1
|
Suissa JS, Niklas KJ, Tomescu AMF, Friedman WE. Ontogenetic correlates, not direct adaptation, explain the evolution of stelar morphology. THE NEW PHYTOLOGIST 2024. [PMID: 39456128 DOI: 10.1111/nph.20185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/23/2024] [Indexed: 10/28/2024]
Abstract
The primary vascular system of plants (the stele) has attracted interest from paleobotanists, developmental biologists, systematists, and physiologists for nearly two centuries. Ferns, with their diverse stelar morphology, deep evolutionary history, and prominent fossil record, have been a major focus in studies of the stele. To explain the diversity of stelar morphology, past adaptive hypotheses have invoked biomechanics, hydraulics, and drought tolerance as key selection pressures in the evolution of stelar complexity; but, these hypotheses often isolate the stele from a whole-plant developmental context, ignoring potential covariation between vascular patterning and shoot morphology. Furthermore, incongruence between expected patterns and observed data challenge adaptive hypotheses, precluding a comprehensive explanation of stelar evolution. While ontogeny has been previously recognized as a factor in stelar diversification, it has not been fully integrated into a comprehensive framework. Here we synthesize 150-years of research on stelar morphology, incorporating developmental, physiological, and phylogenetic data to present the ontogenetic hypothesis of stelar evolution. This hypothesis posits that stelar morphology is an integrated feature of whole-plant ontogeny, not a trait shaped by direct selection for adaptive patterns. This shift in perspective provides an updated framework for understanding the determinants of stelar morphology and focusses future efforts to ask more incisive questions about the evolution and function of primary vascular architecture.
Collapse
Affiliation(s)
- Jacob S Suissa
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
- The Arnold Arboretum of Harvard University, Boston, MA, 02130, USA
| | - Karl J Niklas
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Alexandru M F Tomescu
- Department of Biological Sciences, California Polytechnic State University Humboldt, Arcata, CA, 95521, USA
| | - William E Friedman
- The Arnold Arboretum of Harvard University, Boston, MA, 02130, USA
- The Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
2
|
Ma B, Lv Q, Zhang R, Zhang J, Wang Y, Cai J. Effect of freeze-thaw treatments with different conditions on frost fatigue in three diffuse-porous trees. TREE PHYSIOLOGY 2024; 44:tpae115. [PMID: 39244748 DOI: 10.1093/treephys/tpae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/21/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
In addition to inducing xylem embolism, freeze-thaw events can cause frost fatigue phenomena. Freezing temperature, freezing times, number of freeze-thaw cycles and frost drought can affect the level of freeze-thaw-induced embolism, but it is unknown whether there is an effect on frost fatigue. We assessed whether these frost-related factors changed frost fatigue in the three diffuse-porous species by simulating freeze-thaw treatments under different conditions. We also proposed a new metric, embolism area, in place of embolism resistance, to more accurately quantify the shift of the vulnerability curve after experiencing freeze-thaw-induced embolism and refilling. Frost fatigue caused vulnerability curves of all species to change from S-shaped to double S-shaped or even R-shaped curves. When exposed to a freeze-thaw event, Acer truncatum showed strong resistance to frost fatigue; in contrast, Populus (I-101 × 84 K) and Liriodendron chinense were more vulnerable. Changing freezing temperature and times did not impact the response to frost fatigue in the three species, but a greater number of freeze-thaw cycles and more severe frost drought significantly exacerbated their fatigue degree. Considering that frost fatigue may be a widespread phenomenon among temperate diffuse-porous species, more work is needed in the future to reveal the mechanisms of frost fatigue.
Collapse
Affiliation(s)
- Bolong Ma
- College of Forestry, Northwest A&F University, Tai Cheng Road No. 3, Yangling, Shaanxi 712100, China
| | - Qingzi Lv
- College of Forestry, Northwest A&F University, Tai Cheng Road No. 3, Yangling, Shaanxi 712100, China
| | - Ruihan Zhang
- College of Forestry, Northwest A&F University, Tai Cheng Road No. 3, Yangling, Shaanxi 712100, China
| | - Junyao Zhang
- College of Forestry, Northwest A&F University, Tai Cheng Road No. 3, Yangling, Shaanxi 712100, China
| | - Yue Wang
- College of Forestry, Northwest A&F University, Tai Cheng Road No. 3, Yangling, Shaanxi 712100, China
| | - Jing Cai
- College of Forestry, Northwest A&F University, Tai Cheng Road No. 3, Yangling, Shaanxi 712100, China
- Qinling National Forest Ecosystem Research Station, Northwest A&F University, Tai Cheng Road No. 3, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Suissa JS, Barkoff N, Watkins JE. Extreme functional specialization of fertile leaves in a widespread fern species and its implications on the evolution of reproductive dimorphism. Ecol Evol 2024; 14:e11552. [PMID: 38952657 PMCID: PMC11214101 DOI: 10.1002/ece3.11552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Resource allocation theory posits that organisms distribute limited resources across functions to maximize their overall fitness. In plants, the allocation of resources among maintenance, reproduction, and growth influences short-term economics and long-term evolutionary processes, especially during resource scarcity. The evolution of specialized structures to divide labor between reproduction and growth can create a feedback loop where selection can act on individual organs, further increasing specializaton and resource allocation. Ferns exhibit diverse reproductive strategies, including dimorphism, where leaves can either be sterile (only for photosynthesis) or fertile (for spore dispersal). This dimorphism is similar to processes in seed plants (e.g., the production of fertile flowers and sterile leaves), and presents an opportunity to investigate divergent resource allocation between reproductive and vegetative functions in specialized organs. Here, we conducted anatomical and hydraulic analyses on Onoclea sensibilis L., a widespread dimorphic fern species, to reveal significant structural and hydraulic divergences between fertile and sterile leaves. Fertile fronds invest less in hydraulic architecture, with nearly 1.5 times fewer water-conducting cells and a nearly 0.5 times less drought-resistant xylem compared to sterile fronds. This comes at the increased relative investment in structural support, which may help facilitate spore dispersal. These findings suggest that specialization in ferns-in the form of reproductive dimorphism-can enable independent selection pressures on each leaf type, potentially optimizing spore dispersal in fertile fronds and photosynthetic efficiency in sterile fronds. Overall, our study sheds light on the evolutionary implications of functional specialization and highlights the importance of reproductive strategies in shaping plant fitness and evolution.
Collapse
Affiliation(s)
- Jacob S. Suissa
- Department of Ecology and Evolutionary BiologyUniversity of Tennessee KnoxvilleKnoxvilleTennesseeUSA
| | - Noah Barkoff
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | | |
Collapse
|
4
|
Paligi SS, Link RM, Isasa E, Bittencourt P, Cabral JS, Jansen S, Oliveira RS, Pereira L, Schuldt B. Assessing the agreement between the pneumatic and the flow-centrifuge method for estimating xylem safety in temperate diffuse-porous tree species. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1171-1185. [PMID: 37703535 DOI: 10.1111/plb.13573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/06/2023] [Indexed: 09/15/2023]
Abstract
The increasing frequency of global change-type droughts has created a need for fast, accurate and widely applicable techniques for estimating xylem embolism resistance to improve forecasts of future forest changes. We used data from 12 diffuse-porous temperate tree species covering a wide range of xylem safety to compare the pneumatic and flow-centrifuge method, two rapid methods used for constructing xylem vulnerability curves. We evaluated the agreement between parameters estimated with both methods and the sensitivity of pneumatic measurements to the duration of air discharge (AD) measurements. There was close agreement between xylem water potentials at 50% air discharged (PAD), estimated with the Pneumatron, and 50% loss of hydraulic conductivity (PLC), estimated with the flow-centrifuge method (mean signed deviation: 0.12 MPa, Pearson correlation: 0.96 after 15 s of gas extraction). However, the relationship between the estimated slopes was more variable, resulting in lower agreement in the xylem water potential at 12% and 88% PAD/PLC. The agreement between the two methods was not affected by species-specific vessel length distributions. All pneumatic parameters were sensitive to AD time. Overall agreement was highest at relatively short AD times, with an optimum at 16 s. Our results highlight the value of the Pneumatron as an easy and reliable tool to estimate 50% embolism thresholds for a wide range of diffuse-porous temperate angiosperms. Further, our study provides a set of useful metrics for methodological comparisons of vulnerability curves in terms of systematic and random deviations, as well as overall agreement.
Collapse
Affiliation(s)
- S S Paligi
- Chair of Ecophysiology and Vegetation Ecology, Julius-von-Sachs Institute of Biological Sciences, University of Würzburg, Würzburg, Germany
| | - R M Link
- Chair of Ecophysiology and Vegetation Ecology, Julius-von-Sachs Institute of Biological Sciences, University of Würzburg, Würzburg, Germany
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, Tharandt, Germany
| | - E Isasa
- Chair of Ecophysiology and Vegetation Ecology, Julius-von-Sachs Institute of Biological Sciences, University of Würzburg, Würzburg, Germany
| | - P Bittencourt
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - J S Cabral
- Ecosystem Modeling Group, Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - S Jansen
- Institute of Botany, Ulm University, Ulm, Germany
| | - R S Oliveira
- Department of Plant Biology, Instituto de Biologia, University of Campinas, Campinas, SP, Brazil
| | - L Pereira
- Institute of Botany, Ulm University, Ulm, Germany
| | - B Schuldt
- Chair of Ecophysiology and Vegetation Ecology, Julius-von-Sachs Institute of Biological Sciences, University of Würzburg, Würzburg, Germany
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, Tharandt, Germany
| |
Collapse
|
5
|
Wang Z, Ding X, Li Y, Xie J. The compensation effect between safety and efficiency in xylem and role in photosynthesis of gymnosperms. PHYSIOLOGIA PLANTARUM 2022; 174:e13617. [PMID: 35199364 DOI: 10.1111/ppl.13617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
The classical theory of safety-efficiency trade-off is a common theme in plant sciences. Despite safety and efficiency partly compensating for each other physiologically (namely, there is a compensation effect, CE, among traits from the "whole" organism perspective), they are always mathematically described as a trade-off against one another. However, the compensation effect has never been defined and quantified, let alone its role in the xylem water transport and subsequently photosynthesis. Here, we developed an alternative theory to define the CE as a positive relationship between safety and efficiency, and further define a new trade-off index, SETO, that is expressed as CE multiplied by a trade-off factor (differing from the classical average trade-off value). Then, we tested SETO- and CE-photosynthetic rate relationships across different levels based on a common garden experiment using nine conifers and published data for gymnosperms. The results demonstrated that the compensation effect in xylem functions was the dominant force in facilitating photosynthetic rates from species- to phylum-scale. By integrating the compensation effect into the xylem hydraulic functional strategy, our study clearly indicated that the compensation effect is the evolutionary basis for the coordination of xylem hydraulic and photosynthesis physiology.
Collapse
Affiliation(s)
- Zhongyuan Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xiaoran Ding
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, China
| | - Jiangbo Xie
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
6
|
Suissa JS, Friedman WE. From cells to stems: the effects of primary vascular construction on drought-induced embolism in fern rhizomes. THE NEW PHYTOLOGIST 2021; 232:2238-2253. [PMID: 34273190 DOI: 10.1111/nph.17629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
While a considerable amount of data exists on the link between xylem construction and hydraulic function, few studies have focused on resistance to drought-induced embolism of primary vasculature in herbaceous plants. Ferns rely entirely on primary xylem and display a remarkable diversity of vascular construction in their rhizomes, making them an ideal group in which to examine hydraulic structure-function relationships. New optical methods allowed us to measure vulnerability to embolism in rhizomes, which are notoriously difficult to work with. We investigated five fern species based on their diverse xylem traits at the cellular, histological, and architectural levels. To link below- and above-ground hydraulics, we then measured leaf-stem vulnerability segmentation. Overall, rhizome vulnerability to embolism was correlated most strongly with cellular but not histological or architectural traits. Interestingly, at P6-12 , species with increased architectural dissection were actually more vulnerable to embolism, suggesting different hydraulic dynamics at low compared to high percent embolism. Importantly, leaves fully embolize before stems reach P88 , suggesting strong vulnerability segmentation. This is the first study to explore the functional implications of primary vascular construction in fern rhizomes and leaf-stem vulnerability segmentation. Strong segmentation suggests that leaves protect perennial rhizomes against severe drought stress and hydraulically induced mortality.
Collapse
Affiliation(s)
- Jacob S Suissa
- The Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- The Arnold Arboretum of Harvard University, Boston, MA, 02131, USA
| | - William E Friedman
- The Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- The Arnold Arboretum of Harvard University, Boston, MA, 02131, USA
| |
Collapse
|
7
|
Torres-Ruiz JM. Virtual issue on Plant hydraulics: update on the recent discoveries. PHYSIOLOGIA PLANTARUM 2020; 168:758-761. [PMID: 32237154 DOI: 10.1111/ppl.13081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 05/07/2023]
Affiliation(s)
- José M Torres-Ruiz
- Université Clermont-Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| |
Collapse
|