1
|
An Y, Liu B, Cao Y, Wang Z, Yin S, Chen L. Systematic characterization of the calmodulin-like (CML) gene family in alfalfa and functional analysis of MsCML70 under salt stress. Int J Biol Macromol 2025; 304:140835. [PMID: 39938825 DOI: 10.1016/j.ijbiomac.2025.140835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Calmodulin-like proteins (CMLs), which are widely involved in various abiotic stress responses, are important calcium ion sensors in plants. However, systematic identification and functional analysis of these proteins have not been performed in alfalfa. Here, a total of 211 MsCMLs were identified in the alfalfa genome. Conserved domain analysis revealed that most MsCMLs contained three EF-hand domains. A total of 17 tandem duplication events and 292 segmental duplication events were identified, indicating that segmental duplications were the major factor in the expansion of MsCMLs. There were 28, 36 and 18 MsCMLs that responded to drought, salt and cold stress, respectively, in alfalfa. In addition, MsCML70 overexpression significantly increased salt tolerance in Arabidopsis. MsCML70 participates in the plant salt stress response through various biological pathways, including transcriptional regulation, protein modification, plant hormone metabolism and secondary metabolism. Moreover, MsCML70 significantly increased the expression of HKT1 (high-affinity K+transporter 1), DREB19 (dehydration responsive element binding protein 19), PRX32 (peroxidase 32), JAL10 (jacalin-associated lectins 10), HB17 (homeobox 17), and NPF2.3 (nitrate transporter 2.3) under salt stress to promote tolerance to salt stress in Arabidopsis. The results of this study help elucidate the function of alfalfa CML genes and provide a new gene resource for the breeding of stress-resistant alfalfa.
Collapse
Affiliation(s)
- Yixin An
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Baijian Liu
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Yuwei Cao
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Ziqi Wang
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Shuxia Yin
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| | - Lin Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Li D, Wang H, Luo F, Li M, Wu Z, Liu M, Wang Z, Zang Z, Jiang L. A Maize Calmodulin-like 3 Gene Positively Regulates Drought Tolerance in Maize and Arabidopsis. Int J Mol Sci 2025; 26:1329. [PMID: 39941097 PMCID: PMC11818628 DOI: 10.3390/ijms26031329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Drought stress is one of the important abiotic stresses that affects maize production. As an important Ca2+ sensor, calmodulin-like proteins (CMLs) play key roles in plant growth, development, and stress response, but there are a limited number of studies regarding CMLs in response to drought stress. In this study, a Calmodulin-like gene, namely ZmCML3, was isolated from maize (Zea mays L.). The coding sequence (CDS) of ZmCML3 was 474 bp and a protein of 158 aa which contains three EF-hand motifs. ZmCML3 was localized within the nucleus and plasma membrane. The expression of ZmCML3 was induced by polyethylene glycol (PEG) 6000, NaCl, methyl jasmonate (MeJA), and abscisic acid (ABA). Overexpression of ZmCML3 resulted in enhanced drought tolerance in maize through increasing proline (Pro) content and the activity of peroxide (POD) and superoxide dismutase (SOD). Meanwhile, ZmCML3 also positively regulated the expression of drought stress-responsive genes in maize under drought stress treatment. Taken together, ZmCML3 acts as a positive regulator in maize response to drought stress. These results will provide theoretical basis for breeding drought tolerance maize variety.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhenyuan Zang
- College of Agriculture, Jilin Agricultural University, Changchun 130118, China; (D.L.); (H.W.); (F.L.); (M.L.); (Z.W.); (M.L.); (Z.W.)
| | - Liangyu Jiang
- College of Agriculture, Jilin Agricultural University, Changchun 130118, China; (D.L.); (H.W.); (F.L.); (M.L.); (Z.W.); (M.L.); (Z.W.)
| |
Collapse
|
3
|
Xu T, Wei H, Yang P, Zhou X, Ma D, Luo C, Chen Y, Zhang J. Genome-wide identification of CML gene family in Salix matsudana and functional verification of SmCML56 in tolerance to salts tress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109600. [PMID: 39922020 DOI: 10.1016/j.plaphy.2025.109600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Calmodulin-like protein (CML) mediates Ca2+ signaling in response to abiotic stress. It has been shown that manipulating this signaling can improve crop stress resistance. However, the CML family in Willow has not been comprehensively and deeply studied. In this study, 157 SmCML genes were identified on the whole genome of Salix matsudana using bioinformatics method. Phylogenetic analysis showed that CML homologs between S. matsudana and Arabidopsis thaliana shared close relationships. The identified SmCML genes were distributed on 41 chromosomes. Analysis of cis-acting elements indicated that SmCMLs play an important role in plant hormone signal transduction and environmental stress response. SmCML56 gene was successfully cloned from S. matsudana and overexpressed in A. thaliana was constructed by flower dip method, and overexpressed in willow was constructed by Agrobacterium rhizogenes K599 mediated genetic transformation of willow hairy roots. Phenotypic, physiological and biochemical analysis confirmed that overexpression of SmCML56 significantly increased the tolerance of plants to salt. At the same time, VIGS experiment showed that the tolerance of silenced plants to salt stress decreased. The results of this study increased the understanding and characterization of SmCML genes in willow and will be a rich resource for further studies to investigate SmCML protein function in various developmental processes of willow. It provided a reference for related calmodulin-like studies in other perennial species.
Collapse
Affiliation(s)
- Tiantian Xu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Peijian Yang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Xiaoxi Zhou
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Duojin Ma
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Chunying Luo
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| |
Collapse
|
4
|
Zhang D, Du L, Lin J, Wang L, Zheng P, Deng B, Zhang W, Su W, Liu Y, Lu Y, Qin Y, Wang X. Genome-wide identification and expression analysis of calmodulin and calmodulin-like genes in passion fruit (Passiflora edulis) and their involvement in flower and fruit development. BMC PLANT BIOLOGY 2024; 24:626. [PMID: 38961401 PMCID: PMC11220982 DOI: 10.1186/s12870-024-05295-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND The calmodulin (CaM) and calmodulin-like (CML) proteins play regulatory roles in plant growth and development, responses to biotic and abiotic stresses, and other biological processes. As a popular fruit and ornamental crop, it is important to explore the regulatory mechanism of flower and fruit development of passion fruit. RESULTS In this study, 32 PeCaM/PeCML genes were identified from passion fruit genome and were divided into 9 groups based on phylogenetic analysis. The structural analysis, including conserved motifs, gene structure and homologous modeling, illustrates that the PeCaM/PeCML in the same subgroup have relative conserved structural features. Collinearity analysis suggested that the expansion of the CaM/CML gene family likely took place mainly by segmental duplication, and the whole genome replication events were closely related with the rapid expansion of the gene group. PeCaM/PeCMLs were potentially required for different floral tissues development. Significantly, PeCML26 had extremely high expression levels during ovule and fruit development compared with other PeCML genes, suggesting that PeCML26 had potential functions involved in the development of passion fruit flowers and fruits. The co-presence of various cis-elements associated with growth and development, hormone responsiveness, and stress responsiveness in the promoter regions of these PeCaM/PeCMLs might contribute to their diverse regulatory roles. Furthermore, PeCaM/PeCMLs were also induced by various abiotic stresses. This work provides a comprehensive understanding of the CaM/CML gene family and valuable clues for future studies on the function and evolution of CaM/CML genes in passion fruit. CONCLUSION A total of 32 PeCaM/PeCML genes were divided into 9 groups. The PeCaM/PeCML genes showed differential expression patterns in floral tissues at different development stages. It is worth noting that PeCML26, which is highly homologous to AtCaM2, not only interacts with multiple BBR-BPC TFs, but also has high expression levels during ovule and fruit development, suggesting that PeCML26 had potential functions involved in the development of passion fruit flowers and fruits. This research lays the foundation for future investigations and validation of the potential function of PeCaM/PeCML genes in the growth and development of passion fruit.
Collapse
Affiliation(s)
- Dan Zhang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, 530007, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lumiao Du
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, 530007, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinting Lin
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lulu Wang
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ping Zheng
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Biao Deng
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, 530007, China
| | - Wenbin Zhang
- Fine Variety Breeding Farm in Xinluo District, Longyan, 364000, China
| | - Weiqiang Su
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, 530007, China
| | - Yanhui Liu
- College of Life Sciences, Longyan University, Longyan, 364000, China
| | - Yuming Lu
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, 530007, China
| | - Yuan Qin
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, 530007, China.
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
5
|
Yang M, Zhou B, Song Z, Tan Z, Liu R, Luo Y, Guo Z, Lu S. A calmodulin-like protein PvCML9 negatively regulates salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108642. [PMID: 38643538 DOI: 10.1016/j.plaphy.2024.108642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Calmodulin-like proteins (CMLs) are unique Ca2+ sensors and play crucial roles in response to abiotic stress in plants. A salt-repressed PvCML9 from halophyte seashore paspalum (Paspalum vaginatum O. Swartz) was identified. PvCML9 was localized in the cytoplasm and nucleus and highly expressed in roots and stems. Overexpression of PvCML9 led to reduced salt tolerance in rice and seashore paspalum, whereas downregulating expression of PvCML9 showed increased salt tolerance in seashore paspalum as compared with the wild type (WT), indicating that PvCML9 regulated salt tolerance negatively. Na+ and K+ homeostasis was altered by PvCML9 expression. Lower level of Na+/K+ ratio in roots and shoots was maintained in PvCML9-RNAi lines compared with WT under salt stress, but higher level in overexpression lines. Moreover, higher levels of SOD and CAT activities and proline accumulation were observed in PvCML9-RNAi lines compared with WT under salt stress, but lower levels in overexpression lines, which altered ROS homeostasis. Based on the above data, mutation of its homolog gene OsCML9 in rice by CRISPR/Cas9 was performed. The mutant had enhanced salt tolerance without affecting rice growth and development, suggesting that OsCML9 gene is an ideal target gene to generate salt tolerant cultivars by genome editing in the future.
Collapse
Affiliation(s)
- Meizhen Yang
- College of Life Sciences, Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, 510642, China
| | - Biyan Zhou
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhigang Song
- College of Life Sciences, Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiyu Tan
- College of Life Sciences, Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, 510642, China
| | - Rui Liu
- College of Life Sciences, Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yurong Luo
- College of Life Sciences, Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shaoyun Lu
- College of Life Sciences, Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Guo J, Guo J, Li L, Bai X, Huo X, Shi W, Gao L, Dai K, Jing R, Hao C. Combined linkage analysis and association mapping identifies genomic regions associated with yield-related and drought-tolerance traits in wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:250. [PMID: 37982873 DOI: 10.1007/s00122-023-04494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Abstract
KEY MESSAGE Combined linkage analysis and association mapping identified genomic regions associated with yield and drought tolerance, providing information to assist breeding for high yield and drought tolerance in wheat. Wheat (Triticum aestivum L.) is one of the most widely grown food crops and provides adequate amounts of protein to support human health. Drought stress is the most important abiotic stress constraining yield during the flowering and grain development periods. Precise targeting of genomic regions underlying yield- and drought tolerance-responsive traits would assist in breeding programs. In this study, two water treatments (well-watered, WW, and rain-fed water stress, WS) were applied, and five yield-related agronomic traits (plant height, PH; spike length, SL; spikelet number per spike, SNPS; kernel number per spike, KNPS; thousand kernel weight, TKW) and drought response values (DRVs) were used to characterize the drought sensitivity of each accession. Association mapping was performed on an association panel of 304 accessions, and linkage analysis was applied to a doubled haploid (DH) population of 152 lines. Eleven co-localized genomic regions associated with yield traits and DRV were identified in both populations. Many previously cloned key genes were located in these regions. In particular, a TKW-associated region on chromosome 2D was identified using both association mapping and linkage analysis and a key candidate gene, TraesCS2D02G142500, was detected based on gene annotation and differences in expression levels. Exonic SNPs were analyzed by sequencing the full length of TraesCS2D02G142500 in the association panel, and a rare haplotype, Hap-2, which reduced TKW to a lesser extent than Hap-1 under drought stress, and the Hap-2 varieties presented drought-insensitive. Altogether, this study provides fundamental insights into molecular targets for high yield and drought tolerance in wheat.
Collapse
Affiliation(s)
- Jie Guo
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Jiahui Guo
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
- College of Agronomy, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Long Li
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xionghui Bai
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Xiaoyu Huo
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Weiping Shi
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Lifeng Gao
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Keli Dai
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China.
| | - Ruilian Jing
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chenyang Hao
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China.
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
7
|
Aleynova OA, Kiselev KV, Suprun AR, Ananev AA, Dubrovina AS. Involvement of the Calmodulin-like Protein Gene VaCML92 in Grapevine Abiotic Stress Response and Stilbene Production. Int J Mol Sci 2023; 24:15827. [PMID: 37958810 PMCID: PMC10649675 DOI: 10.3390/ijms242115827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Calmodulin-like proteins (CMLs) are an important family of plant calcium sensor proteins that sense and decode changes in the intracellular calcium concentration in response to environmental and developmental stimuli. Nonetheless, the specific functions of individual CML family members remain largely unknown. This study aims to explore the role of the Vitis amurensis VaCML92 gene in the development of its high stress resistance and the production of stilbenes. The expression of VaCML92 was sharply induced in V. amurensis cuttings after cold stress. The VaCML92 gene was cloned and its role in the abiotic stress responses and stilbene production in grapevine was further investigated. The VaCML92-overexpressing callus cell cultures of V. amurensis and soil-grown plants of Arabidopsis thaliana exhibited enhanced tolerance to cold stress and, to a lesser extent, to the drought, while their tolerance to heat stress and high salinity was not affected. In addition, the overexpression of VaCML92 increased stilbene production in the V. amurensis cell cultures by 7.8-8.7-fold. Taken together, the data indicate that the VaCML92 gene is involved as a strong positive regulator in the rapid response to cold stress, the induction of cold stress resistance and in stilbene production in wild grapevine.
Collapse
Affiliation(s)
| | | | | | | | - Alexandra S. Dubrovina
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia (K.V.K.)
| |
Collapse
|
8
|
Wang L, Liu Z, Han S, Liu P, Sadeghnezhad E, Liu M. Growth or survival: What is the role of calmodulin-like proteins in plant? Int J Biol Macromol 2023; 242:124733. [PMID: 37148925 DOI: 10.1016/j.ijbiomac.2023.124733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
Calcium signalling, including pulse, amplitude, and duration, is essential for plant development and response to various stimuli. However, the calcium signalling should be decoded and translated by calcium sensors. In plants, three classes of calcium-binding proteins have been identified as calcium sensors, including calcium-dependent protein kinase (CDPK), calcineurin B-like protein (CBL), and calmodulin (CaM). Calmodulin-like proteins (CMLs), which have several EF-hands, also serve as specific calcium sensors and can sense, bind, and interpret the calcium signal during the plant's growth and defense decision-making processes. In recent decades, the function of CMLs in plant development and response to various stimuli has been systematically reviewed, shedding light on the molecular mechanism of plant CML-mediated networks in calcium signal transduction. Here, by providing an overview of CML expression and biological function in plants, we demonstrate that growth-defense trade-offs occur during calcium sensing, an aspect that has not been well studied in recent years.
Collapse
Affiliation(s)
- Lixin Wang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Zhiguo Liu
- College of Horticulture, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Shoukun Han
- College of Horticulture, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Ping Liu
- College of Horticulture, Hebei Agricultural University, Baoding 071001, Hebei, China.
| | - Ehsan Sadeghnezhad
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding 071001, Hebei, China.
| |
Collapse
|
9
|
Rezayian M, Zarinkamar F. Nitric oxide, calmodulin and calcium protein kinase interactions in the response of Brassica napus to salinity stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:411-419. [PMID: 36779525 DOI: 10.1111/plb.13511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Involvement of nitric oxide (NO) in plant metabolism and its connection with phytohormones has not been fully described, thus information about the role of this molecule in signalling pathways remains fragmented. In this study, the effects of NO on calmodulin (CAM), calcium protein kinase (CPK), content of phytohormones and secondary metabolites in canola plants under salinity stress were investigated. We applied 100 μM sodium nitroprusside as an NO source to canola plants grown under saline (100 mM NaCl) and non-saline conditions at the vegetative stage. Plant growth was negatively affected by salinity, but exogenous NO treatment improved growth. NO caused a significant increase in activity of CAT, SOD and POX through their enhanced gene expression in stressed canola. Salinity-responsive genes, namely CAM and CPK, were induced by NO in plants grown under salinity. NO application enhanced phenolic compounds, such as gallic acid and coumaric acid and flavonoid compound,s catechin, diadzein and kaempferol, in plants subjected to salinity. NO treatment enhanced abscisic acid and brassinosteroids but decreased auxin and gibberellin in stressed canola plants. The impacts of NO in improving stress tolerance in canola required CAM and CPK. Also, NO signalling re-established the phytohormone balance and resulted in enhanced tolerance to salt stress. Furthermore, NO improved salinity tolerance in canola by increasing enzymatic and non-enzymatic antioxidant content.
Collapse
Affiliation(s)
- M Rezayian
- Department of Plant Biology, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| | - F Zarinkamar
- Department of Plant Biology, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Calcium decoders and their targets: The holy alliance that regulate cellular responses in stress signaling. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:371-439. [PMID: 36858741 DOI: 10.1016/bs.apcsb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Calcium (Ca2+) signaling is versatile communication network in the cell. Stimuli perceived by cells are transposed through Ca2+-signature, and are decoded by plethora of Ca2+ sensors present in the cell. Calmodulin, calmodulin-like proteins, Ca2+-dependent protein kinases and calcineurin B-like proteins are major classes of proteins that decode the Ca2+ signature and serve in the propagation of signals to different parts of cells by targeting downstream proteins. These decoders and their targets work together to elicit responses against diverse stress stimuli. Over a period of time, significant attempts have been made to characterize as well as summarize elements of this signaling machinery. We begin with a structural overview and amalgamate the newly identified Ca2+ sensor protein in plants. Their ability to bind Ca2+, undergo conformational changes, and how it facilitates binding to a wide variety of targets is further embedded. Subsequently, we summarize the recent progress made on the functional characterization of Ca2+ sensing machinery and in particular their target proteins in stress signaling. We have focused on the physiological role of Ca2+, the Ca2+ sensing machinery, and the mode of regulation on their target proteins during plant stress adaptation. Additionally, we also discuss the role of these decoders and their mode of regulation on the target proteins during abiotic, hormone signaling and biotic stress responses in plants. Finally, here, we have enumerated the limitations and challenges in the Ca2+ signaling. This article will greatly enable in understanding the current picture of plant response and adaptation during diverse stimuli through the lens of Ca2+ signaling.
Collapse
|
11
|
Liu Y, Chen W, Liu L, Su Y, Li Y, Jia W, Jiao B, Wang J, Yang F, Dong F, Chai J, Zhao H, Lv M, Li Y, Zhou S. Genome-wide identification and expression analysis of calmodulin and calmodulin-like genes in wheat ( Triticum aestivum L.). PLANT SIGNALING & BEHAVIOR 2022; 17:2013646. [PMID: 35034573 PMCID: PMC8959510 DOI: 10.1080/15592324.2021.2013646] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 05/25/2023]
Abstract
Calmodulin (CaM) and calmodulin-like (CML) genes are widely involved in plant growth and development and mediating plant stress tolerance. However, the whole genome scale studies about CaM and CML gene families have not been done in wheat, and the possible functions of most wheat CaM/CML gene members are still unknown. In this study, a total of 18 TaCaM and 230 TaCML gene members were identified in wheat genome. Among these genes, 28 TaCaM/CML gene members have 74 duplicated copies, while 21 genes have 48 transcript variants, resulting in 321 putative TaCaM/CML transcripts totally. Phylogenetic tree analysis showed that they can be classified into 7 subfamilies. Similar gene structures and protein domains can be found in members of the same gene cluster. The TaCaM/CML genes were spread among all 21 chromosomes with unbalanced distributions, while most of the gene clusters contained 3 homoeologous genes located in the same homoeologous chromosome group. Synteny analysis showed that most of TaCaM/CMLs gene members can be found with 1-4 paralogous genes in T. turgidum and Ae. Tauschii. High numbers of cis-acting elements related to plant hormones and stress responses can be observed in the promoters of TaCaM/CMLs. The spatiotemporal expression patterns showed that most of the TaCaM/TaCML genes can be detected in at least one tissue. The expression levels of TaCML17, 21, 30, 50, 59 and 75 in the root or shoot can be up-regulated by abiotic stresses, suggesting that TaCML17, 21, 30, 50, 59 and 75 may be related with responses to abiotic stresses in wheat. The spatiotemporal expression patterns of TaCaM/CML genes indicated they may be involved widely in wheat growth and development. Our results provide important clues for exploring functions of TaCaMs/CMLs in growth and development as well as responses to abiotic stresses in wheat in the future.
Collapse
Affiliation(s)
- Yongwei Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Wenye Chen
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | | | - Yuhuan Su
- Handan Academy of Agricultural Sciences, Handan, China
| | - Yuan Li
- Hebei Seed Station, Shijiazhuang, China
| | - Weizhe Jia
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Bo Jiao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Jiao Wang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Fan Yang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Fushuang Dong
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Jianfang Chai
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - He Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Mengyu Lv
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Yanyi Li
- NCPC GeneTech Biotechnology Co. Ltd, Shijiazhuang, China
| | - Shuo Zhou
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| |
Collapse
|
12
|
Aleynova OA, Suprun AR, Ananev AA, Nityagovsky NN, Ogneva ZV, Dubrovina AS, Kiselev KV. Effect of Calmodulin-like Gene (CML) Overexpression on Stilbene Biosynthesis in Cell Cultures of Vitis amurensis Rupr. PLANTS 2022; 11:plants11020171. [PMID: 35050059 PMCID: PMC8778512 DOI: 10.3390/plants11020171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 12/23/2022]
Abstract
Stilbenes are plant phenolics known to rapidly accumulate in grapevine and other plants in response to injury or pathogen attack and to exhibit a great variety of healing beneficial effects. It has previously been shown that several calmodulin-like protein (CML) genes were highly up-regulated in cell cultures of wild-growing grapevine Vitis amurensis Rupr. in response to stilbene-modulating conditions, such as stress hormones, UV-C, and stilbene precursors. Both CML functions and stilbene biosynthesis regulation are still poorly understood. In this study, we investigated the effect of overexpression of five VaCML genes on stilbene and biomass accumulation in the transformed cell cultures of V. amurensis. We obtained 16 transgenic cell lines transformed with the VaCML52, VaCML65, VaCML86, VaCML93, and VaCML95 genes (3–4 independent lines per gene) under the control of the double CaMV 35S promoter. HPLC-MS analysis showed that overexpression of the VaCML65 led to a considerable and consistent increase in the content of stilbenes of 3.8–23.7 times in all transformed lines in comparison with the control calli, while biomass accumulation was not affected. Transformation of the V. amurensis cells with other analyzed VaCML genes did not lead to a consistent and considerable effect on stilbene biosynthesis in the cell lines. The results indicate that the VaCML65 gene is implicated in the signaling pathway regulating stilbene biosynthesis as a strong positive regulator and can be useful in viticulture and winemaking for obtaining grape cultivars with a high content of stilbenes and stress resistance.
Collapse
Affiliation(s)
- Olga A. Aleynova
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (A.R.S.); (A.A.A.); (N.N.N.); (Z.V.O.); (A.S.D.)
| | - Andrey R. Suprun
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (A.R.S.); (A.A.A.); (N.N.N.); (Z.V.O.); (A.S.D.)
| | - Alexey A. Ananev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (A.R.S.); (A.A.A.); (N.N.N.); (Z.V.O.); (A.S.D.)
- Department of Biochemistry and Biotechnology, Institute of the World Ocean, Far Eastern Federal University, 690090 Vladivostok, Russia
| | - Nikolay N. Nityagovsky
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (A.R.S.); (A.A.A.); (N.N.N.); (Z.V.O.); (A.S.D.)
| | - Zlata V. Ogneva
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (A.R.S.); (A.A.A.); (N.N.N.); (Z.V.O.); (A.S.D.)
| | - Alexandra S. Dubrovina
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (A.R.S.); (A.A.A.); (N.N.N.); (Z.V.O.); (A.S.D.)
| | - Konstantin V. Kiselev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (A.R.S.); (A.A.A.); (N.N.N.); (Z.V.O.); (A.S.D.)
- Correspondence: ; Tel.: +8-423-2310410; Fax: +8-4232-310193
| |
Collapse
|
13
|
Cai K, Kuang L, Yue W, Xie S, Xia X, Zhang G, Wang J. Calmodulin and calmodulin-like gene family in barley: Identification, characterization and expression analyses. FRONTIERS IN PLANT SCIENCE 2022; 13:964888. [PMID: 36061813 PMCID: PMC9439640 DOI: 10.3389/fpls.2022.964888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/29/2022] [Indexed: 05/11/2023]
Abstract
Calmodulin (CaM) and calmodulin-like (CML) proteins are Ca2+ relays and play diverse and multiple roles in plant growth, development and stress responses. However, CaM/CML gene family has not been identified in barley (Hordeum vulgare). In the present study, 5 HvCaMs and 80 HvCMLs were identified through a genome-wide analysis. All HvCaM proteins possessed 4 EF-hand motifs, whereas HvCMLs contained 1 to 4 EF-hand motifs. HvCaM2, HvCaM3 and HvCaM5 coded the same polypeptide although they differed in nucleotide sequence, which was identical to the polypeptides coded by OsCaM1-1, OsCaM1-2 and OsCaM1-3. HvCaMs/CMLs were unevenly distributed over barley 7 chromosomes, and could be phylogenetically classified into 8 groups. HvCaMs/CMLs differed in gene structure, cis-acting elements and tissue expression patterns. Segmental and tandem duplication were observed among HvCaMs/CMLs during evolution. HvCML16, HvCML18, HvCML50 and HvCML78 were dispensable genes and the others were core genes in barley pan-genome. In addition, 14 HvCaM/CML genes were selected to examine their responses to salt, osmotic and low potassium stresses by qRT-PCR, and their expression were stress-and time-dependent. These results facilitate our understanding and further functional identification of HvCaMs/CMLs.
Collapse
Affiliation(s)
- Kangfeng Cai
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Centre, Hangzhou, China
| | - Liuhui Kuang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Wenhao Yue
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Centre, Hangzhou, China
| | - Shanggeng Xie
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Xue Xia
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guoping Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Junmei Wang
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Centre, Hangzhou, China
- *Correspondence: Junmei Wang,
| |
Collapse
|
14
|
Abstract
Drought is a severe environmental constraint, which significantly affects plant growth, productivity, and quality. Plants have developed specific mechanisms that perceive the stress signals and respond to external environmental changes via different mitigation strategies. Abscisic acid (ABA), being one of the phytohormones, serves as an important signaling mediator for plants’ adaptive response to a variety of environmental stresses. ABA triggers many physiological processes, including bud dormancy, seed germination, stomatal closure, and transcriptional and post-transcriptional regulation of stress-responsive gene expression. The site of its biosynthesis and action must be clarified to understand the signaling network of ABA. Various studies have documented multiple sites for ABA biosynthesis, their transporter proteins in the plasma membrane, and several components of ABA-dependent signaling pathways, suggesting that the ABA response to external stresses is a complex networking mechanism. Knowing about stress signals and responses will increase our ability to enhance crop stress tolerance through the use of various advanced techniques. This review will elaborate on the ABA biosynthesis, transportation, and signaling pathways at the molecular level in response to drought stress, which will add a new insight for future studies.
Collapse
|
15
|
Aliniaeifard S, Shomali A, Seifikalhor M, Lastochkina O. Calcium Signaling in Plants Under Drought. SALT AND DROUGHT STRESS TOLERANCE IN PLANTS 2020:259-298. [DOI: 10.1007/978-3-030-40277-8_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
|
16
|
The Effect of Abiotic Stress Conditions on Expression of Calmodulin ( CaM) and Calmodulin-Like ( CML) Genes in Wild-Growing Grapevine Vitis amurensis. PLANTS 2019; 8:plants8120602. [PMID: 31847201 PMCID: PMC6963546 DOI: 10.3390/plants8120602] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 12/22/2022]
Abstract
Plant calmodulins (CaMs) and calmodulin-like proteins (CMLs) are important plant Ca2+-binding proteins that sense and decode changes in the intracellular Ca2+ concentration arising in response to environmental stimuli. Protein Ca2+ sensors are presented by complex gene families in plants and perform diverse biological functions. In this study, we cloned, sequenced, and characterized three CaM and 54 CML mRNA transcripts of Vitis amurensis Rupr., a wild-growing grapevine with a remarkable stress tolerance. Using real-time quantitative RT-PCR, we analyzed transcript abundance of the identified VaCaMs and VaCMLs in response to water deficit, high salinity, high mannitol, cold and heat stresses. Expression of VaCaMs and 32 VaCMLs actively responded to the abiotic stresses and exhibited both positive and negative regulation patterns. Other VaCML members showed slight transcriptional regulation, remained essentially unresponsive or responded only after one time interval of the treatments. The substantial alterations in the VaCaM and VaCML transcript levels revealed their involvement in the adaptation of wild-growing grapevine to environmental stresses.
Collapse
|