1
|
Landi S, Vitale E, Lanzilli M, Arena C, D'Ippolito G, Fontana A, Esposito S. Lack of Arabidopsis chloroplastic glucose-6-phosphate dehydrogenase 1 (G6PD1) affects lipid synthesis during cold stress response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112260. [PMID: 39277046 DOI: 10.1016/j.plantsci.2024.112260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Cold stress represents one of the major constraints for agricultural systems and crops productivity, inducing a wide range of negative effects. Particularly, long-term cold stress affects lipid metabolism, modifying the lipids/proteins ratio, the levels of phospholipids and glycolipids, and increasing lipids' unsaturation in bio-membranes. Glucose-6-phosphate dehydrogenase (G6PDH) reported prominent roles as NADPH suppliers in response to oxidative perturbations. Cytosolic G6PDH was suggested as the main isoform involved in cold stress response, while a down-regulation of the chloroplastic P1-G6PDH was observed. We thus investigated an Arabidopsis mutant defective for the P1-G6PDH (KO-P1) using integrated approaches to verify a possible role of this isoform in low temperature tolerance. KO-P1 genotype showed an improved tolerance to cold stress, highlighting a better photosynthetic efficiency, a reduction in stress markers content and a different regulation of genes involved in stress response. Intriguingly, the lack of P1-G6PDH induced modification in the levels of the main fatty acid and lipid species affecting the morphology of chloroplasts and mitochondria, which was restored under cold. Globally, these results indicate a priming effect induced by the absence of P1-G6PDH able to improve the tolerance to abiotic stress. Our results suggest novel and specific abilities of P1-G6PDH, highlighting its central role in different aspects of plant physiology and metabolism.
Collapse
Affiliation(s)
- Simone Landi
- Università̀ di Napoli ''Federico II'', Dipartimento di Biologia, Via Cinthia, Napoli I-80126, Italy
| | - Ermenegilda Vitale
- Università̀ di Napoli ''Federico II'', Dipartimento di Biologia, Via Cinthia, Napoli I-80126, Italy
| | - Mariamichela Lanzilli
- Institute of Biomolecular Chemistry (ICB), CNR, Via Campi Flegrei 34, Pozzuoli, Napoli 80078, Italy
| | - Carmen Arena
- Università̀ di Napoli ''Federico II'', Dipartimento di Biologia, Via Cinthia, Napoli I-80126, Italy
| | - Giuliana D'Ippolito
- Institute of Biomolecular Chemistry (ICB), CNR, Via Campi Flegrei 34, Pozzuoli, Napoli 80078, Italy
| | - Angelo Fontana
- Università̀ di Napoli ''Federico II'', Dipartimento di Biologia, Via Cinthia, Napoli I-80126, Italy; Institute of Biomolecular Chemistry (ICB), CNR, Via Campi Flegrei 34, Pozzuoli, Napoli 80078, Italy
| | - Sergio Esposito
- Università̀ di Napoli ''Federico II'', Dipartimento di Biologia, Via Cinthia, Napoli I-80126, Italy.
| |
Collapse
|
2
|
Wei H, Wang Z, Wang J, Mao X, He W, Hu W, Tang M, Chen H. Mycorrhizal and non-mycorrhizal perennial ryegrass roots exhibit differential regulation of lipid and Ca 2+ signaling pathways in response to low and high temperature stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109099. [PMID: 39260265 DOI: 10.1016/j.plaphy.2024.109099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Lipids and Ca2+ are involved as intermediate messengers in temperature-sensing signaling pathways. Arbuscular mycorrhizal (AM) symbiosis is a mutualistic symbiosis between fungi and terrestrial plants that helps host plants cope with adverse environmental conditions. Nonetheless, the regulatory mechanisms of lipid- and Ca2+-mediated signaling pathways in mycorrhizal plants under cold and heat stress have not been determined. The present work focused on investigating the lipid- and Ca2+-mediated signaling pathways in arbuscular mycorrhizal (AM) and non-mycorrhizal (NM) roots under temperature stress and determining the role of Ca2+ levels in AM symbiosis and temperature stress tolerance in perennial ryegrass (Lolium perenne L.) Compared with NM plants, AM symbiosis increased phosphatidic acid (PA) and Ca2+ signaling in the roots of perennial ryegrass, increasing the expression of genes associated with low temperature (LT) stress, including LpICE1, LpCBF3, LpCOR27, LpCOR47, LpIRI, and LpAFP, and high temperature (HT) stress, including LpHSFC1b, LpHSFC2b, LpsHSP17.8, LpHSP22, LpHSP70, and LpHSP90, under LT and HT conditions. These effects result in modulated antioxidant enzyme activities, reduced lipid peroxidation, and suppressed growth inhibition caused by LT and HT stresses. Furthermore, exogenous Ca2+ application enhanced AM symbiosis, leading to the upregulation of Ca2+ signaling pathway genes in roots and ultimately promoting the growth of perennial ryegrass under LT and HT stresses. These findings shed light on lipid and Ca2+ signal transduction in AM-associated plants under LT and HT stresses, emphasizing that Ca2+ enhances cold and heat tolerance in mycorrhizal plants.
Collapse
Affiliation(s)
- Hongjian Wei
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhihao Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiajin Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xinjie Mao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenyuan He
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Wu J, Nadeem M, Galagedara L, Thomas R, Cheema M. Effects of Chilling Stress on Morphological, Physiological, and Biochemical Attributes of Silage Corn Genotypes during Seedling Establishment. PLANTS (BASEL, SWITZERLAND) 2022; 11:1217. [PMID: 35567218 PMCID: PMC9101286 DOI: 10.3390/plants11091217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/24/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Chilling stress is one of the major abiotic stresses which hinder seedling emergence and growth. Herein, we investigated the effects of chilling/low temperature stress on the morphological, physiological, and biochemical attributes of two silage corn genotypes during the seedling establishment phase. The experiment was conducted in a growth chamber, and silage corn seedlings of Yukon-R and A4177G-RIB were grown at optimum temperature up to V3 stage and then subjected to five temperature regimes (25 °C as control, 20 °C, 15 °C, 10 °C, and 5 °C) for 5 days. After the temperature treatment, the morphological, physiological, and biochemical parameters were recorded. Results indicated that temperatures of 15 °C and lower significantly affected seedling growth, photosynthesis system, reactive oxygen species (ROS) accumulation, and antioxidant enzyme activities. Changes in seedlings’ growth parameters were in the order of 25 °C > 20 °C > 15 °C > 10 °C > 5 °C, irrespective of genotypes. The chlorophyll content, photosynthetic rate, and maximal photochemical efficiency of PS-II (Fv/Fm) were drastically decreased under chilling conditions. Moreover, chilling stress induced accumulation of hydrogen peroxide (H2O2)and malonaldehyde (MDA) contents. Increased proline content and enzymatic antioxidants, including superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxide (APX), were found to alleviate oxidative damage under chilling stress. However, the genotype of Yukon-R exhibited better adaption to chilling stress than A4177G3-RIB. Yukon-R showed significantly higher proline content and enzymatic antioxidant activities than A4177G3-RIB under severe chilling conditions (temperature ≤ 10 °C). Similarly, Yukon-R expressed low temperature-induced ROS accumulation. Furthermore, the interaction effects were found between temperature treatment and genotype on the ROS accumulation, proline content and antioxidant enzyme activities. In summary, the present study indicated that Yukon-R has shown better adaptation and resilience against chilling temperature stress, and therefore could be considered a potential candidate genotype to be grown in the boreal climate.
Collapse
Affiliation(s)
- Jiaxu Wu
- Correspondence: (J.W.); (M.N.); (M.C.)
| | | | | | | | | |
Collapse
|
4
|
Zaeem M, Nadeem M, Pham TH, Ashiq W, Ali W, Gillani SSM, Moise E, Elavarthi S, Kavanagh V, Cheema M, Galagedara L, Thomas R. Corn-Soybean Intercropping Improved the Nutritional Quality of Forage Cultivated on Podzols in Boreal Climate. PLANTS 2021; 10:plants10051015. [PMID: 34069729 PMCID: PMC8161002 DOI: 10.3390/plants10051015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022]
Abstract
Intercropping systems could be a potential source of nutrient-rich forage production in cool climates on podzolic soils common in boreal ecosystems. In this study, we evaluated the effects of corn-soybean intercropping (IC) on the nutritional quality of forage. Two silage corn varieties were cultivated as monocropping (MC) or were intercropped with three forage soybean varieties using a randomized complete block design. IC significantly increased the crude protein (22%) and decreased the acid detergent (14%) and neutral detergent (6%) fibers. Forage net energy, total digestible nutrients, ash, dry matter intake, digestible dry matter and relative feed value were also significantly increased (p ≤ 0.05) in the IC treatments compared to corn MC. The macro and micro nutrients were higher in IC than corn MC. Intercropping increased the omega 3 fatty acid (FA) contents (67%) compared to corn MC. IC also increased the active microbial community in the plant root zone, which may contribute to the improvement in forage nutritional quality because the active soil microbial community composition showed significant correlations with soluble sugars, soluble proteins and potassium contents of the forage. These results demonstrate that corn-soybean IC could be a suitable cropping system to increase the nutritional quality of forage cultivated on podzols in boreal climates. The resultant forage has the potential to be a source of high-value animal feed for livestock production in cool climate regions of the world.
Collapse
Affiliation(s)
- Muhammad Zaeem
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada; (T.H.P.); (W.A.); (W.A.); (S.S.M.G.); (M.C.); (L.G.)
- Department of Fisheries, Forestry and Agriculture, Government of Newfoundland and Labrador, St. John’s, NL A2H 7E1, Canada
- Correspondence: (M.Z.); (M.N.); (R.T.)
| | - Muhammad Nadeem
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada; (T.H.P.); (W.A.); (W.A.); (S.S.M.G.); (M.C.); (L.G.)
- Correspondence: (M.Z.); (M.N.); (R.T.)
| | - Thu Huong Pham
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada; (T.H.P.); (W.A.); (W.A.); (S.S.M.G.); (M.C.); (L.G.)
| | - Waqar Ashiq
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada; (T.H.P.); (W.A.); (W.A.); (S.S.M.G.); (M.C.); (L.G.)
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Waqas Ali
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada; (T.H.P.); (W.A.); (W.A.); (S.S.M.G.); (M.C.); (L.G.)
| | - Syed Shah Mohioudin Gillani
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada; (T.H.P.); (W.A.); (W.A.); (S.S.M.G.); (M.C.); (L.G.)
| | - Eric Moise
- Atlantic Forestry Centre, 26 University Drive, Corner Brook, NL A2H 6J3, Canada;
| | - Sathya Elavarthi
- Department of Agriculture and Natural Resources Delaware State University, 1200 N Dupont Hwy, Dover, DE 19901, USA;
| | - Vanessa Kavanagh
- Department of Fisheries, Land Resources, Government of Newfoundland and Labrador, St. John’s, NL A0L 1K0, Canada;
| | - Mumtaz Cheema
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada; (T.H.P.); (W.A.); (W.A.); (S.S.M.G.); (M.C.); (L.G.)
| | - Lakshman Galagedara
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada; (T.H.P.); (W.A.); (W.A.); (S.S.M.G.); (M.C.); (L.G.)
| | - Raymond Thomas
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada; (T.H.P.); (W.A.); (W.A.); (S.S.M.G.); (M.C.); (L.G.)
- Correspondence: (M.Z.); (M.N.); (R.T.)
| |
Collapse
|
5
|
Adigun OA, Nadeem M, Pham TH, Jewell LE, Cheema M, Thomas R. Recent advances in bio-chemical, molecular and physiological aspects of membrane lipid derivatives in plant pathology. PLANT, CELL & ENVIRONMENT 2021; 44:1-16. [PMID: 33034375 DOI: 10.1111/pce.13904] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Plant pathogens pose a significant threat to the food industry and food security accounting for 10-40% crop losses annually on a global scale. Economic losses from plant diseases are estimated at $300B for major food crops and are associated with reduced food availability and accessibility and also high food costs. Although strategies exist to reduce the impact of diseases in plants, many of these introduce harmful chemicals to our food chain. Therefore, it is important to understand and utilize plants' immune systems to control plant pathogens to enable more sustainable agriculture. Lipids are core components of cell membranes and as such are part of the first line of defense against pathogen attack. Recent developments in omics technologies have advanced our understanding of how plant membrane lipid biosynthesis, remodelling and/or signalling modulate plant responses to infection. Currently, there is limited information available in the scientific literature concerning lipid signalling targets and their biochemical and physiological consequences in response to plant pathogens. This review focusses on the functions of membrane lipid derivatives and their involvement in plant responses to pathogens as biotic stressors. We describe major plant defense systems including systemic-acquired resistance, basal resistance, hypersensitivity and the gene-for-gene concept in this context.
Collapse
Affiliation(s)
- Oludoyin Adeseun Adigun
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Muhammad Nadeem
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Thu Huong Pham
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Linda Elizabeth Jewell
- St. John's Research and Development Centre, Agriculture and Agri-Food Canada, 204 Brookfield Rd, St. John's, Newfoundland and Labrador, A1E 6J5, Canada
| | - Mumtaz Cheema
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Raymond Thomas
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| |
Collapse
|
6
|
Nadeem M, Thomas R, Adigun O, Manful C, Wu J, Pham TH, Zhu X, Galagedara L, Cheema M. Root membrane lipids as potential biomarkers to discriminate silage-corn genotypes cultivated on podzolic soils in boreal climate. PHYSIOLOGIA PLANTARUM 2020; 170:440-450. [PMID: 32754919 DOI: 10.1111/ppl.13181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Root membrane lipids are important biomolecules determining plant's ability to adapt to different growing environmental or climatic conditions. Herein, we demonstrate the potential use of root membrane lipids as biomarkers to discriminate silage-corn genotypes based on herbicide and insect/pest resistance genetic traits when cultivated on podzolic soils under short growing and moderately warm summer season in boreal climate. Lipids in root membranes of field grown silage-corn genotypes were previously quantified at crop maturity by ultra-high-performance liquid chromatography-hydrophilic interaction chromatography-heated electrospray ionization mass spectrometry. The lipid identified and quantified in silage-corn roots were phospholipids, glycolipids and sphingolipids. Following hierarchical cluster analysis, three groups of membrane lipids were observed to be very effective in segregating the five silage-corn genotypes. The first group consisted of hexosylceramide (HexCer), phosphatidylcholine (PC) and phosphatidylinositol (PI). The second group consisted of lysophosphatidic acid (LPA16:0) and lysophosphatidylcholine (LPC16:0), while the third group consisted of 37 molecular species from observed lipids (phospholipids, glycolipids, sphingolipids). Partial least squares-discriminant analysis (PLS-DA) based on 37 membrane lipid species, as well as principal component analysis using the variables important in projection derived from the PLS-DA segregated the five silage-corn genotypes into three groups according to their pesticide/herbicide resistant traits. This study is second to none using root lipidomics in discriminating different silage-corn genotypes based on their herbicide and insect/pest resistance genetic traits for cultivation in boreal climates. The segregated genotypes possess three different genetic traits for herbicide and insect/pest resistance including VT Double Pro (VT2P), VT Triple Pro Roundup Ready (VT3P/RR) and Roundup Ready-2 corn (RR2). These findings demonstrate that root membrane lipids could serve as appropriate chemical biosignatures to identify silage-corn genotypes based on herbicide and insect/pest resistance genetic traits suitable for cultivation in boreal climates.
Collapse
Affiliation(s)
- Muhammad Nadeem
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Raymond Thomas
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Oludoyin Adigun
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Charles Manful
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Jiaxu Wu
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Thu Huong Pham
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Xinbiao Zhu
- Natural Resources Canada, Canadian Forest Services, Atlantic Forestry Center, Corner Brook, Newfoundland, A2H 6P9, Canada
| | - Lakshman Galagedara
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Mumtaz Cheema
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| |
Collapse
|
7
|
Rajabi-Khamseh S, Danesh-Shahraki A, Rafieiolhossaini M. Stress tolerance in flax plants inoculated with Bacillus and Azotobacter species under deficit irrigation. PHYSIOLOGIA PLANTARUM 2020; 170:269-279. [PMID: 32542685 DOI: 10.1111/ppl.13154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Drought stress affects not only crop growth but also its morpho-physiological and biochemical traits to reduce crop productivity. The study reported in this article was designed and implemented to determine the effects of deficit irrigation and bacterial inoculation on flax plants. For this purpose, seeds were inoculated with Bacillus amyloliquefaciens (B1 ), Bacillus sp. Strain1 (B2 ), and Azotobacter chroococcum (A) as plant growth promoting rhizobacteria (PGPR). The individual inoculated plants were then grown under field conditions in 2015, while individually and in combination in pots in 2016. The irrigation regimes in either experiments included 50, 75 and 100% crop water requirement. Bacterial cultures were observed to produce ammonia (except B2 ), indole acetic acid and siderophores. Results showed that the PGPRs significantly mitigated the effects of water deficit. Compared with the control plants, the bacterially-inoculated plants had an enhanced relative water content, plant height, water-soluble carbohydrate and proline contents and antioxidant enzyme activities, but a decreased malondialdehyde content. B1 exhibited greater effects on most of the traits investigated under the field conditions rather than those with moderate and severe drought stress, while application of the triple bacteria in pots had greater effects on relative water content, carbohydrate and proline contents as well as malondialdehyde. The significant differences in abiotic stress indicators in PGPR-treated plants suggest that these bacteria could be used as biofertilizers to assist plant growth and to reduce the adverse effects of deficit irrigation.
Collapse
Affiliation(s)
- Sanaz Rajabi-Khamseh
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | | | | |
Collapse
|
8
|
Ali MH, Sobze JM, Pham TH, Nadeem M, Liu C, Galagedara L, Cheema M, Thomas R. Carbon Nanoparticles Functionalized with Carboxylic Acid Improved the Germination and Seedling Vigor in Upland Boreal Forest Species. NANOMATERIALS 2020; 10:nano10010176. [PMID: 31968542 PMCID: PMC7023356 DOI: 10.3390/nano10010176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/14/2019] [Accepted: 01/14/2020] [Indexed: 12/21/2022]
Abstract
Nanopriming has been shown to significantly improve seed germination and seedling vigor in several agricultural crops. However, this approach has not been applied to native upland boreal forest species with complex seed dormancy to improve propagation. Herein, we demonstrate the effectiveness of carbon nanoparticles functionalized with carboxylic acids in resolving seed dormancy and improved the propagation of two native upland boreal forest species. Seed priming with carbon nanoparticles functionalized with carboxylic acids followed by stratification were observed to be the most effective in improving germination to 90% in green alder (Alnus viridis L.) compared to 60% in the control. Conversely, a combination of carbon nanoparticles (CNPs), especially multiwall carbon nanoparticles functionalized with carboxylic acid (MWCNT–COOH), cold stratification, mechanical scarification and hormonal priming (gibberellic acid) was effective for buffaloberry seeds (Shepherdia canadensis L.). Both concentrations (20 µg and 40 µg) of MWCNT–COOH had a higher percent germination (90%) compared to all other treatments. Furthermore, we observed the improvement in germination, seedling vigor and resolution of both embryo and seed coat dormancy in upland boreal forest species appears to be associated with the remodeling of C18:3 enriched fatty acids in the following seed membrane lipid molecular species: PC18:1/18:3, PG16:1/18:3, PE18:3/18:2, and digalactosyldiacylglycerol (DGDG18:3/18:3). These findings suggest that nanopriming may be a useful approach to resolve seed dormancy issues and improve the seed germination in non-resource upland boreal forest species ideally suited for forest reclamation following resource mining.
Collapse
Affiliation(s)
- Md. Hossen Ali
- School of Science and the Environment/Boreal Ecosystem Research Facility, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G5, Canada; (M.H.A.); (T.H.P.); (C.L.); (L.G.); (M.C.)
| | - Jean-Marie Sobze
- Northern Alberta Institute of Technology, 8102-99 Avenue, Peace River, AL T8S 1R2, Canada;
| | - Thu Huong Pham
- School of Science and the Environment/Boreal Ecosystem Research Facility, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G5, Canada; (M.H.A.); (T.H.P.); (C.L.); (L.G.); (M.C.)
| | - Muhammad Nadeem
- School of Science and the Environment/Boreal Ecosystem Research Facility, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G5, Canada; (M.H.A.); (T.H.P.); (C.L.); (L.G.); (M.C.)
- Correspondence: (M.N.); (R.T.)
| | - Chen Liu
- School of Science and the Environment/Boreal Ecosystem Research Facility, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G5, Canada; (M.H.A.); (T.H.P.); (C.L.); (L.G.); (M.C.)
| | - Lakshman Galagedara
- School of Science and the Environment/Boreal Ecosystem Research Facility, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G5, Canada; (M.H.A.); (T.H.P.); (C.L.); (L.G.); (M.C.)
| | - Mumtaz Cheema
- School of Science and the Environment/Boreal Ecosystem Research Facility, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G5, Canada; (M.H.A.); (T.H.P.); (C.L.); (L.G.); (M.C.)
| | - Raymond Thomas
- School of Science and the Environment/Boreal Ecosystem Research Facility, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G5, Canada; (M.H.A.); (T.H.P.); (C.L.); (L.G.); (M.C.)
- Correspondence: (M.N.); (R.T.)
| |
Collapse
|
9
|
Forage Yield and Quality Indices of Silage-Corn Following Organic and Inorganic Phosphorus Amendments in Podzol Soil under Boreal Climate. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9090489] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dairy and livestock industry drives the economy and food security through sustainable supply of dairy products and meat across the globe. Dairy farm operations produce a large quantity of manure, which is a cheap and abundant plant nutrient source. However, insufficient forage production with low quality matrix are the current challenges of dairy industry in boreal climate due to extreme weather conditions. To address these challenges, a field experiment was conducted for three years to determine the effects of organic (dairy manure-based phosphorus (DMP)) and inorganic phosphorus (P) amendments on forage yield and quality indices of silage-corn cultivated in boreal climate. Experimental treatments were: (i) DMP with high P concentration (DMP1); (ii) DMP with low P concentration (DMP2) and (iii) inorganic P, also designated as control; and five silage-corn genotypes (Fusion-RR, Yukon-R, A4177G3-RIB, DKC23-17RIB, DKC26-28RIB). Results revealed that DMP1 amendment produced significantly higher forage yield compared to inorganic P, whereas non-significant effects were shown on quality indices except P mineral, available and crude protein. Yukon-R and DKC26-28RIB showed superior agronomic performance and produced significantly higher forage yield, whereas A4177G3-RIB produced lowest forage yield but exhibited superior nutritional quality; higher minerals, protein, total digestible nutrients, net energy for gain, net energy for maintenance and calculated milk production compared to other genotypes. Yukon-R not only produced higher forage, but also displayed good forage quality indices which were very close to A4177G3-RIB genotype. Therefore, we conclude that Yukon-R cultivation following DMP as organic amendment could be a sustainable production practice to attain high forage yield with optimum nutritional quality to meet the forage needs of growing dairy industry in boreal climate.
Collapse
|
10
|
Nadeem M, Pham TH, Nieuwenhuis A, Ali W, Zaeem M, Ashiq W, Gillani SSM, Manful C, Adigun OA, Galagedara L, Cheema M, Thomas R. Adaptation strategies of forage soybeans cultivated on acidic soils under cool climate to produce high quality forage. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:278-289. [PMID: 31128698 DOI: 10.1016/j.plantsci.2019.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
Boreal soils tend to be podzols characterized by acidic pH, which can further limit forage crop growth and production. It is unclear, how forage soybeans adopt to produce forage with high nutritional quality when cultivated on podzols in boreal climate. To answer this question, we cultivated forage soybeans on agricultural podzols at 3 farm sites with varied soil pH (6.8, 6.0 or 5.1), and assessed the root membrane lipidome remodeling response to such climatic conditions. Contrary to our expectations, significantly lower biomass was observed at pH 6.8 compared to 6.0 and 5.1. However, surprisingly the plants produced similar forage quality at 6.8 and 5.1 pH. Three major lipid classes including phospholipids, glycolipids and phytosterols were observed in roots irrespective of soil pH. Phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidic acid (PA), and acylated glucosyl betasitosterol ester (AGlcSiE) accounted for 95% of the root lipidome, and expressed significant changes in response to cultivation across the three soil pH levels. These lipids were also observed to have strong correlations with forage production, and forage quality. Therefore, soybean genotypes with higher abilities to remodel PC, PE, PA, and AGlcSiE could be better suited for producing higher quality forage in acid podzolic soils characteristics of boreal ecosystems.
Collapse
Affiliation(s)
- Muhammad Nadeem
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada; Department of Environmental Sciences, COMSATS University of Islamabad, Vehari 61100, Pakistan.
| | - Thu Huong Pham
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Ashley Nieuwenhuis
- Agriculture Production and Research, Department of Fisheries and Land Resources, Pasadena, Newfoundland, Canada
| | - Waqas Ali
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Muhammad Zaeem
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Waqar Ashiq
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Syed Shah Mohioudin Gillani
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Charles Manful
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Oludoyin Adeseun Adigun
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Lakshman Galagedara
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Mumtaz Cheema
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada.
| | - Raymond Thomas
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada.
| |
Collapse
|