1
|
Roy R, Hossain A, Sultana S, Deb B, Ahmod MM, Sarker T. Microplastics increase cadmium absorption and impair nutrient uptake and growth in red amaranth (Amaranthus tricolor L.) in the presence of cadmium and biochar. BMC PLANT BIOLOGY 2024; 24:608. [PMID: 38926861 PMCID: PMC11202365 DOI: 10.1186/s12870-024-05312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Microplastic (MP) pollution in terrestrial ecosystems is gaining attention, but there is limited research on its effects on leafy vegetables when combined with heavy metals. This study examines the impact of three MP types-polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS)-at concentrations of 0.02, 0.05, and 0.1% w/w, along with cadmium (Cd) and biochar (B), on germination, growth, nutrient absorption, and heavy metal uptake in red amaranth (Amaranthus tricolor L.). We found that different MP types and concentrations did not negatively affect germination parameters like germination rate, relative germination rate, germination vigor, relative germination vigor, and germination speed. However, they increased phytotoxicity and decreased stress tolerance compared to an untreated control (CK1). The presence of MPs, particularly the PS type, reduced phosphorus and potassium uptake while enhancing Cd uptake. For example, treatments PS0.02CdB, PS0.05CdB, and PS0.1CdB increased Cd content in A. tricolor seedlings by 158%, 126%, and 44%, respectively, compared to the treatment CdB (CK2). Additionally, MP contamination led to reduced plant height, leaf dry matter content, and fresh and dry weights, indicating adverse effects on plant growth. Moreover, the presence of MPs increased bioconcentration factors and translocation factors for Cd, suggesting that MPs might act as carriers for heavy metal absorption in plants. On the positive side, the addition of biochar improved several root parameters, including root length, volume, surface area, and the number of root tips in the presence of MPs, indicating potential benefits for plant growth. Our study shows that the combination of MPs and Cd reduces plant growth and increases the risk of heavy metal contamination in food crops. Further research is needed to understand how different MP types and concentrations affect various plant species, which will aid in developing targeted mitigation strategies and in exploring the mechanisms through which MPs impact plant growth and heavy metal uptake. Finally, investigating the potential of biochar application in conjunction with other amendments in mitigating these effects could be key to addressing MP and heavy metal contamination in agricultural systems.
Collapse
Affiliation(s)
- Rana Roy
- Institute of Plant Nutrition and Soil Science, Christian-Albrechts-Universität zu Kiel, 24118, Kiel, Germany.
- Department of Agroforestry and Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Akram Hossain
- Department of Agroforestry and Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Shirin Sultana
- Open School, Bangladesh Open University, Gazipur, 1705, Bangladesh
| | - Biplob Deb
- Department of Agricultural Extension Education, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Md Moudud Ahmod
- Department of Crop Botany & Tea Production Technology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Tanwne Sarker
- Department of Sociology and Rural Development, Khulna Agricultural University, Khulna, 9100, Bangladesh
| |
Collapse
|
2
|
Roy R, Hossain A, Sharif MO, Das M, Sarker T. Optimizing biochar, vermicompost, and duckweed amendments to mitigate arsenic uptake and accumulation in rice (Oryza sativa L.) cultivated on arsenic-contaminated soil. BMC PLANT BIOLOGY 2024; 24:545. [PMID: 38872089 DOI: 10.1186/s12870-024-05219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
The accumulation of arsenic (As) in rice (Oryza sativa L.) grain poses a significant health concern in Bangladesh. To address this, we investigated the efficacy of various organic amendments and phytoremediation techniques in reducing As buildup in O. sativa. We evaluated the impact of five doses of biochar (BC; BC0.1: 0.1%, BC0.28: 0.28%, BC0.55: 0.55%, BC0.82: 0.82% and BC1.0: 1.0%, w/w), vermicompost (VC; VC1.0: 1.0%, VC1.8: 1.8%, VC3.0: 3.0%, VC4.2: 4.2% and VC5.0: 5.0%, w/w), and floating duckweed (DW; DW100: 100, DW160: 160, DW250: 250, DW340: 340 and DW400: 400 g m- 2) on O. sativa cultivated in As-contaminated soil. Employing a three-factor five-level central composite design and response surface methodology (RSM), we optimized the application rates of BC-VC-DW. Our findings revealed that As contamination in the soil negatively impacted O. sativa growth. However, the addition of BC, VC, and DW significantly enhanced plant morphological parameters, SPAD value, and grain yield per pot. Notably, a combination of moderate BC-DW and high VC (BC0.55VC5DW250) increased grain yield by 44.4% compared to the control (BC0VC0DW0). As contamination increased root, straw, and grain As levels, and oxidative stress in O. sativa leaves. However, treatment BC0.82VC4.2DW340 significantly reduced grain As (G-As) by 56%, leaf hydrogen peroxide by 71%, and malondialdehyde by 50% compared to the control. Lower doses of BC-VC-DW (BC0.28VC1.8DW160) increased antioxidant enzyme activities, while moderate to high doses resulted in a decline in these activities. Bioconcentration and translocation factors below 1 indicated limited As uptake and translocation in plant tissues. Through RSM optimization, we determined that optimal doses of BC (0.76%), VC (4.62%), and DW (290.0 g m- 2) could maximize grain yield (32.96 g pot- 1, 44% higher than control) and minimize G-As content (0.189 mg kg- 1, 54% lower than control). These findings underscore effective strategies for enhancing yield and reducing As accumulation in grains from contaminated areas, thereby ensuring agricultural productivity, human health, and long-term sustainability. Overall, our study contributes to safer food production and improved public health in As-affected regions.
Collapse
Affiliation(s)
- Rana Roy
- Department of Agroforestry & Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
- Institute of Plant Nutrition and Soil Science, Christian-Albrechts-Universität zu Kiel, 24118, Kiel, Germany.
| | - Akram Hossain
- Department of Agroforestry & Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Md Omar Sharif
- Department of Agroforestry & Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Mitali Das
- Department of Agroforestry & Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Tanwne Sarker
- Department of Sociology and Rural Development, Khulna Agricultural University, Khulna, 9100, Bangladesh
| |
Collapse
|
3
|
Roy R, Sultana S, Begum N, Fornara D, Barmon M, Zhang R, Sarker T, Rabbany MG. Exogenous melatonin reduces water deficit-induced oxidative stress and improves growth performance of Althaea rosea grown on coal mine spoils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61550-61560. [PMID: 34089453 DOI: 10.1007/s11356-021-14671-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/27/2021] [Indexed: 05/27/2023]
Abstract
Coal mining activities are responsible for significant land degradation and often long-term irreversible effects on ecosystem functioning. To better understand how coal mined sites could be re-vegetated and ecosystem functioning restored, we address the role of the signalling hormone melatonin, which controls plant growth and development under adverse environmental conditions. We assessed the effects of exogenous melatonin on the plant species Althaea rosea by measuring morphological growth attributes, photosynthetic efficiency, reactive oxygen species (ROS)-induced oxidative damage and antioxidant defence developed by the seedlings when grown on coal-mined spoils under various water regimes. Water deficit and negative effects of coal mine spoils significantly decreased morphological growth attributes (i.e. plant height, root length and dry biomass), gas-exchange traits (i.e. net photosynthesis rate, inter intercellular concentration of CO2, transpiration rate, stomatal conductance and water use efficiency) and photosynthetic pigments (chlorophyll and carotenoid contents) by increasing the ROS-induce oxidative damage and decreasing antioxidant enzyme activities of A. rosea seedlings. However, melatonin applications increased photosynthetic performance and antioxidant enzyme activities and decreased hydrogen peroxide and malondialdehyde contents and ultimately improved growth performance of A. rosea in coal-mined spoils. Overall, our findings show how the application of optimum water (63.0 %field capacity equivalent to 1.67 mm day-1) and melatonin (153.0 μM dose) significantly improves the re-vegetation of coal-mined spoils with A. rosea. Our study provides new insight into melatonin-mediated water stress tolerance in A. rosea grown on coal-mined spoils, and this strategy could be implemented in re-vegetation programmes of coal mine-degraded areas under arid and semiarid conditions of the north-western part of China and perhaps across other arid areas worldwide.
Collapse
Affiliation(s)
- Rana Roy
- Department of Agroforestry & Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Shirin Sultana
- Open School, Bangladesh Open University, Gazipur, Dhaka, 1705, Bangladesh
| | - Naheeda Begum
- Soybean Research Institution, National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Dario Fornara
- Agri-Food & Biosciences Institute, Newforge Lane, Belfast, BT9 5PX, UK
| | - Milon Barmon
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Ruiqi Zhang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Tanwne Sarker
- School of Economics and Finance, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Md Ghulam Rabbany
- College of Economics and Management, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Agribusiness and Marketing, Faculty of Agribusiness Management, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh
| |
Collapse
|
4
|
Roy R, Núñez-Delgado A, Wang J, Kader MA, Sarker T, Hasan AK, Dindaroglu T. Cattle manure compost and biochar supplementation improve growth of Onobrychis viciifolia in coal-mined spoils under water stress conditions. ENVIRONMENTAL RESEARCH 2022; 205:112440. [PMID: 34843727 DOI: 10.1016/j.envres.2021.112440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Surface mining is a critical anthropogenic activity that significantly alters the ecosystem, while the use of appropriate revegetation techniques can be considered an important and feasible strategy in the way to improve the ecosystem services of degraded land. In the present study, we carried out a pot experiment to investigate the effects of three different variables on morpho-physiological and biochemical parameters of Onobrychis viciifolia to assess the capability of this species to be used for restoration purposes. Specifically, the variables studied were: (a) water (W) regime, working at five values as regards field capacity (FC) (i.e., 80% FC = highest, 72% FC = high, 60% FC = moderate, 48% FC = low, and 40% FC = very-low dose); and (b) rates of cattle manure compost (CMC) and wood biochar (BC) (weight/weight ratio), working at five rates (i.e., 4.0% = highest, 3.2% = high, 2.0% = moderate, 0.8% = low, and 0% = either no-CMC or no-BC dose). In addition, soil physical-chemical properties and enzyme activities were also investigated at the end of the experimental period. It was found that morphological growth attributes such as plant height, maximum root length, and dry biomass significantly increased with W, CMC and BC applications. Compared to control, moderate-to-high W, CMC and BC doses (W80CMC2BC2) increased net photosynthesis rate (by 42%), stomatal conductance (by 50%), transpiration rate (by 29%), water use efficiency (by 10%), chlorophyll contents (by 73%), carotenoid content (by 81%), leaf relative water content (by 33%) and leaf membrane stability index (by 30%). Under low-W content, the application of CMC and BC enhanced osmotic adjustments by increasing the content of soluble sugar and the activities of superoxide dismutase, catalase, peroxidase and ascorbate peroxidase, decreasing the oxidative stress, as verified by low levels of hydrogen peroxide, superoxide anion, malondialdehyde and proline contents in leaf tissues. Moreover, application of W, CMC and BC significantly improved soil water holding capacity, available nitrogen, phosphorus and potassium, urease and catalase activities, which facilitate plant growth. These results would aid in designing an appropriate strategy for achieving a successful revegetation of O. viciifolia, providing optimum doses of W (64% field capacity), CMC (2.4%) and BC (1.7%), with the final aim of reaching ecological restoration in arid degraded lands.
Collapse
Affiliation(s)
- Rana Roy
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China; Department of Agroforestry & Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Campus Univ., 27002, Lugo, University of Santiago de Compostela, Spain.
| | - Jinxin Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Md Abdul Kader
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences, University of the South Pacific, Suva, 1168, Fiji; Department of Soil Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh; College of Science, Health, Education and Engineering, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Tanwne Sarker
- School of Economics and Finance, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Ahmed Khairul Hasan
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Turgay Dindaroglu
- Department of Forest Engineering, Faculty of Forestry, Kahramanmaras Sutcu Imam University, Kahramanmaras, 46100, Turkey.
| |
Collapse
|
5
|
Sun J, Luo H, Jiang Y, Wang L, Xiao C, Weng L. Influence of Nutrient (NPK) Factors on Growth, and Pharmacodynamic Component Biosynthesis of Atractylodes chinensis: An Insight on Acetyl-CoA Carboxylase (ACC), 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGR), and Farnesyl Pyrophosphate Synthase (FPPS) Signaling Responses. FRONTIERS IN PLANT SCIENCE 2022; 13:799201. [PMID: 35371119 PMCID: PMC8972053 DOI: 10.3389/fpls.2022.799201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/16/2022] [Indexed: 05/03/2023]
Abstract
In the planting of crops, especially medicinal plants, formula fertilization is important for improving the utilization rate of elements, soil quality, crop yield, and quality. Therefore, it is important to study targeted fertilizer application schemes for sustainable agricultural development and environmental protection. In this study, an L9(34) orthogonal design was used to conduct a field experiment to study the effects of NPK combined application on the growth and pharmacodynamic component biosynthesis of Atractylodes chinensis (DC.) Koidz. Results showed that after applying a base fertilizer at the seedling stage (late May), topdressing at the vegetative stage (late June) and fruit stage (late August) was beneficial to the growth and development of A. chinensis. The high concentrations of phosphorus were conducive to the accumulation of yield and effective components, and the best harvest time was after late October. Principal component analysis (PCA) showed that the comprehensive score of T6 treatment was the highest, indicating that the optimal fertilization scheme for the high yield and high quality of A. chinensis was (N2P3K1): N 180, P2O5 225, and K2O 105 kg⋅ha-1. A signaling response analysis showed that during the growth and development of A. chinensis, the T6 fertilization scheme had clear effects on the activity and gene expression of the key enzymes acetyl-CoA carboxylase (ACC) and farnesyl pyrophosphate synthase (FPPS). Under the T4 [(N2P1K2): N 180, P2O5 75, and K2O 210 kg⋅ha-1] fertilization scheme, the activity and gene expression of the key enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) were higher. Moreover, ACC was closely related to the synthesis of the polyacetylene component atractylodin, and FPPS played an important regulatory role in the synthesis of sesquiterpene components atractylenolide II, β-eudesmol, and atractylon. In summary, the high phosphorus fertilization scheme T6 could notably increase the yield of A. chinensis, and promote the accumulation of polyacetylene and sesquiterpene volatile oils by increasing the expression of ACC and FPPS. Therefore, we postulate that the precise application of nutrients (NPK) plays a vital role in the yield formation and quality regulation of A. chinensis.
Collapse
Affiliation(s)
| | | | | | | | - Chunping Xiao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Lili Weng
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
6
|
Roy R, Sultana S, Wang J, Mostofa MG, Sarker T, Rahman Shah MM, Hossain MS. Revegetation of coal mine degraded arid areas: The role of a native woody species under optimum water and nutrient resources. ENVIRONMENTAL RESEARCH 2022; 204:111921. [PMID: 34454933 DOI: 10.1016/j.envres.2021.111921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/09/2021] [Accepted: 08/12/2021] [Indexed: 05/27/2023]
Abstract
Ecological restoration of coal mine degraded soils across arid and semi-arid environments worldwide remains particularly challenging. We used a combination of greenhouse and field experiments to assess the potential role of a woody species, Ulmus pumila, in the restoration of degraded soils associated with coal-mining activities in the northwest China. We investigated how various combinations of water-nitrogen-phosphorus (W-N-P) resources affect multiple growth parameters in U. pumila. We found that several plant growth traits significantly improved with W-N applications, regardless of P inputs. Moderate-to-highest W-N-P doses increased net photosynthesis and transpiration rates, water use efficiency, stomatal conductance, chlorophyll and carotenoid contents under greenhouse conditions. A combination of high W together with low N-P applications led to high relative water content and net photosynthetic rates under field conditions. Increasing of N-P doses under W-shortage condition, aided U. pumila to enhance osmotic adjustments by increasing contents of proline and soluble sugar and also boost the activity of superoxide dismutase, peroxidase and catalase in leaf tissues to reduce accumulation of reactive oxygen species and malondialdehyde content in all conditions of greenhouse and field. Our study is the first to assess the optimum W-N-P resources in U. pumila and demonstrate that optimum growth performance could be obtained under W supplements corresponding to 90 mm year-1, N and P at 110 and 45 kg ha-1, respectively, under field condition. These findings can have far reaching implications for vegetation restoration of degraded areas associated with coal-mining activities across arid and semi-arid regions worldwide.
Collapse
Affiliation(s)
- Rana Roy
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China; Department of Agroforestry & Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Shirin Sultana
- Open School, Bangladesh Open University, Gazipur, 1705, Dhaka, Bangladesh.
| | - Jinxin Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Tanwne Sarker
- School of Economics and Finance, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | | | - Md Shakhawat Hossain
- College of Economics and Management, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China; World Vision Bangladesh, BleNGS Project, Jamalpur, 2000, Bangladesh.
| |
Collapse
|
7
|
Abdolinejad R, Shekafandeh A. Tetraploidy Confers Superior in vitro Water-Stress Tolerance to the Fig Tree ( Ficus carica) by Reinforcing Hormonal, Physiological, and Biochemical Defensive Systems. FRONTIERS IN PLANT SCIENCE 2022; 12:796215. [PMID: 35154187 PMCID: PMC8834540 DOI: 10.3389/fpls.2021.796215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/27/2021] [Indexed: 05/13/2023]
Abstract
The fig tree is a well-adapted and promising fruit tree for sustainable production in arid and semi-arid areas worldwide. Recently, Iran's dryland fig orchards have been severely damaged due to prolonged severe and consecutive drought periods. As emphasized in many studies, ploidy manipulated plants have a significantly enhanced drought tolerance. In the current study, we compared the induced autotetraploid explants of two fig cultivars ('Sabz' and 'Torsh') with their diploid control plants for their water stress tolerance under in vitro conditions using different polyethylene glycol (PEG) concentrations (0, 5, 10, 15, 20, and 25%). After 14 days of implementing water stress treatments, the results revealed that both tetraploid genotypes survived at 20% PEG treatments. Only 'Sabz' tetraploid explants survived at 25% PEG treatment, while both diploid control genotypes could tolerate water stress intensity only until 15% PEG treatment. The results also demonstrated that the tetraploid explants significantly had a higher growth rate, more leaf numbers, and greater fresh and dry weights than their diploid control plants. Under 15% PEG treatment, both tetraploid genotypes could maintain their relative water content (RWC) at a low-risk level (80-85%), while the RWC of both diploid genotypes drastically declined to 55-62%. The ion leakage percentage also was significantly lower in tetraploid explants at 15% PEG treatment. According to the results, these superiorities could be attributed to higher levels of stress response hormones including abscisic acid, salicylic acid, and jasmonic acid at different PEG treatments, the robust osmotic adjustment by significantly increased total soluble sugar (TSS), proline, and glycine betaine contents, and augmented enzymatic defense system including significantly increased superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione peroxidase (GPX) activities in tetraploid genotypes, compared to their diploid control genotypes. Consequently, the current study results demonstrated that the 'Sabz' tetraploid genotype had a significantly higher water stress tolerance than other tested genotypes.
Collapse
Affiliation(s)
| | - Akhtar Shekafandeh
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
8
|
Roy R, Núñez-Delgado A, Sultana S, Wang J, Munir A, Battaglia ML, Sarker T, Seleiman MF, Barmon M, Zhang R. Additions of optimum water, spent mushroom compost and wood biochar to improve the growth performance of Althaea rosea in drought-prone coal-mined spoils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113076. [PMID: 34153587 DOI: 10.1016/j.jenvman.2021.113076] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 05/14/2023]
Abstract
Ecosystem degradation as a result of coal mining is a common phenomenon in various regions of the world, especially in arid and semi-arid zones. The implementation of appropriate revegetation techniques can be considered crucial to restore these degraded areas. In this regard, the additions of spent mushroom compost (SMC) and wood biochar (WB) to infertile and degraded soils have been reported to enhance soil fertility and plant growth under water (W) deficit conditions. However, the combined application of W, SMC and WB to coal mine degraded soils, to promote Althaea rosea growth and facilitate subsequent restoration, has not been explored yet. Hence, in the current study a pot experiment was carried out by growing A. rosea on coal mine spoils to assess the influence of different doses of W, SMC and WB on its morpho-physiological and biochemical growth responses. The results indicated that several plant growth traits like plant height, root length and dry biomass significantly improved with moderate W-SMC-WB doses. In addition, the simultaneous application of W-SMC-WB caused a significant decrease in hydrogen peroxide (H2O2) (by 7-56%), superoxide anion (O2●‒) (by 14-51%), malondialdehyde (MDA) (by 23-46%) and proline (Pro) contents (by 23-66%), as well as an increase in relative water content (by 10-27%), membrane stability index (by 2-24%), net photosynthesis rate (by 40-99%), total chlorophylls (by 43-113%) and carotenoids (by 31-115%), as compared to the control treatment. The addition of SMC and WB under low-W regime enhanced leaf water use efficiency, and soluble sugar content, also boosting the activity of superoxide dismutase, catalase, peroxidase and ascorbate peroxidase in leaf tissues, thus reducing the oxidative stress, as proved by low levels of H2O2, O2●‒, MDA and Pro contents. Finest growth performance under optimum doses of W (60% field capacity), SMC (1.4%) and WB (0.8%) suggest that revegetation of A. rosea with the recommended W-SMC-WB doses would be a suitable and eco-friendly approach for ecological restoration in arid degraded areas.
Collapse
Affiliation(s)
- Rana Roy
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China; Department of Agroforestry & Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, campus univ., 27002, Lugo, University of Santiago de Compostela, Spain.
| | - Shirin Sultana
- Open School, Bangladesh Open University, Gazipur, 1705, Dhaka, Bangladesh.
| | - Jinxin Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Ammara Munir
- Department of Biotechnology, Virtual University of Pakistan, Lahore, 54000, Pakistan.
| | - Martin L Battaglia
- Cornell University, Department of Animal Sciences, Ithaca, NY, 14850, USA.
| | - Tanwne Sarker
- School of Economics and Finance, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Mahmoud F Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia; Department of Crop Sciences, Faculty of Agriculture, Menoufia University, Shibin El-kom, 32514, Egypt.
| | - Milon Barmon
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Ruiqi Zhang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
9
|
Roy R, Mahboob MG, Arena C, Kader MA, Sultana S, Hasan AK, Wang J, Sarker T, Zhang R, Barmon M. The Modulation of Water, Nitrogen, and Phosphorous Supply for Growth Optimization of the Evergreen Shrubs Ammopiptanthus mongolicus for Revegetation Purpose. FRONTIERS IN PLANT SCIENCE 2021; 12:766523. [PMID: 34975950 PMCID: PMC8719576 DOI: 10.3389/fpls.2021.766523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/18/2021] [Indexed: 05/14/2023]
Abstract
Surface mining is a critical anthropogenic activity that significantly alters the ecosystem. Revegetation practices are largely utilized to compensate for these detrimental impacts of surface mining. In this study, we investigated the effects of five water (W) regimes [W40: 40%, W48: 48%, W60: 60%, W72: 72%, and W80: 80% of field capacity (FC)], five nitrogen (N) (N0: 0, N24: 24, N60: 60, N96: 96, and N120: 120 mg kg-1 soil), and five phosphorus (P) fertilizer doses (P0: 0, P36: 36, P90: 90, P144: 144, and P180: 180 mg kg-1 soil) on morpho-physiological and biochemical parameters of Ammopiptanthus mongolicus plants to assess the capability of this species to be used for restoration purposes. The results showed that under low W-N resources, A. mongolicus exhibited poor growth performance (i.e., reduced plant height, stem diameter, and dry biomass) in coal-degraded spoils, indicating that A. mongolicus exhibited successful adaptive mechanisms by reducing its biomass production to survive long in environmental stress conditions. Compared with control, moderate to high W and N-P application rates greatly enhanced the net photosynthesis rates, transpiration rates, water-use efficiency, chlorophyll (Chl) a, Chl b, total Chl, and carotenoid contents. Under low-W content, the N-P fertilization enhanced the contents of proline and soluble sugar, as well as the activities of superoxide dismutase, catalase, and peroxidase in leaf tissues, reducing the oxidative stress. Changes in plant growth and metabolism in W-shortage conditions supplied with N-P fertilization may be an adaptive strategy that is essential for its conservation and restoration in the desert ecosystem. The best growth performance was observed in plants under W supplements corresponding to 70% of FC and N and P doses of 33 and 36 mg kg-1 soil, respectively. Our results provide useful information for revegetation and ecological restoration in coal-degraded and arid-degraded lands in the world using endangered species A. mongolicus.
Collapse
Affiliation(s)
- Rana Roy
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- Department of Agroforestry & Environmental Science, Sylhet Agricultural University, Sylhet, Bangladesh
| | - M. Golam Mahboob
- ASICT Division, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| | - Carmen Arena
- Department of Biology, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Naples, Italy
| | - Md. Abdul Kader
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences, University of the South Pacific, Suva, Fiji
- Department of Soil Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
- College of Science, Health, Education and Engineering, Murdoch University, Murdoch, WA, Australia
| | - Shirin Sultana
- Open School, Bangladesh Open University, Gazipur, Bangladesh
| | - Ahmed Khairul Hasan
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Jinxin Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, China
- *Correspondence: Jinxin Wang ;
| | - Tanwne Sarker
- School of Economics and Finance, Xi'an Jiaotong University, Xi'an, China
| | - Ruiqi Zhang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
| | - Milon Barmon
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|