under five spectral-attenuation treatments: (1) transmitting c. 95% of the whole solar spectrum (> 280 nm), (2) attenuating ultraviolet-B radiation (UV-B), (3) attenuating both UV-A and UV-B radiation, (4) attenuating UV radiation and blue light, (5) attenuating UV radiation, blue, and green light. We found that LMA, LD, and chemical traits varied significantly across species depending on spectral treatments. LMA was significantly increased by UV-B radiation and green light, while LD was increased by UV-A but decreased by blue light. LMA positively correlated with LD across treatments but was only weakly related to LT, suggesting that LD was a better determinate of LMA for this specific treatment. Regarding leaf elemental and metabolite composition, carbon, nitrogen, and total phenolics were all positively correlated with LMA, whereas lignin, non-structural carbohydrates, and soluble sugars had negative relationships with LMA. These trends imply a tradeoff between biomass allocation to structural and metabolically functional components. In conclusion, sunlight can spectrally drive LMA mainly through modifying functional and structural support.
Collapse
Affiliation(s)
- Qing-Wei Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Department of Forest Vegetation, Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Chenggang Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Xishuangbanna, China
| | - Thomas Matthew Robson
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Kouki Hikosaka
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hiroko Kurokawa
- Department of Forest Vegetation, Forestry and Forest Products Research Institute, Tsukuba, Japan
| |
Collapse
|
11
|
Roeber VM, Bajaj I, Rohde M, Schmülling T, Cortleven A. Light acts as a stressor and influences abiotic and biotic stress responses in plants. PLANT, CELL & ENVIRONMENT 2021; 44:645-664. [PMID: 33190307 DOI: 10.1111/pce.13948] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 05/18/2023]
Abstract
Light is important for plants as an energy source and a developmental signal, but it can also cause stress to plants and modulates responses to stress. Excess and fluctuating light result in photoinhibition and reactive oxygen species (ROS) accumulation around photosystems II and I, respectively. Ultraviolet light causes photodamage to DNA and a prolongation of the light period initiates the photoperiod stress syndrome. Changes in light quality and quantity, as well as in light duration are also key factors impacting the outcome of diverse abiotic and biotic stresses. Short day or shady environments enhance thermotolerance and increase cold acclimation. Similarly, shade conditions improve drought stress tolerance in plants. Additionally, the light environment affects the plants' responses to biotic intruders, such as pathogens or insect herbivores, often reducing growth-defence trade-offs. Understanding how plants use light information to modulate stress responses will support breeding strategies to enhance crop stress resilience. This review summarizes the effect of light as a stressor and the impact of the light environment on abiotic and biotic stress responses. There is a special focus on the role of the different light receptors and the crosstalk between light signalling and stress response pathways.
Collapse
Affiliation(s)
- Venja M Roeber
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Ishita Bajaj
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Mareike Rohde
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
12
|
Rai N, O'Hara A, Farkas D, Safronov O, Ratanasopa K, Wang F, Lindfors AV, Jenkins GI, Lehto T, Salojärvi J, Brosché M, Strid Å, Aphalo PJ, Morales LO. The photoreceptor UVR8 mediates the perception of both UV-B and UV-A wavelengths up to 350 nm of sunlight with responsivity moderated by cryptochromes. PLANT, CELL & ENVIRONMENT 2020; 43:1513-1527. [PMID: 32167576 DOI: 10.1111/pce.13752] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 05/27/2023]
Abstract
The photoreceptors UV RESISTANCE LOCUS 8 (UVR8) and CRYPTOCHROMES 1 and 2 (CRYs) play major roles in the perception of UV-B (280-315 nm) and UV-A/blue radiation (315-500 nm), respectively. However, it is poorly understood how they function in sunlight. The roles of UVR8 and CRYs were assessed in a factorial experiment with Arabidopsis thaliana wild-type and photoreceptor mutants exposed to sunlight for 6 or 12 hr under five types of filters with cut-offs in UV and blue-light regions. Transcriptome-wide responses triggered by UV-B and UV-A wavelengths shorter than 350 nm (UV-Asw ) required UVR8 whereas those induced by blue and UV-A wavelengths longer than 350 nm (UV-Alw ) required CRYs. UVR8 modulated gene expression in response to blue light while lack of CRYs drastically enhanced gene expression in response to UV-B and UV-Asw . These results agree with our estimates of photons absorbed by these photoreceptors in sunlight and with in vitro monomerization of UVR8 by wavelengths up to 335 nm. Motif enrichment analysis predicted complex signaling downstream of UVR8 and CRYs. Our results highlight that it is important to use UV waveband definitions specific to plants' photomorphogenesis as is routinely done in the visible region.
Collapse
Affiliation(s)
- Neha Rai
- Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Andrew O'Hara
- Örebro Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Daniel Farkas
- Örebro Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Omid Safronov
- Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Khuanpiroon Ratanasopa
- Örebro Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Fang Wang
- Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Anders V Lindfors
- Meteorological Research, Finnish Meteorological Institute, Helsinki, Finland
| | - Gareth I Jenkins
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tarja Lehto
- School of Forest Sciences, University of Eastern Finland, Joensuu, Finland
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Mikael Brosché
- Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Åke Strid
- Örebro Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Pedro J Aphalo
- Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Luis O Morales
- Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Örebro Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
| |
Collapse
|
13
|
Yan Y, Stoddard FL, Neugart S, Oravec M, Urban O, Sadras VO, Aphalo PJ. The transgenerational effects of solar short-UV radiation differed in two accessions of Vicia faba L. from contrasting UV environments. JOURNAL OF PLANT PHYSIOLOGY 2020; 248:153145. [PMID: 32145578 DOI: 10.1016/j.jplph.2020.153145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/03/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS UVB radiation can rapidly induce gene regulation leading to cumulative changes for plant physiology and morphology. We hypothesized that a transgenerational effect of chronic exposure to solar short UV modulates the offspring's responses to UVB and blue light, and that the transgenerational effect is genotype dependent. METHODS We established a factorial experiment combining two Vicia faba L. accessions, two parental UV treatments (full sunlight and exclusion of short UV, 290-350 nm), and four offspring light treatments from the factorial combination of UVB and blue light. The accessions were Aurora from southern Sweden, and ILB938 from Andean region of Colombia and Ecuador. KEY RESULTS The transgenerational effect influenced morphological responses to blue light differently in the two accessions. In Aurora, when UVB was absent, blue light increased shoot dry mass only in plants whose parents were protected from short UV. In ILB938, blue light increased leaf area and shoot dry mass more in plants whose parents were exposed to short UV than those that were not. Moreover, when the offspring was exposed to UVB, the transgenerational effect decreased in ILB938 and disappeared in Aurora. For flavonoids, the transgenerational effect was detected only in Aurora: parental exposure to short UV was associated with a greater induction of total quercetin in response to UVB. Transcript abundance was higher in Aurora than in ILB938 for both CHALCONE SYNTHASE (99-fold) and DON-GLUCOSYLTRANSFERASE 1 (19-fold). CONCLUSIONS The results supported both hypotheses. Solar short UV had transgenerational effects on progeny responses to blue and UVB radiation, and they differed between the accessions. These transgenerational effects could be adaptive by acclimation of slow and cumulative morphological change, and by early build-up of UV protection through flavonoid accumulation on UVB exposure. The differences between the two accessions aligned with their adaptation to contrasting UV environments.
Collapse
Affiliation(s)
- Yan Yan
- Viikki Plant Science Centre (ViPS), Department of Biosciences, 00014, University of Helsinki, Finland.
| | - Frederick L Stoddard
- Department of Agricultural Sciences, Viikki Plant Science Centre (ViPS) and Helsinki Sustainability Centre, 00014, University of Helsinki, Finland
| | - Susanne Neugart
- Leibniz-Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Michal Oravec
- Global Change Research Institute CAS, Brno, Czech Republic
| | - Otmar Urban
- Global Change Research Institute CAS, Brno, Czech Republic
| | - Victor O Sadras
- South Australian Research and Development Institute, Adelaide, Australia; The University of Adelaide, School of Agriculture, Food and Wine, Australia
| | - Pedro J Aphalo
- Viikki Plant Science Centre (ViPS), Department of Biosciences, 00014, University of Helsinki, Finland
| |
Collapse
|
14
|
Hartikainen SM, Pieristè M, Lassila J, Robson TM. Seasonal Patterns in Spectral Irradiance and Leaf UV-A Absorbance Under Forest Canopies. FRONTIERS IN PLANT SCIENCE 2020; 10:1762. [PMID: 32133015 PMCID: PMC7040076 DOI: 10.3389/fpls.2019.01762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/17/2019] [Indexed: 05/05/2023]
Abstract
Plants commonly respond to UV radiation through the accumulation of flavonoids and related phenolic compounds which potentially ameliorate UV-damage to crucial internal structures. However, the seasonal dynamics of leaf flavonoids corresponding to epidermal UV absorbance is highly variable in nature, and it remains uncertain how environmental factors combine to govern flavonoid accumulation and degradation. We studied leaf UV-A absorbance of species composing the understorey plant community throughout two growing seasons under five adjacent tree canopies in southern Finland. We compared the relationship between leaf flavonol index (Iflav-repeatedly measured with an optical leaf clip Dualex) and measured spectral irradiance, understorey and canopy phenology, air temperature and snowpack variables, whole leaf flavonoid extracts, and leaf age. Strong seasonal patterns and stand-related differences were apparent in Iflav of both understorey plant communities and individual species, including divergent trends in Iflav during spring and autumn. Comparing the heterogeneity of the understorey light environment and its spectral composition in looking for potential drivers of seasonal changes in Iflav, we found that unweighted UV-A irradiance, or the effective UV dose calculated according to the biological spectral weighting function (BSWF) for plant growth (PG action spectrum), in understorey shade had a strong relationship with Iflav. Furthermore, understorey species seemed to adjust Iflav to low background diffuse irradiance rather than infrequent high direct-beam irradiance in sunflecks during summer, since leaves produced during or after canopy closure had low Iflav. In conclusion, we found the level of epidermal flavonoids in forest understorey species to be plastic, adjusting to climatic conditions, and differing according to species' leaf retention strategy and new leaf production, all of which contribute to the seasonal trends in leaf flavonoids found within forest stands.
Collapse
Affiliation(s)
- Saara Maria Hartikainen
- Canopy Spectral Ecology and Ecophysiology Group (CanSEE), Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marta Pieristè
- Canopy Spectral Ecology and Ecophysiology Group (CanSEE), Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Normandie Université, UNIROUEN, IRSTEA, ECODIV, FR Scale CNRS 3730, Rouen, France
| | - Joose Lassila
- Canopy Spectral Ecology and Ecophysiology Group (CanSEE), Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Thomas Matthew Robson
- Canopy Spectral Ecology and Ecophysiology Group (CanSEE), Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Neugart S, Majer P, Schreiner M, Hideg É. Blue Light Treatment but Not Green Light Treatment After Pre-exposure to UV-B Stabilizes Flavonoid Glycoside Changes and Corresponding Biological Effects in Three Different Brassicaceae Sprouts. FRONTIERS IN PLANT SCIENCE 2020; 11:611247. [PMID: 33584754 PMCID: PMC7875886 DOI: 10.3389/fpls.2020.611247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/10/2020] [Indexed: 05/20/2023]
Abstract
Ultraviolet-B (UV-B; 280-315 nm) radiation induces the biosynthesis of secondary plant metabolites such as flavonoids. Flavonoids could also be enhanced by blue (420-490 nm) or green (490-585 nm) light. Flavonoids act as antioxidants and shielding components in the plant's response to UV-B exposure. They are shown to quench singlet oxygen and to be reactive to hydroxyl radical. The aim was to determine whether treatment with blue or green light can alter flavonoid profiles after pre-exposure to UV-B and whether they cause corresponding biological effects in Brassicaceae sprouts. Based on their different flavonoid profiles, three vegetables from the Brassicaceae were selected. Sprouts were treated with five subsequent doses (equals 5 days) of moderate UV-B (0.23 kJ m-2 day-1 UV-BBE), which was followed with two subsequent (equals 2 days) doses of either blue (99 μmol m-2 s-1) or green (119 μmol m-2 s-1) light. In sprouts of kale, kohlrabi, and rocket salad, flavonoid glycosides were identified by HPLC-DAD-ESI-MSn. Both Brassica oleracea species, kale and kohlrabi, showed mainly acylated quercetin and kaempferol glycosides. In contrast, in rocket salad, the main flavonol glycosides were quercetin glycosides. Blue light treatment after the UV-B treatment showed that quercetin and kaempferol glycosides were increased in the B. oleracea species kale and kohlrabi while-contrary to this-in rocket salad, there were only quercetin glycosides increased. Blue light treatment in general stabilized the enhanced concentrations of flavonoid glycosides while green treatment did not have this effect. Blue light treatment following the UV-B exposure resulted in a trend of increased singlet oxygen scavenging for kale and rocket. The hydroxyl radical scavenging capacity was independent from the light quality except for kale where an exposure with UV-B followed by a blue light treatment led to a higher hydroxyl radical scavenging capacity. These results underline the importance of different light qualities for the biosynthesis of reactive oxygen species that intercept secondary plant metabolites, but also show a pronounced species-dependent reaction, which is of special interest for growers.
Collapse
Affiliation(s)
- Susanne Neugart
- Division Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, Göttingen, Germany
- *Correspondence: Susanne Neugart,
| | - Petra Majer
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops e.V., Grossbeeren, Germany
| | - Éva Hideg
- Department of Plant Biology, University of Pécs, Pécs, Hungary
| |
Collapse
|
16
|
Pieristè M, Neimane S, Solanki T, Nybakken L, Jones AG, Forey E, Chauvat M, Ņečajeva J, Robson TM. Ultraviolet radiation accelerates photodegradation under controlled conditions but slows the decomposition of senescent leaves from forest stands in southern Finland. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:42-54. [PMID: 31731113 DOI: 10.1016/j.plaphy.2019.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Depending on the environment, sunlight can positively or negatively affect litter decomposition, through the ensemble of direct and indirect processes constituting photodegradation. Which of these processes predominate depends on the ecosystem studied and on the spectral composition of sunlight received. To examine the relevance of photodegradation for litter decomposition in forest understoreys, we filtered ultraviolet radiation (UV) and blue light from leaves of Fagus sylvatica and Betula pendula at two different stages of senescence in both a controlled-environment experiment and outdoors in four different forest stands (Picea abies, Fagus sylvatica, Acer platanoides, Betula pendula). Controlling for leaf orientation and initial differences in leaf chlorophyll and flavonol concentrations; we measured mass loss at the end of each experiment and characterised the phenolic profile of the leaf litter following photodegradation. In most forest stands, less mass was lost from decomposing leaves that received solar UV radiation compared with those under UV-attenuating filters, while in the controlled environment UV-A radiation either slightly accelerated or had no significant effect on photodegradation, according to species identity. Only a few individual phenolic compounds were affected by our different filter treatments, but photodegradation did affect the phenolic profile. We can conclude that photodegradation has a small stand- and species-specific effect on the decomposition of surface leaf litter in forest understoreys during the winter following leaf fall in southern Finland. Photodegradation was wavelength-dependent and modulated by the canopy species filtering sunlight and likely creating different combinations of spectral composition, moisture, temperature and snowpack characteristics.
Collapse
Affiliation(s)
- Marta Pieristè
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Science, P.O. Box 65, 00014, University of Helsinki, Finland; Normandie Université, UNIROUEN, Ecodiv URA/EA1293, IRSTEA, FR Scale CNRS 3730, Rouen, France
| | - Santa Neimane
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Science, P.O. Box 65, 00014, University of Helsinki, Finland; Department of Plant Physiology, University of Latvia, Jelgavas Street 1, LV-1004, Riga, Latvia; Latvian State Forest Research Institute (Silava), Rīgas Iela 111, Salaspils, Salaspils Pilsēta, LV-2169, Latvia
| | - Twinkle Solanki
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Science, P.O. Box 65, 00014, University of Helsinki, Finland
| | - Line Nybakken
- Faculty of Environmental Sciences and Natural Resource Management, CERAD, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Alan G Jones
- Forest Systems, Scion. 49 Sala Street, Private Bag 3020, Rotorua, 3046, New Zealand
| | - Estelle Forey
- Normandie Université, UNIROUEN, Ecodiv URA/EA1293, IRSTEA, FR Scale CNRS 3730, Rouen, France
| | - Matthieu Chauvat
- Normandie Université, UNIROUEN, Ecodiv URA/EA1293, IRSTEA, FR Scale CNRS 3730, Rouen, France
| | - Jevgenija Ņečajeva
- Department of Plant Physiology, University of Latvia, Jelgavas Street 1, LV-1004, Riga, Latvia
| | - T Matthew Robson
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Science, P.O. Box 65, 00014, University of Helsinki, Finland.
| |
Collapse
|
17
|
Rai N, Neugart S, Yan Y, Wang F, Siipola SM, Lindfors AV, Winkler JB, Albert A, Brosché M, Lehto T, Morales LO, Aphalo PJ. How do cryptochromes and UVR8 interact in natural and simulated sunlight? JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4975-4990. [PMID: 31100755 PMCID: PMC6760287 DOI: 10.1093/jxb/erz236] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/10/2019] [Indexed: 05/20/2023]
Abstract
Cryptochromes (CRYs) and UV RESISTANCE LOCUS 8 (UVR8) photoreceptors perceive UV-A/blue (315-500 nm) and UV-B (280-315 nm) radiation in plants, respectively. While the roles of CRYs and UVR8 have been studied in separate controlled-environment experiments, little is known about the interaction between these photoreceptors. Here, Arabidopsis wild-type Ler, CRYs and UVR8 photoreceptor mutants (uvr8-2, cry1cry2 and cry1cry2uvr8-2), and a flavonoid biosynthesis-defective mutant (tt4) were grown in a sun simulator. Plants were exposed to filtered radiation for 17 d or for 6 h, to study the effects of blue, UV-A, and UV-B radiation. Both CRYs and UVR8 independently enabled growth and survival of plants under solar levels of UV, while their joint absence was lethal under UV-B. CRYs mediated gene expression under blue light. UVR8 mediated gene expression under UV-B radiation, and in the absence of CRYs, also under UV-A. This negative regulation of UVR8-mediated gene expression by CRYs was also observed for UV-B. The accumulation of flavonoids was also consistent with this interaction between CRYs and UVR8. In conclusion, we provide evidence for an antagonistic interaction between CRYs and UVR8 and a role of UVR8 in UV-A perception.
Collapse
Affiliation(s)
- Neha Rai
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
- Correspondence:
| | - Susanne Neugart
- Research Area of Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops e. V., 14979 Grossbeeren, Germany
| | - Yan Yan
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Fang Wang
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Sari M Siipola
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | | | - Jana Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Ingolstädter Landstrasse, Neuherberg, Germany
| | - Andreas Albert
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Ingolstädter Landstrasse, Neuherberg, Germany
| | - Mikael Brosché
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Tarja Lehto
- School of Forest Sciences, University of Eastern Finland, Joensuu, Finland
| | - Luis O Morales
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
- Current address: School of Science & Technology, Örebro Life Science Center, Örebro University, SE-70182 Örebro, Sweden
| | - Pedro J Aphalo
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Lee JH, Oh MM, Son KH. Short-Term Ultraviolet (UV)-A Light-Emitting Diode (LED) Radiation Improves Biomass and Bioactive Compounds of Kale. FRONTIERS IN PLANT SCIENCE 2019; 10:1042. [PMID: 31481968 PMCID: PMC6710713 DOI: 10.3389/fpls.2019.01042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/26/2019] [Indexed: 05/31/2023]
Abstract
The aim of this study was to determine the influence of two types of UV-A LEDs on the growth and accumulation of phytochemicals in kale (Brassica oleracea var. acephala). Fourteen-day-old kale seedlings were transferred to a growth chamber and cultivated for 3 weeks. The kale plants were subsequently subjected to two types of UV-A LEDs (370 and 385 nm) of 30 W/m2 for 5 days. Growth characteristics were all significantly increased in plants exposed to UV-A LEDs, especially at the 385 nm level, for which dry weight of shoots and roots were significantly increased by 2.22 and 2.5 times, respectively, at 5 days of treatment. Maximum quantum efficiency of photosystem II photochemistry (Fv/Fm ratio) began to decrease after 3 h of treatment compared to the control. The total phenolic content of plants exposed to the two types of UV-A LEDs increased by 25% at 370 nm and 42% at 385 nm at 5 days of treatment, and antioxidant capacity also increased. The two types of UV-A LEDs also induced increasing contents of caffeic acid, ferulic acid, and kaempferol. The reactive oxygen species (ROS) temporarily increased in plants exposed to the two types of UV-A LEDs after 3 h of treatment. Moreover, transcript levels of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), and flavanone 3-hydroxylase (F3H) genes and PAL enzyme activity were higher in plants treated with UV-A LEDs. Our results suggested that short-term UV-A LEDs were effective in increasing growth and improving antioxidant phenolic compounds in kale, thereby representing a potentially effective strategy for enhancing the production of phytochemicals.
Collapse
Affiliation(s)
- Jin-Hui Lee
- Division of Animal, Horticultural and Food Science, Chungbuk National University, Cheongju, South Korea
- Brain Korea Center for Bio-Resource Development, Chungbuk National University, Cheongju, South Korea
| | - Myung-Min Oh
- Division of Animal, Horticultural and Food Science, Chungbuk National University, Cheongju, South Korea
- Brain Korea Center for Bio-Resource Development, Chungbuk National University, Cheongju, South Korea
| | - Ki-Ho Son
- Department of Horticultural Science, College of Life Science, Gyeongnam National University of Science and Technology, Jinju, South Korea
| |
Collapse
|
19
|
Robson TM, Aphalo PJ, Banaś AK, Barnes PW, Brelsford CC, Jenkins GI, Kotilainen TK, Łabuz J, Martínez-Abaigar J, Morales LO, Neugart S, Pieristè M, Rai N, Vandenbussche F, Jansen MAK. A perspective on ecologically relevant plant-UV research and its practical application. Photochem Photobiol Sci 2019; 18:970-988. [PMID: 30720036 DOI: 10.1039/c8pp00526e] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Plants perceive ultraviolet-B (UV-B) radiation through the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8), and initiate regulatory responses via associated signalling networks, gene expression and metabolic pathways. Various regulatory adaptations to UV-B radiation enable plants to harvest information about fluctuations in UV-B irradiance and spectral composition in natural environments, and to defend themselves against UV-B exposure. Given that UVR8 is present across plant organs and tissues, knowledge of the systemic signalling involved in its activation and function throughout the plant is important for understanding the context of specific responses. Fine-scale understanding of both UV-B irradiance and perception within tissues and cells requires improved application of knowledge about UV-attenuation in leaves and canopies, warranting greater consideration when designing experiments. In this context, reciprocal crosstalk among photoreceptor-induced pathways also needs to be considered, as this appears to produce particularly complex patterns of physiological and morphological response. Through crosstalk, plant responses to UV-B radiation go beyond simply UV-protection or amelioration of damage, but may give cross-protection over a suite of environmental stressors. Overall, there is emerging knowledge showing how information captured by UVR8 is used to regulate molecular and physiological processes, although understanding of upscaling to higher levels of organisation, i.e. organisms, canopies and communities remains poor. Achieving this will require further studies using model plant species beyond Arabidopsis, and that represent a broad range of functional types. More attention should also be given to plants in natural environments in all their complexity, as such studies are needed to acquire an improved understanding of the impact of climate change in the context of plant-UV responses. Furthermore, broadening the scope of experiments into the regulation of plant-UV responses will facilitate the application of UV radiation in commercial plant production. By considering the progress made in plant-UV research, this perspective highlights prescient topics in plant-UV photobiology where future research efforts can profitably be focussed. This perspective also emphasises burgeoning interdisciplinary links that will assist in understanding of UV-B effects across organisational scales and gaps in knowledge that need to be filled so as to achieve an integrated vision of plant responses to UV-radiation.
Collapse
Affiliation(s)
- T Matthew Robson
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Brelsford CC, Nybakken L, Kotilainen TK, Robson TM. The influence of spectral composition on spring and autumn phenology in trees. TREE PHYSIOLOGY 2019; 39:925-950. [PMID: 30901060 DOI: 10.1093/treephys/tpz026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 01/25/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
Several recent reviews highlight the molecular mechanisms that underpin phenological responses to temperature and photoperiod; however, these have mostly overlooked the influence of solar radiation and its spectral composition on these processes. For instance, solar radiation in the blue and ultraviolet (UV) regions of the spectrum, as well as the red/far-red (R:FR) ratio, can influence spring and autumn phenology. Solar radiation reaching the Earth changes diurnally and seasonally; however, rising global temperatures, latitudinal range shifts and light pollution are likely to produce novel combinations of phenological cues for tree species. Here, we review the literature on phenological responses to spectral composition. Our objective was to explore the natural variation in spectral composition using radiative transfer models and to reveal any species-specific or ecotype-specific responses relating to latitudinal origin. These responses are likely to be most pronounced at high latitudes where spectral composition varies most throughout the year. For instance, trees from high latitudes tend to be more sensitive to changes in R:FR than those from low latitudes. The effects of blue light and UV radiation on phenology have not been studied as much as those of R:FR, but the limited results available suggest both could be candidate cues affecting autumn leaf colouration and senescence. Failure of more-southern species and ecotypes to adapt and use spectral cues during northwards range shifts could result in mistimed phenology, potentially resulting in frost damage, reduced fitness and limited range expansion. Future areas for research should look to establish how consistently different functional types of tree respond to spectral cues and identify photoreceptor-mediated mechanisms that allow plants to combine information from multiple light cues to coordinate the timing of phenological events. It should then be feasible to consider the synchronous or sequential action of light cues within a hierarchy of environmental factors regulating phenology.
Collapse
Affiliation(s)
- Craig C Brelsford
- Organismal and Evolutionary Biology, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Line Nybakken
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Titta K Kotilainen
- Organismal and Evolutionary Biology, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland, Turku, Finland
| | - T Matthew Robson
- Organismal and Evolutionary Biology, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Solanki T, Aphalo PJ, Neimane S, Hartikainen SM, Pieristè M, Shapiguzov A, Porcar-Castell A, Atherton J, Heikkilä A, Robson TM. UV-screening and springtime recovery of photosynthetic capacity in leaves of Vaccinium vitis-idaea above and below the snow pack. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 134:40-52. [PMID: 30219502 DOI: 10.1016/j.plaphy.2018.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 05/22/2023]
Abstract
Evergreen plants in boreal biomes undergo seasonal hardening and dehardening adjusting their photosynthetic capacity and photoprotection; acclimating to seasonal changes in temperature and irradiance. Leaf epidermal ultraviolet (UV)-screening by flavonols responds to solar radiation, perceived in part through increased ultraviolet-B (UV-B) radiation, and is a candidate trait to provide cross-photoprotection. At Hyytiälä Forestry Station, central Finland, we examined whether the accumulation of flavonols was higher in leaves of Vaccinium vitis-idaea L. growing above the snowpack compared with those below the snowpack. We found that leaves exposed to colder temperatures and higher solar radiation towards the top of hummocks suffered greater photoinhibition than those at the base of hummocks. Epidermal UV-screening was highest in upper-hummock leaves, particularly during winter when lower leaves were beneath the snowpack. There was also a negative relationship between indices of flavonols and anthocyanins across all leaves suggesting fine-tuning of flavonoid composition for screening vs. antioxidant activity in response to temperature and irradiance. However, the positive correlation between the maximum quantum yield of photosystem II photochemistry (Fv/Fm) and flavonol accumulation in upper hummock leaves during dehardening did not confer on them any greater cross-protection than would be expected from the general relationship of Fv/Fm with temperature and irradiance (throughout the hummocks). Irrespective of timing of snow-melt, photosynthesis fully recovered in all leaves, suggesting that V. vitis-idaea has the potential to exploit the continuing trend for longer growing seasons in central Finland without incurring significant impairment from reduced duration of snow cover.
Collapse
Affiliation(s)
- Twinkle Solanki
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Science, 00014, University of Helsinki, Finland
| | - Pedro J Aphalo
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Science, 00014, University of Helsinki, Finland
| | - Santa Neimane
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Science, 00014, University of Helsinki, Finland; Dept. Plant Physiology, University of Latvia, Jelgavas Street 1, LV, 1004, Riga, Latvia
| | - Saara M Hartikainen
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Science, 00014, University of Helsinki, Finland
| | - Marta Pieristè
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Science, 00014, University of Helsinki, Finland; Normandie Université, UNIROUEN, Ecodiv URA/EA1293, IRSTEA, FR Scale CNRS, 3730, Rouen, France
| | - Alexey Shapiguzov
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Science, 00014, University of Helsinki, Finland; Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street, 35, 127276 Moscow, Russia
| | - Albert Porcar-Castell
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research, Department of Forest Sciences, 00014, University of Helsinki, Finland
| | - Jon Atherton
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research, Department of Forest Sciences, 00014, University of Helsinki, Finland
| | - Anu Heikkilä
- Finnish Meteorological Institute (FMI), POB 503, 00101, Helsinki, Finland
| | - Thomas Matthew Robson
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Science, 00014, University of Helsinki, Finland.
| |
Collapse
|