1
|
Li K, Guo N, Zhang M, Du Y, Xu J, Li S, Wang J, Wang R, Liu X, Qin M, Xu Y, Zhu Y, Song J, Xu A, Huang Z. Identification of genetic loci and candidate genes regulating photosynthesis and leaf morphology through genome-wide association study in Brassica napus L. FRONTIERS IN PLANT SCIENCE 2024; 15:1467927. [PMID: 39759236 PMCID: PMC11695134 DOI: 10.3389/fpls.2024.1467927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/11/2024] [Indexed: 01/07/2025]
Abstract
Rapeseed (Brassica napus L.) is a major agricultural crop with diverse applications, particularly in the production of seed oil for both culinary use and biodiesel. However, its photosynthetic efficiency, a pivotal determinant of yield, remains relatively low compared with other C3 plants such as rice and soybean, highlighting the necessity of identifying the genetic loci and genes regulating photosynthesis in rapeseed. In this study, we investigated 5 photosynthesis traits and 5 leaf morphology traits in a natural population of rapeseed, and conducted a genome-wide association study (GWAS) to identify significantly associated loci and genes. The results showed that the gas-exchange parameters of the dark reactions in photosynthesis exhibited a significant positive correlation with the chlorophyll content, whereas they showed a weaker negative correlation with the leaf area. By GWAS, a total of 538 quantitative trait nucleotides (QTNs) were identified as significantly associated with traits related to both leaf morphology and photosynthesis. These QTNs were classified into 84 QTL clusters, of which, 21 clusters exhibited remarkable stability across different traits and environmental conditions. In addition, a total of 3,129 potential candidate genes were identified to be significantly associated with the above-mentioned 10 traits, most of which were shared by certain traits, further indicating the reliability of the findings. By integrating GWAS data with GO enrichment analysis and gene expression analysis, we further identified 8 key candidate genes that are associated with the regulation of photosynthesis, chlorophyll content, leaf area, and leaf petiole angle. Taken together, this study identified key genetic loci and candidate genes with the potential to improve photosynthetic efficiency in rapeseed. These findings provide a theoretical framework for breeding new rapeseed varieties with enhanced photosynthetic capabilities.
Collapse
Affiliation(s)
- Keqi Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Na Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- College of Life Sciences, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Miao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanyuan Du
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiali Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shimeng Li
- Agricultural Research Institute of Tibet Autonomous Region Agriculture and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Jinxiong Wang
- Agricultural Research Institute of Tibet Autonomous Region Agriculture and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Rongrong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengfan Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunlin Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jia Song
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Aixia Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhen Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Li F, Wang Y, Mostafa HHA, Wang T, Zhu S, Yuan M, Gao S, Liu T. Genome-wide association analysis identifies candidates of three bulb traits in garlic. PHYSIOLOGIA PLANTARUM 2024; 176:e14523. [PMID: 39262285 DOI: 10.1111/ppl.14523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/14/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
Garlic bulbs generally possess several swelling cloves, and the swelling degree of the bulbs determines its yield and appearance quality. However, the genetic basis underlying bulb traits remains poorly known. To address this issue, we performed a genome-wide association analysis for three bulb traits: bulb weight, diameter, and height. It resulted in the identification of 51 significant associated signals from 38 genomic regions. Twelve genes from the associated regions, whose transcript abundances in the developmental bulb showed significant correlations with the investigated traits in 81 garlic accessions, were considered the candidates of the corresponding locus. We focused on five of these candidates and their variations and revealed that the promoter variations of fructose-bisphosphate aldolase-encoding Asa8G05696.1 and beta-fructofuranosidase-encoding Asa6G01167.1 are responsible for the functional diversity of these two genes in garlic population. Interestingly, our results revealed that all candidates we focused on experienced a degree of selection during garlic evolutionary history, and different genotypes of them were retained in two China-cultivated garlic groups. Taken together, these results suggest a potential involvement of those candidates in the parallel evolution of garlic bulb organs in two China-cultivated garlic groups. This study provides important insights into the genetic basis of garlic bulb traits and their evolution.
Collapse
Affiliation(s)
- Fu Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Hassan H A Mostafa
- Central Laboratory of Organic Agriculture, Agricultural Research Center, Giza, Egypt
| | - Taotao Wang
- Shandong Dongyun Research Center of garlic Engineering, JinXiang, China
| | - Siyuan Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Meng Yuan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Song Gao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Touming Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Khan N, Choi SH, Lee CH, Qu M, Jeon JS. Photosynthesis: Genetic Strategies Adopted to Gain Higher Efficiency. Int J Mol Sci 2024; 25:8933. [PMID: 39201620 PMCID: PMC11355022 DOI: 10.3390/ijms25168933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The global challenge of feeding an ever-increasing population to maintain food security requires novel approaches to increase crop yields. Photosynthesis, the fundamental energy and material basis for plant life on Earth, is highly responsive to environmental conditions. Evaluating the operational status of the photosynthetic mechanism provides insights into plants' capacity to adapt to their surroundings. Despite immense effort, photosynthesis still falls short of its theoretical maximum efficiency, indicating significant potential for improvement. In this review, we provide background information on the various genetic aspects of photosynthesis, explain its complexity, and survey relevant genetic engineering approaches employed to improve the efficiency of photosynthesis. We discuss the latest success stories of gene-editing tools like CRISPR-Cas9 and synthetic biology in achieving precise refinements in targeted photosynthesis pathways, such as the Calvin-Benson cycle, electron transport chain, and photorespiration. We also discuss the genetic markers crucial for mitigating the impact of rapidly changing environmental conditions, such as extreme temperatures or drought, on photosynthesis and growth. This review aims to pinpoint optimization opportunities for photosynthesis, discuss recent advancements, and address the challenges in improving this critical process, fostering a globally food-secure future through sustainable food crop production.
Collapse
Affiliation(s)
- Naveed Khan
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea;
| | - Seok-Hyun Choi
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
| | - Choon-Hwan Lee
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea;
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Mingnan Qu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
| |
Collapse
|
4
|
Zhao Y, Yao Y, Li H, Han Z, Ma X. Integrated transcriptome and metabolism unravel critical roles of carbon metabolism and oxidoreductase in mushroom with Korshinsk peashrub substrates. BMC Genomics 2024; 25:763. [PMID: 39107700 PMCID: PMC11302058 DOI: 10.1186/s12864-024-10666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Edible fungi cultivation serves as an efficient biological approach to transforming agroforestry byproducts, particularly Korshinsk peashrub (KP) branches into valuable mushroom (Lentinus edodes) products. Despite the widespread use of KP, the molecular mechanisms underlying its regulation of mushroom development remain largely unknown. In this study, we conducted a combined analysis of transcriptome and metabolism of mushroom fruiting bodies cultivated on KP substrates compared to those on apple wood sawdust (AWS) substrate. Our aim was to identify key metabolic pathways and genes that respond to the effects of KP substrates on mushrooms. The results revealed that KP induced at least a 1.5-fold increase in protein and fat content relative to AWS, with 15% increase in polysaccharide and total sugar content in mushroom fruiting bodies. There are 1196 differentially expressed genes (DEGs) between mushrooms treated with KP relative to AWS. Bioinformatic analysis show significant enrichments in amino acid metabolic process, oxidase activity, malic enzyme activity and carbon metabolism among the 698 up-regulated DEGs induced by KP against AWS. Additionally, pathways associated with organic acid transport and methane metabolism were significantly enriched among the 498 down-regulated DEGs. Metabolomic analysis identified 439 differentially abundant metabolites (DAMs) in mushrooms treated with KP compared to AWS. Consistent with the transcriptome data, KEGG analysis on metabolomic dataset suggested significant enrichments in carbon metabolism, alanine, aspartate and glutamate metabolism among the up-regulated DAMs by KP. In particular, some DAMs were enhanced by 1.5-fold, including D-glutamine, L-glutamate, glucose and pyruvate in mushroom samples treated with KP relative to AWS. Targeted metabolomic analysis confirmed the contents of DAMs related to glutamate metabolism and energy metabolism. In conclusion, our findings suggest that reprogrammed carbon metabolism and oxidoreductase pathways act critical roles in the enhanced response of mushroom to KP substrates.
Collapse
Affiliation(s)
- Yuan Zhao
- Qinghai University, Xining, 810016, China.
- College of Ecol-Environmental Engineering, Qinghai University, Xining, 810016, China.
| | - Youhua Yao
- Qinghai University, Xining, 810016, China
- Academy of Agriculture and Forestry, Qinghai University, Xining, 810016, China
- Qinghai Key Laboratory of Genetic Breeding of Highland Barley/Qinghai Highland Barley Sub- Center of National Wheat Improvement Center, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
| | - Hongying Li
- Qinghai University, Xining, 810016, China
- College of Ecol-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Zirui Han
- Qinghai University, Xining, 810016, China
- College of Ecol-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Xuewen Ma
- Qinghai University, Xining, 810016, China
- College of Ecol-Environmental Engineering, Qinghai University, Xining, 810016, China
| |
Collapse
|
5
|
Stirbet A, Guo Y, Lazár D, Govindjee G. From leaf to multiscale models of photosynthesis: applications and challenges for crop improvement. PHOTOSYNTHESIS RESEARCH 2024; 161:21-49. [PMID: 38619700 DOI: 10.1007/s11120-024-01083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 04/16/2024]
Abstract
To keep up with the growth of human population and to circumvent deleterious effects of global climate change, it is essential to enhance crop yield to achieve higher production. Here we review mathematical models of oxygenic photosynthesis that are extensively used, and discuss in depth a subset that accounts for diverse approaches providing solutions to our objective. These include models (1) to study different ways to enhance photosynthesis, such as fine-tuning antenna size, photoprotection and electron transport; (2) to bioengineer carbon metabolism; and (3) to evaluate the interactions between the process of photosynthesis and the seasonal crop dynamics, or those that have included statistical whole-genome prediction methods to quantify the impact of photosynthesis traits on the improvement of crop yield. We conclude by emphasizing that the results obtained in these studies clearly demonstrate that mathematical modelling is a key tool to examine different approaches to improve photosynthesis for better productivity, while effective multiscale crop models, especially those that also include remote sensing data, are indispensable to verify different strategies to obtain maximized crop yields.
Collapse
Affiliation(s)
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education Jiangnan University, Wuxi, 214122, China
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký Univesity, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology, and the Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
6
|
Gudi S, Halladakeri P, Singh G, Kumar P, Singh S, Alwutayd KM, Abd El-Moneim D, Sharma A. Deciphering the genetic landscape of seedling drought stress tolerance in wheat ( Triticum aestivum L.) through genome-wide association studies. FRONTIERS IN PLANT SCIENCE 2024; 15:1351075. [PMID: 38510445 PMCID: PMC10952099 DOI: 10.3389/fpls.2024.1351075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
Wheat is an important cereal crop constrained by several biotic and abiotic stresses including drought stress. Understating the effect of drought stress and the genetic basis of stress tolerance is important to develop drought resilient, high-yielding wheat cultivars. In this study, we investigated the effects of drought stress on seedling characteristics in an association panel consisting of 198 germplasm lines. Our findings revealed that drought stress had a detrimental effect on all the seedling characteristics under investigation with a maximum effect on shoot length (50.94% reduction) and the minimum effect on germination percentage (7.9% reduction). To gain a deeper understanding, we conducted a genome-wide association analysis using 12,511 single nucleotide polymorphisms (SNPs), which led to the identification of 39 marker-trait associations (MTAs). Of these 39 MTAs, 13 were particularly noteworthy as they accounted for >10% of the phenotypic variance with a LOD score >5. These high-confidence MTAs were further utilized to extract 216 candidate gene (CGs) models within 1 Mb regions. Gene annotation and functional characterization identified 83 CGs with functional relevance to drought stress. These genes encoded the WD40 repeat domain, Myb/SANT-like domain, WSD1-like domain, BTB/POZ domain, Protein kinase domain, Cytochrome P450, Leucine-rich repeat domain superfamily, BURP domain, Calmodulin-binding protein60, Ubiquitin-like domain, etc. Findings from this study hold significant promise for wheat breeders as they provide direct assistance in selecting lines harboring favorable alleles for improved drought stress tolerance. Additionally, the identified SNPs and CGs will enable marker-assisted selection of potential genomic regions associated with enhanced drought stress tolerance in wheat.
Collapse
Affiliation(s)
- Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Priyanka Halladakeri
- Department of Genetics and Plant Breeding, Anand Agricultural University, Anand, India
| | - Gurjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
- Texas A&M University, AgriLife Research Center, Beaumont, TX, United States
| | - Pradeep Kumar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Satinder Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Diaa Abd El-Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
7
|
Gudi S, Saini DK, Halladakeri P, Singh G, Singh S, Kaur S, Goyal P, Srivastava P, Mavi GS, Sharma A. Genome-wide association study unravels genomic regions associated with chlorophyll fluorescence parameters in wheat (Triticum aestivum L.) under different sowing conditions. PLANT CELL REPORTS 2023; 42:1453-1472. [PMID: 37338572 DOI: 10.1007/s00299-023-03041-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
KEY MESSAGE Genome-wide association study identified 205 significant marker-trait associations for chlorophyll fluorescence parameters in wheat. Candidate gene mining, in silico expression, and promoter analyses revealed the potential candidate genes associated with the studied parameters. The present study investigated the effect of varied sowing conditions (viz., early, timely, and late) on different chlorophyll fluorescence parameters in diverse wheat germplasm set comprising of 198 lines over two cropping seasons (2020-2021 and 2021-2022). Further, a genome-wide association study was conducted to identify potential genomic regions associated with these parameters. The results revealed significant impacts of sowing conditions on all fluorescence parameters, with the maximum and minimum effects on FI (26.64%) and FV/FM (2.12%), respectively. Among the 205 marker-trait associations (MTAs) identified, 11 high-confidence MTAs were chosen, exhibiting substantial effects on multiple fluorescence parameters, and each explaining more than 10% of the phenotypic variation. Through gene mining of genomic regions encompassing high-confidence MTAs, we identified a total of 626 unique gene models. In silico expression analysis revealed 42 genes with an expression value exceeding 2 TPM. Among them, 10 genes were identified as potential candidate genes with functional relevance to enhanced photosynthetic efficiency. These genes mainly encoded for the following important proteins/products-ankyrin repeat protein, 2Fe-2S ferredoxin-type iron-sulfur-binding domain, NADH-ubiquinone reductase complex-1 MLRQ subunit, oxidoreductase FAD/NAD(P)-binding, photosystem-I PsaF, and protein kinases. Promoter analysis revealed the presence of light-responsive (viz., GT1-motif, TCCC-motif, I-box, GT1-motif, TCT-motif, and SP-1) and stress-responsive (viz., ABRE, AuxRR-core, GARE-motif, and ARE) cis-regulatory elements, which may be involved in the regulation of identified putative candidate genes. Findings from this study could directly help wheat breeders in selecting lines with favorable alleles for chlorophyll fluorescence, while the identified markers will facilitate marker-assisted selection of potential genomic regions for improved photosynthesis.
Collapse
Affiliation(s)
- Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409-2122, USA
| | - Priyanka Halladakeri
- Department of Plant Breeding and Genetics, Anand Agricultural University, Anand, India
| | - Gurjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
- Texas A&M University, AgriLife Research at Beaumont, College Station, TX, 77713, USA
| | - Satinder Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Prinka Goyal
- Department of Botany, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - G S Mavi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India.
| |
Collapse
|
8
|
Li J, Nie K, Wang L, Zhao Y, Qu M, Yang D, Guan X. The Molecular Mechanism of GhbHLH121 in Response to Iron Deficiency in Cotton Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:1955. [PMID: 37653872 PMCID: PMC10224022 DOI: 10.3390/plants12101955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 09/02/2023]
Abstract
Iron deficiency caused by high pH of saline-alkali soil is a major source of abiotic stress affecting plant growth. However, the molecular mechanism underlying the iron deficiency response in cotton (Gossypium hirsutum) is poorly understood. In this study, we investigated the impacts of iron deficiency at the cotton seedling stage and elucidated the corresponding molecular regulation network, which centered on a hub gene GhbHLH121. Iron deficiency induced the expression of genes with roles in the response to iron deficiency, especially GhbHLH121. The suppression of GhbHLH121 with virus-induced gene silence technology reduced seedlings' tolerance to iron deficiency, with low photosynthetic efficiency and severe damage to the structure of the chloroplast. Contrarily, ectopic expression of GhbHLH121 in Arabidopsis enhanced tolerance to iron deficiency. Further analysis of protein/protein interactions revealed that GhbHLH121 can interact with GhbHLH IVc and GhPYE. In addition, GhbHLH121 can directly activate the expression of GhbHLH38, GhFIT, and GhPYE independent of GhbHLH IVc. All told, GhbHLH121 is a positive regulator of the response to iron deficiency in cotton, directly regulating iron uptake as the upstream gene of GhFIT. Our results provide insight into the complex network of the iron deficiency response in cotton.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
| | - Ke Nie
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Luyao Wang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Yongyan Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
| | - Mingnan Qu
- Hainan Yazhou Bay Seed Lab, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China;
| | - Donglei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Xueying Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
- Hainan Yazhou Bay Seed Lab, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China;
| |
Collapse
|
9
|
Zhou S, He L, Lin W, Su Y, Liu Q, Qu M, Xiao L. Integrative analysis of transcriptome and metabolism reveals potential roles of carbon fixation and photorespiratory metabolism in response to drought in Shanlan upland rice. BMC Genomics 2022; 23:862. [PMID: 36585635 PMCID: PMC9805275 DOI: 10.1186/s12864-022-09094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Shanlan upland rice is an important landrace rice resource and is characterized with high drought stress (DS) tolerance relative to cultivated rice. However, the molecular mechanism of DS response in Shanlan upland rice remains unclear. In this study, we performed an integrated analysis of transcriptome and targeted metabolism to decipher the key biological pathways that responded to drought tolerance using two Shanlan upland rice lines. Results show that SL10 possesses 64% higher photosynthetic efficiency (Pn) and 2-fold higher water use efficiency (WUE) than that in SL1 exposed to DS. The decrease in Pn by DS is not due to stomatal limitation effects for SL1. Transcriptome analysis suggests photosynthesis relevant pathways (photosynthesis-antenna proteins and carbon fixation) and photorespiration relevant pathway (glycine, serine and threonine metabolism) in SL1 under DS were significantly enriched in the down-regulated and up-regulated DEGs list, respectively. There are 412 up-regulated and 233 down-regulated drought responsive genes (DRGs) in SL10 relative to SL1 induced by DS. Targeted metabolism results suggest that the contents across five metabolites related to carbon fixation pathway were declined by 36 and 8% in SL1 and SL10 caused by DS, respectively. We finally summarized the both gene expression and metabolites involved in photorespiration and carbon fixation pathways in response to DS in both rice lines. This study provides valuable information for better understanding the molecular mechanism underlying drought tolerance in Shanlan rice.
Collapse
Affiliation(s)
- Shubo Zhou
- grid.257160.70000 0004 1761 0331Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410125 Hunan China ,grid.449397.40000 0004 1790 3687Department of Agriculture and Forestry, Hainan Tropical Ocean University, Sanya, 572022 China
| | - Lijing He
- grid.449397.40000 0004 1790 3687College of fisheries and life science, Hainan Tropical Ocean University, Sanya, 572022 China
| | - Wei Lin
- grid.449397.40000 0004 1790 3687College of fisheries and life science, Hainan Tropical Ocean University, Sanya, 572022 China
| | - Yi Su
- grid.257160.70000 0004 1761 0331Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410125 Hunan China
| | - Qing Liu
- grid.257160.70000 0004 1761 0331Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410125 Hunan China
| | - Mingnan Qu
- grid.449397.40000 0004 1790 3687Department of Agriculture and Forestry, Hainan Tropical Ocean University, Sanya, 572022 China ,Hainan Yazhou Bay Seed Laboratory, Sanya, 572025 China
| | - Langtao Xiao
- grid.257160.70000 0004 1761 0331Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410125 Hunan China
| |
Collapse
|
10
|
Tian X, Xia X, Xu D, Liu Y, Xie L, Hassan MA, Song J, Li F, Wang D, Zhang Y, Hao Y, Li G, Chu C, He Z, Cao S. Rht24b
, an ancient variation of
TaGA2ox‐A9
, reduces plant height without yield penalty in wheat. NEW PHYTOLOGIST 2022; 233:738-750. [PMID: 0 DOI: 10.1111/nph.17808] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/13/2021] [Indexed: 05/22/2023]
Affiliation(s)
- Xiuling Tian
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| | - Xianchun Xia
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| | - Dengan Xu
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| | - Yongqiang Liu
- State Key Laboratory of Plant Genomics Institute of Genetics and Developmental Biology The Innovative Academy for Seed Design Chinese Academy of Sciences 1 West Beichen Road Beijing 100101 China
| | - Li Xie
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| | - Muhammad Adeel Hassan
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| | - Jie Song
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| | - Faji Li
- Crop Research Institute Shandong Academy of Agricultural Sciences 202 Industry North Road Jinan 250100 China
| | - Desen Wang
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| | - Yong Zhang
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| | - Yuanfeng Hao
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| | - Genying Li
- Crop Research Institute Shandong Academy of Agricultural Sciences 202 Industry North Road Jinan 250100 China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics Institute of Genetics and Developmental Biology The Innovative Academy for Seed Design Chinese Academy of Sciences 1 West Beichen Road Beijing 100101 China
| | - Zhonghu He
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
- International Maize and Wheat Improvement Center (CIMMYT) China Office c/o CAAS 12 Zhongguancun South Street Beijing 100081 China
| | - Shuanghe Cao
- Institute of Crop Sciences National Wheat Improvement Center Chinese Academy of Agricultural Sciences (CAAS) 12 Zhongguancun South Street Beijing 100081 China
| |
Collapse
|
11
|
Khan N, Essemine J, Hamdani S, Qu M, Lyu MJA, Perveen S, Stirbet A, Govindjee G, Zhu XG. Natural variation in the fast phase of chlorophyll a fluorescence induction curve (OJIP) in a global rice minicore panel. PHOTOSYNTHESIS RESEARCH 2021; 150:137-158. [PMID: 33159615 DOI: 10.1007/s11120-020-00794-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Photosynthesis can be probed through Chlorophyll a fluorescence induction (FI), which provides detailed insight into the electron transfer process in Photosystem II, and beyond. Here, we have systematically studied the natural variation of the fast phase of the FI, i.e. the OJIP phase, in rice. The OJIP phase of the Chl a fluorescence induction curve is referred to as "fast transient" lasting for less than a second; it is obtained after a dark-adapted sample is exposed to saturating light. In the OJIP curve, "O" stands for "origin" (minimal fluorescence), "P" for "peak" (maximum fluorescence), and J and I for inflection points between the O and P levels. Further, Fo is the fluorescence intensity at the "O" level, whereas Fm is the intensity at the P level, and Fv (= Fm - Fo) is the variable fluorescence. We surveyed a set of quantitative parameters derived from the FI curves of 199 rice accessions, grown under both field condition (FC) and growth room condition (GC). Our results show a significant variation between Japonica (JAP) and Indica (IND) subgroups, under both the growth conditions, in almost all the parameters derived from the OJIP curves. The ratio of the variable to the maximum (Fv/Fm) and of the variable to the minimum (Fv/Fo) fluorescence, the performance index (PIabs), as well as the amplitude of the I-P phase (AI-P) show higher values in JAP compared to that in the IND subpopulation. In contrast, the amplitude of the O-J phase (AO-J) and the normalized area above the OJIP curve (Sm) show an opposite trend. The performed genetic analysis shows that plants grown under GC appear much more affected by environmental factors than those grown in the field. We further conducted a genome-wide association study (GWAS) using 11 parameters derived from plants grown in the field. In total, 596 non-unique significant loci based on these parameters were identified by GWAS. Several photosynthesis-related proteins were identified to be associated with different OJIP parameters. We found that traits with high correlation are usually associated with similar genomic regions. Specifically, the thermal phase of FI, which includes the amplitudes of the J-I and I-P subphases (AJ-I and AI-P) of the OJIP curve, is, in turn, associated with certain common genomic regions. Our study is the first one dealing with the natural variations in rice, with the aim to characterize potential candidate genes controlling the magnitude and half-time of each of the phases in the OJIP FI curve.
Collapse
Affiliation(s)
- Naveed Khan
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Institute of Nutrition and Health, University of Chinese Academy of Science, Chinese Academy of Sciences, Shanghai, 200031, China
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jemaa Essemine
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Saber Hamdani
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mingnan Qu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ming-Ju Amy Lyu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shahnaz Perveen
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xin-Guang Zhu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
12
|
Yang Y, Zhu X, Cui R, Wang R, Li H, Wang J, Chen H, Zhang D. Identification of soybean phosphorous efficiency QTLs and genes using chlorophyll fluorescence parameters through GWAS and RNA-seq. PLANTA 2021; 254:110. [PMID: 34716824 DOI: 10.1007/s00425-021-03760-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
MAIN CONCLUSION Soybean phosphorous efficiency QTLs were identified and candidate genes were predicted using chlorophyll fluorescence parameters through GWAS and RNA-seq. Phosphorus (P) is an essential nutrient element for crop growth and development, lack of P uptake seriously affects yield in various crops. Photosynthesis is the basis of crop production, while it is very sensitive to P deficiency. It is of great importance to study the genetic relationship between photosynthesis and P efficiency to provide genetic insight for soybean improvement. In this study, a genome-wide association study (GWAS) was performed using 292,035 SNPs and the ratios of four main chlorophyll fluorescence parameters of 219 diverse soybean accessions under P deficiency and normal P across three experiments. In total, 52 SNPs in 12 genomic regions were detected in association with the four main chlorophyll fluorescence parameters under sufficient or deficient P levels. Combined it with RNA-seq analysis, we predicted three candidate genes for the significant genomic regions. For example, the expression level of the candidate gene (Glyma.18g092900) in P deficiency tolerant accession was three times higher than that of P deficiency sensitive one under phosphorous deficiency condition. This study provides insight into genetic links between photosynthetic and phosphorous efficiency and further functional analysis will provide valuable information for understanding the underlying genetic mechanism to facilitate marker-assisted breeding in soybean.
Collapse
Affiliation(s)
- Yuming Yang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Xiuhua Zhu
- Henan Xuke Seed Industry Co., Ltd, Xuchang, China
| | - Ruifan Cui
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Ruiyang Wang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Hongyan Li
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Jinshe Wang
- Zhengzhou National Subcenter for Soybean Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
13
|
Galicia-Juárez M, Zavala-García F, Sinagawa-García SR, Gutiérrez-Diez A, Williams-Alanís H, Cisneros-López ME, Valle-Gough RE, Flores-Garivay R, Santillano-Cázares J. Identification of Sorghum ( Sorghum bicolor (L.) Moench) Genotypes with Potential for Hydric and Heat Stress Tolerance in Northeastern Mexico. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112265. [PMID: 34834628 PMCID: PMC8623876 DOI: 10.3390/plants10112265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Sorghum (Sorghum bicolor (L.) Moench) is cultivated in regions with frequent drought periods and high temperatures, conditions that have intensified in the last decades. One of the most important photosynthetic components, sensible to hydric stress, is maximum quantum yield for photosystem II (PSII, or Fv/Fm). The objective of the present study was to identify sorghum genotypes with tolerance to hydric and heat stress. The treatments were hydric status (hydric stress or non-hydric stress (irrigation)), the plant's developmental stages (pre or post-anthesis), and six genotypes. The response variables were Fv/Fm; photosynthetic rate (PN); stomatal conductance (gs); transpiration rate (E); relative water content (RWC); damage to cell membrane (DCM) at temperatures of 40 and 45 °C; and agronomic variables. The experiment was conducted in pots in open sky in Marín, N.L., in the dry and hot northeast Mexico. The treatment design was a split-split plot design, with three factors. Hydric stress diminished the functioning of the photosynthetic apparatus by 63%, due to damage caused to PSII. Pre-anthesis was the most vulnerable stage to hydric stress as it decreased the weight of grains per panicle (85%), number of grains per panicle (69%), and weight of 100 grains (46%). Genotypes LER 1 and LER 2 were identified as tolerant to hydric stress, as they had lower damage to PSII; LER 1 and LEB 2 for their superior RWC; and LER 1 as a thermo tolerant genotype, due to its lower DCM at 45 °C. It was concluded that LER 1 could have the potential for both hydric and heat stress tolerance in the arid northeast Mexico.
Collapse
Affiliation(s)
- Marisol Galicia-Juárez
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali 21705, Baja California, Mexico; (M.G.-J.); (R.E.V.-G.); (R.F.-G.)
| | - Francisco Zavala-García
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, General Escobedo 66050, Nuevo León, Mexico; (F.Z.-G.); (S.R.S.-G.); (A.G.-D.)
| | - Sugey Ramona Sinagawa-García
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, General Escobedo 66050, Nuevo León, Mexico; (F.Z.-G.); (S.R.S.-G.); (A.G.-D.)
| | - Adriana Gutiérrez-Diez
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, General Escobedo 66050, Nuevo León, Mexico; (F.Z.-G.); (S.R.S.-G.); (A.G.-D.)
| | - Héctor Williams-Alanís
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, (INIFAP), Río Bravo 88900, Tamaulipas, Mexico; (H.W.-A.); (M.E.C.-L.)
| | - María Eugenia Cisneros-López
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, (INIFAP), Río Bravo 88900, Tamaulipas, Mexico; (H.W.-A.); (M.E.C.-L.)
| | - Raúl Enrique Valle-Gough
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali 21705, Baja California, Mexico; (M.G.-J.); (R.E.V.-G.); (R.F.-G.)
| | - Rodrigo Flores-Garivay
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali 21705, Baja California, Mexico; (M.G.-J.); (R.E.V.-G.); (R.F.-G.)
| | - Jesús Santillano-Cázares
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali 21705, Baja California, Mexico; (M.G.-J.); (R.E.V.-G.); (R.F.-G.)
| |
Collapse
|
14
|
Gao S, Chu C. Gibberellin Metabolism and Signaling: Targets for Improving Agronomic Performance of Crops. PLANT & CELL PHYSIOLOGY 2020; 61:1902-1911. [PMID: 32761079 PMCID: PMC7758032 DOI: 10.1093/pcp/pcaa104] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/24/2020] [Indexed: 05/19/2023]
Abstract
Gibberellins (GAs) are a class of tetracyclic diterpenoid phytohormones that regulate many aspects of plant development, including seed germination, stem elongation, leaf expansion, pollen maturation, and the development of flowers, fruits and seeds. During the past decades, the primary objective of crop breeding programs has been to increase productivity or yields. 'Green Revolution' genes that can produce semidwarf, high-yielding crops were identified as GA synthesis or response genes, confirming the value of research on GAs in improving crop productivity. The manipulation of GA status either by genetic alteration or by exogenous application of GA or GA biosynthesis inhibitors is often used to optimize plant growth and yields. In this review, we summarize the roles of GAs in major aspects of crop growth and development and present the possible targets for the fine-tuning of GA metabolism and signaling as a promising strategy for crop improvement.
Collapse
Affiliation(s)
- Shaopei Gao
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education/Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Corresponding author: E-mail, ; Fax, +86 010 64806608
| |
Collapse
|
15
|
Qu M, Essemine J, Xu J, Ablat G, Perveen S, Wang H, Chen K, Zhao Y, Chen G, Chu C, Zhu X. Alterations in stomatal response to fluctuating light increase biomass and yield of rice under drought conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1334-1347. [PMID: 33015858 DOI: 10.1111/tpj.15004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/23/2020] [Indexed: 05/07/2023]
Abstract
The acceleration of stomatal closure upon high to low light transition could improve plant water use efficiency and drought tolerance. Herein, using genome-wide association study, we showed that the genetic variation in OsNHX1 was strongly associated with the changes in τcl , the time constant of stomatal closure, in 206 rice accessions. OsNHX1 overexpression in rice resulted in a decrease in τcl , and an increase in biomass, grain yield under drought. Conversely, OsNHX1 knockout by CRISPR/CAS9 shows opposite trends for these traits. We further found three haplotypes spanning the OsNHX1 promoter and CDS regions. Two among them, HapII and HapIII, were found to be associated with a high and low τcl , respectively. A near-isogenic line (NIL, S464) was developed through replacing the genomic region harboring HapII (~10 kb) from MH63 (recipient) rice cultivar by the same sized genomic region containing Hap III from 02428 (donor). Compared with MH63, S464 shows a reduction by 35% in τcl and an increase by 40% in the grain yield under drought. However, under normal conditions, S464 maintains closely similar grain yield as MH63. The global distribution of the two OsNHX1 haplotypes is associated with the local precipitation. Taken together, the natural variation in OsNHX1 could be utilized to manipulate the stomatal dynamics for an improved rice drought tolerance.
Collapse
Affiliation(s)
- Mingnan Qu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
| | - Jemaa Essemine
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guljannat Ablat
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Shahnaz Perveen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
| | - Hongru Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kai Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yang Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
| | - Genyun Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinguang Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
16
|
Perveen S, Qu M, Chen F, Essemine J, Khan N, Lyu MJA, Chang T, Song Q, Chen GY, Zhu XG. Overexpression of maize transcription factor mEmBP-1 increases photosynthesis, biomass, and yield in rice. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4944-4957. [PMID: 32442255 DOI: 10.1093/jxb/eraa248] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Identifying new options to improve photosynthetic capacity is a major approach to improve crop yield potential. Here we report that overexpression of the gene encoding the transcription factor mEmBP-1 led to simultaneously increased expression of many genes in photosynthesis, including genes encoding Chl a,b-binding proteins (Lhca and Lhcb), PSII (PsbR3 and PsbW) and PSI reaction center subunits (PsaK and PsaN), chloroplast ATP synthase subunit, electron transport reaction components (Fd1 and PC), and also major genes in the Calvin-Benson-Bassham cycle, including those encoding Rubisco, glyceraldehyde phosphate dehydrogenase, fructose bisphosphate aldolase, transketolase, and phosphoribulokinase. These increased expression of photosynthesis genes resulted in increased leaf chlorophyll pigment, photosynthetic rate, biomass growth, and grain yield both in the greenhouse and in the field. Using EMSA experiments, we showed that mEmBP-1a protein can directly bind to the promoter region of photosynthesis genes, suggesting that the direct binding of mEmBP-1a to the G-box domain of photosynthetic genes up-regulates expression of these genes. Altogether, our results show that mEmBP-1a is a major regulator of photosynthesis, which can be used to increase rice photosynthesis and yield in the field.
Collapse
Affiliation(s)
- Shahnaz Perveen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Mingnan Qu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Faming Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jemaa Essemine
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Naveed Khan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Ju Amy Lyu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tiangen Chang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qingfeng Song
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Gen-Yun Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Guang Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
17
|
Qu M, Essemine J, Li M, Chang S, Chang T, Chen GY, Zhu XG. Genome-Wide Association Study Unravels LRK1 as a Dark Respiration Regulator in Rice ( Oryza sativa L.). Int J Mol Sci 2020; 21:E4930. [PMID: 32668582 PMCID: PMC7404070 DOI: 10.3390/ijms21144930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 11/16/2022] Open
Abstract
Respiration is a major plant physiological process that generates adenosine triphosphate (ATP) to support the various pathways involved in the plant growth and development. After decades of focused research on basic mechanisms of respiration, the processes and major proteins involved in respiration are well elucidated. However, much less is known about the natural variation of respiration. Here we conducted a survey on the natural variation of leaf dark respiration (Rd) in a global rice minicore diversity panel and applied a genome-wide association study (GWAS) in rice (Oryza sativa L.) to determine candidate loci associated with Rd. This rice minicore diversity panel consists of 206 accessions, which were grown under both growth room (GR) and field conditions. We found that Rd shows high single-nucleotide polymorphism (SNP) heritability under GR and it is significantly affected by genotype-environment interactions. Rd also exhibits strong positive correlation to the leaf thickness and chlorophyll content. GWAS results of Rd collected under GR and field show an overlapped genomic region in the chromosome 3 (Chr.3), which contains a lead SNP (3m29440628). There are 12 candidate genes within this region; among them, three genes show significantly higher expression levels in accessions with high Rd. Particularly, we observed that the LRK1 gene, annotated as leucine rich repeat receptor kinase, was up-regulated four times. We further found that a single significantly associated SNPs at the promoter region of LRK1, was strongly correlated with the mean annual temperature of the regions from where minicore accessions were collected. A rice lrk1 mutant shows only ~37% Rd of that of WT and retarded growth following exposure to 35 °C for 30 days, but only 24% reduction in growth was recorded under normal temperature (25 °C). This study demonstrates a substantial natural variation of Rd in rice and that the LRK1 gene can regulate leaf dark respiratory fluxes, especially under high temperature.
Collapse
Affiliation(s)
- Mingnan Qu
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai 200032, China
| | - Jemaa Essemine
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai 200032, China
| | - Ming Li
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shuoqi Chang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Tiangen Chang
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai 200032, China
| | - Gen-Yun Chen
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin-Guang Zhu
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai 200032, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|