1
|
Giménez A, Gallegos-Cedillo VM, Benaissa RR, Egea-Gilabert C, Signore A, Ochoa J, Gruda NS, Arnao MB, Fernández JA. Enhancing the cultivation of Salicornia fruticosa with agroindustrial compost leachates in a cascade cropping system: evaluating the impact of melatonin application. FRONTIERS IN PLANT SCIENCE 2024; 15:1441884. [PMID: 39319005 PMCID: PMC11420923 DOI: 10.3389/fpls.2024.1441884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/07/2024] [Indexed: 09/26/2024]
Abstract
Cascade cropping systems (CCS) utilize leachate from a primary crop to grow secondary crops and enhance the efficient use of water and fertilizers in areas with scarce water resources. A preliminary study investigated the effect of melatonin in a cascade cropping system to potentially improve plant tolerance to abiotic stresses. This study aimed to cultivate Salicornia fruticosa in this cropping system to reduce nutrient discharge and assess the impact of exogenous melatonin on Salicornia growth and quality. The CCS included a primary crop of Salicornia grown in an agro-industrial compost or peat. Leachates from these media were used to cultivate the same plant once again in a floating system under four treatments: compost leachate (T1), peat leachate (T2), 100% nutrient solution (NS) (T3), 50% NS (T4) strength. Four concentrations of exogenous melatonin were applied in foliar spray: 0, 100, 200, and 400 µM. Melatonin application increased yield, with the highest values observed when plants were grown in T1. Water use efficiency was also maximized in T1 and with both 200 and 400 µM melatonin applications. The highest nitrogen use efficiency was achieved in plants grown in peat leachate. The lipid membrane damage was assessed revealing that plants grown in compost leachate exhibited the lowest MDA values regardless of melatonin concentrations. The accumulation of some antinutritional compounds (nitrate, oxalate, and sodium) were the highest in those plants grown in compost leachate. Overall, shoots grown in peat leachate exhibited the best phytochemical profile (total phenol content, total flavonoids, and antioxidant capacity), with peak values in plants treated with 200 µM melatonin. These findings suggest that S. fruticosa can be effectively cultivated using leachate from a previous crop in a floating system and that exogenous melatonin application enhances the yield and nutritional quality of Salicornia shoots.
Collapse
Affiliation(s)
- Almudena Giménez
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
| | | | - Rachida Rania Benaissa
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
| | - Catalina Egea-Gilabert
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
| | - Angelo Signore
- Department of Soil, Plants and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Jesús Ochoa
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
| | - Nazim S Gruda
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
- Department of Horticultural Sciences, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Marino B Arnao
- Phytohormones and Plant Development Lab, Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| | - Juan A Fernández
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
| |
Collapse
|
2
|
Bo Y, Xing Y, Wang Y, Gu W, Jiang X, Yu J, Shi X, Liu C, Liu C, Zhou Y. Exogenous Melatonin Modulates Photosynthesis and Antioxidant Systems for Improving Drought Tolerance of Sorghum Seedling. Curr Issues Mol Biol 2024; 46:9785-9806. [PMID: 39329933 PMCID: PMC11430488 DOI: 10.3390/cimb46090581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 09/28/2024] Open
Abstract
Sorghum faces significant production challenges due to drought stress. Melatonin has been demonstrated to play a crucial role in coping with stresses in plants. This study investigated the effect of exogenous melatonin on the sorghum seedling growth, photosynthetic capacity, and antioxidant system under drought stress. The results indicated that drought stress inhibited the growth of sorghum seedlings by a marked reduction in leaf relative water content, along with a significant increase in both malondialdehyde and hydrogen peroxide content. The drought stress also led to a significant diminution in chlorophyll contents, thereby curtailing the capacity for light energy capture. Furthermore, the efficiency of the photosynthetic electron transport chain was adversely impacted. However, the application of exogenous melatonin notably mitigated the adverse effects on sorghum seedlings under the drought stress. Additionally, it stimulated an elevation in the photosynthetic rate and a decrease in non-photochemical quenching. The exogenous melatonin also facilitated the preservation of the chloroplast ultra-structure and boosted the activity of antioxidant enzymes and the content of non-enzymatic antioxidants. Cluster heat maps and principal component analysis further revealed significant correlations among various parameters under different treatment conditions. These results highlight melatonin's role in improving sorghum's drought tolerance, which is beneficial for agricultural management.
Collapse
Affiliation(s)
- Yushan Bo
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yifan Xing
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yu Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Wendong Gu
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Xinyi Jiang
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiarui Yu
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaolong Shi
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Chunjuan Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Chang Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yufei Zhou
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
3
|
Chen ZJ, Li SY, Qu YN, Ai G, Wang YH, Pan DJ, Wang HW, Lu D, Liu XL. Comprehensive analyses show the enhancement effect of exogenous melatonin on fluroxypyr-meptyl multiple phase metabolisms in Oryza sativa for reducing environmental risks. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106021. [PMID: 39084780 DOI: 10.1016/j.pestbp.2024.106021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024]
Abstract
The role of melatonin (MT), an essential phytohormone controlling the physiological and biochemical reactions of plants to biotic and abiotic stress, in alleviating pesticide phytotoxicity remains unclear. This study explores the effects of MT (0 and 200 mg/L) and six doses of fluroxypyr-meptyl (FLUME) (0-0.14 mg/L) on the physiological response of rice (Oryza sativa). FLUME exposure inhibited the growth of rice seedlings, with MT treatment ameliorating this effect. To determine the biochemical processes and catalytic events involved in FLUME breakdown in rice, six rice root and shoot libraries exposed to either FLUME or FLUME-MT were generated and then subjected to RNA-Seq-LC-Q-TOF-HRMS/MS analyses. The results showed that 1510 root genes and 139 shoot genes exhibited higher upregulation in plants treated with an ecologically realistic FLUME concentration and MT than in those treated with FLUME alone. Gene enrichment analysis revealed numerous FLUME-degradative enzymes operating in xenobiotic tolerance to environmental stress and molecular metabolism. Regarding the FLUME degradation process, certain differentially expressed genes were responsible for producing important enzymes, such as cytochrome P450, glycosyltransferases, and acetyltransferases. Four metabolites and ten conjugates in the pathways involving hydrolysis, malonylation, reduction, glycosylation, or acetylation were characterized using LC-Q-TOF-HRMS/MS to support FLUME-degradative metabolism. Overall, external application of MT can increase rice tolerance to FLUME-induced oxidative stress by reducing phytotoxicity and FLUME accumulation. This study provides insights into MT's role in facilitating FLUME degradation, with potential implications for engineering genotypes supporting FLUME degradation in paddy crops.
Collapse
Affiliation(s)
- Zhao Jie Chen
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China.
| | - Si Ying Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Ya Nan Qu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Gan Ai
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Hui Wang
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Dong Jin Pan
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Hao Wen Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Dan Lu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Xiao Liang Liu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
4
|
Altaf MM, Awan ZA, Ashraf S, Altaf MA, Zhu Z, Alsahli AA, Ahmad P. Melatonin induced reversibility of vanadium toxicity in muskmelon by regulating antioxidant defense and glyoxalase systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134452. [PMID: 38762984 DOI: 10.1016/j.jhazmat.2024.134452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024]
Abstract
Agricultural lands with vanadium (V), pose a significant and widespread threat to crop production worldwide. The study was designed to explore the melatonin (ME) treatment in reducing the V-induced phytotoxicity in muskmelon. The muskmelon seedlings were grown hydroponically and subjected to V (40 mg L-1) stress and exogenously treated with ME (100 μmol L-1) to mitigate the V-induced toxicity. The results showed that V toxicity displayed a remarkably adverse effect on seedling growth and biomass, primarily by impeding root development, the photosynthesis system and the activities of antioxidants. Contrarily, the application of ME mitigated the V-induced growth damage and significantly improved root attributes, photosynthetic efficiency, leaf gas exchange parameters and mineral homeostasis by reducing V accumulation in leaves and roots. Additionally, a significant reduction in the accumulation of reactive oxygen species (ROS), malondialdehyde (MDA) along with a decrease in electrolyte leakage was observed in muskmelon seedlings treated with ME under V-stress. This reduction was attributed to the enhancement in the activities of antioxidants in leaves/roots such as ascorbate (AsA), superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione peroxidase (GPX), glutathione S-transferase (GST) as compared to the V stressed plants. Moreover, ME also upregulated the chlorophyll biosynthesis and antioxidants genes expression in muskmelon. Given these findings, ME treatment exhibited a significant improvement in growth attributes, photosynthesis efficiency and the activities of antioxidants (enzymatic and non-enzymatic) by regulating their expression of genes against V-stress with considerable reduction in oxidative damage.
Collapse
Affiliation(s)
- Muhammad Mohsin Altaf
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Zoia Arshad Awan
- Horticulture Development Department, Teagasc, Ashtown Food Research Centre, Dublin D15 KN3K, Ireland
| | - Sahrish Ashraf
- Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High‑Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China.
| | - Zhiqiang Zhu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | | | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, Jammu and Kashmir 192301, India.
| |
Collapse
|
5
|
Chen L, Qin Y, Fan S. Genome-Wide Identification and Characterization of the GRAS Gene Family in Lettuce Revealed That Silencing LsGRAS13 Delayed Bolting. PLANTS (BASEL, SWITZERLAND) 2024; 13:1360. [PMID: 38794431 PMCID: PMC11124801 DOI: 10.3390/plants13101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Lettuce is susceptible to high-temperature stress during cultivation, leading to bolting and affecting yield. Plant-specific transcription factors, known as GRAS proteins, play a crucial role in regulating plant growth, development, and abiotic stress responses. In this study, the entire lettuce LsGRAS gene family was identified. The results show that 59 LsGRAS genes are unevenly distributed across the nine chromosomes. Additionally, all LsGRAS proteins showed 100% nuclear localization based on the predicted subcellular localization and were phylogenetically classified into nine conserved subfamilies. To investigate the expression profiles of these genes in lettuce, we analyzed the transcription levels of all 59 LsGRAS genes in the publicly available RNA-seq data under the high-temperature treatment conducted in the presence of exogenous melatonin. The findings indicate that the transcript levels of the LsGRAS13 gene were higher on days 6, 9, 15, 18, and 27 under the high-temperature (35/30 °C) treatment with melatonin than on the same treatment days without melatonin. The functional studies demonstrate that silencing LsGRAS13 accelerated bolting in lettuce. Furthermore, the paraffin sectioning results showed that flower bud differentiation in LsGRAS13-silenced plants occurred significantly faster than in control plants. In this study, the LsGRAS genes were annotated and analyzed, and the expression pattern of the LsGRAS gene following melatonin treatment under high-temperature conditions was explored. This exploration provides valuable information and identifies candidate genes associated with the response mechanism of lettuce plants high-temperature stress.
Collapse
Affiliation(s)
- Li Chen
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China; (L.C.); (Y.Q.)
| | - Yong Qin
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China; (L.C.); (Y.Q.)
| | - Shuangxi Fan
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China; (L.C.); (Y.Q.)
- Plant Science and Technology College, Beijing Vocational College of Agriculture, Beijing 102442, China
| |
Collapse
|
6
|
Lu H, Wang M, Zhou S, Chen K, Wang L, Yi Z, Bai L, Zhang Y. Chitosan Oligosaccharides Mitigate Flooding Stress Damage in Rice by Affecting Antioxidants, Osmoregulation, and Hormones. Antioxidants (Basel) 2024; 13:521. [PMID: 38790626 PMCID: PMC11117766 DOI: 10.3390/antiox13050521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Rice (Oryza sativa L.) is one of the most important food crops worldwide. However, during direct seeding, rice is extremely vulnerable to flooding stress, which impairs rice's emergence and seedling growth and results in a significant yield loss. According to our research, chitosan oligosaccharides have the potential to be a chemical seed-soaking agent that greatly increases rice's resistance to flooding. Chitosan oligosaccharides were able to enhance seed energy supply, osmoregulation, and antioxidant capacity, according to physiological index assessments. Using transcriptome and metabolomic analysis, we discovered that important differential metabolites and genes were involved in the signaling pathway for hormone synthesis and antioxidant capacity. Exogenous chitosan oligosaccharides specifically and significantly inhibit genes linked to auxin, jasmonic acid, and abscisic acid. This suggested that applying chitosan oligosaccharides could stabilize seedling growth and development by controlling associated hormones and reducing flooding stress by enhancing membrane stability and antioxidant capacity. Finally, we verified the effectiveness of exogenous chitosan oligosaccharides imbibed in seeds by field validation, demonstrating that they can enhance rice seedling emergence and growth under flooding stress.
Collapse
Affiliation(s)
- Haoyu Lu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (H.L.); (M.W.); (K.C.); (L.W.)
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China;
| | - Mei Wang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (H.L.); (M.W.); (K.C.); (L.W.)
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China;
| | - Shangfeng Zhou
- Hunan Agricultural Biotechnology Research Institute, Changsha 410125, China;
| | - Ke Chen
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (H.L.); (M.W.); (K.C.); (L.W.)
| | - Lifeng Wang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (H.L.); (M.W.); (K.C.); (L.W.)
| | - Zhenxie Yi
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China;
| | - Lianyang Bai
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (H.L.); (M.W.); (K.C.); (L.W.)
- Hunan Agricultural Biotechnology Research Institute, Changsha 410125, China;
| | - Yuzhu Zhang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (H.L.); (M.W.); (K.C.); (L.W.)
| |
Collapse
|
7
|
Ameen M, Zafar A, Mahmood A, Zia MA, Kamran K, Javaid MM, Yasin M, Khan BA. Melatonin as a master regulatory hormone for genetic responses to biotic and abiotic stresses in model plant Arabidopsis thaliana: a comprehensive review. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23248. [PMID: 38310885 DOI: 10.1071/fp23248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
Melatonin is a naturally occurring biologically active amine produced by plants, animals and microbes. This review explores the biosynthesis of melatonin in plants, with a particular focus on its diverse roles in Arabidopsis thaliana , a model species. Melatonin affects abiotic and biotic stress resistance in A. thaliana . Exogenous and endogenous melatonin is addressed in association with various conditions, including cold stress, high light stress, intense heat and infection with Botrytis cinerea or Pseudomonas , as well as in seed germination and lateral root formation. Furthermore, melatonin confers stress resistance in Arabidopsis by initiating the antioxidant system, remedying photosynthesis suppression, regulating transcription factors involved with stress resistance (CBF, DREB, ZAT, CAMTA, WRKY33, MYC2, TGA) and other stress-related hormones (abscisic acid, auxin, ethylene, jasmonic acid and salicylic acid). This article additionally addresses other precursors, metabolic components, expression of genes (COR , CBF , SNAT , ASMT , PIN , PR1 , PDF1.2 and HSFA ) and proteins (JAZ, NPR1) associated with melatonin and reducing both biological and environmental stressors. Furthermore, the future perspective of melatonin rich agri-crops is explored to enhance plant tolerance to abiotic and biotic stresses, maximise crop productivity and enhance nutritional worth, which may help improve food security.
Collapse
Affiliation(s)
- Muaz Ameen
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Asma Zafar
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Anjum Zia
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Kashif Kamran
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Mansoor Javaid
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Yasin
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - Bilal Ahmad Khan
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| |
Collapse
|
8
|
Mukherjee S, Roy S, Arnao MB. Nanovehicles for melatonin: a new journey for agriculture. TRENDS IN PLANT SCIENCE 2024; 29:232-248. [PMID: 38123438 DOI: 10.1016/j.tplants.2023.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
The important role of melatonin in plant growth and metabolism together with recent advances in the potential use of nanomaterials have opened up interesting applications in agriculture. Various nanovehicles have been explored as melatonin carriers in animals, and it is now important to explore their application in plants. Recent findings have substantiated the use of silicon and chitosan nanoparticles (NPs) in targeting melatonin to plant tissues. Although melatonin is an amphipathic molecule, nanocarriers can accelerate its uptake and transport to various plant organs, thereby relieving stress and improving plant shelf-life in the post-harvest stages. We review the scope and biosafety concerns of various nanomaterials to devise novel methods for melatonin application in crops and post-harvest products.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur College, West Bengal 742213, India
| | - Suchismita Roy
- Department for Cell and Molecular Medicine, University of California, San Diego, CA 92093, USA
| | - Marino B Arnao
- Phytohormones and Plant Development Laboratory, Department of Plant Biology (Plant Physiology), University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
9
|
Altaf MA, Behera B, Mangal V, Singhal RK, Kumar R, More S, Naz S, Mandal S, Dey A, Saqib M, Kishan G, Kumar A, Singh B, Tiwari RK, Lal MK. Tolerance and adaptation mechanism of Solanaceous crops under salinity stress. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 36356932 DOI: 10.1071/fp22158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Solanaceous crops act as a source of food, nutrition and medicine for humans. Soil salinity is a damaging environmental stress, causing significant reductions in cultivated land area, crop productivity and quality, especially under climate change. Solanaceous crops are extremely vulnerable to salinity stress due to high water requirements during the reproductive stage and the succulent nature of fruits and tubers. Salinity stress impedes morphological and anatomical development, which ultimately affect the production and productivity of the economic part of these crops. The morpho-physiological parameters such as root-to-shoot ratio, leaf area, biomass production, photosynthesis, hormonal balance, leaf water content are disturbed under salinity stress in Solanaceous crops. Moreover, the synthesis and signalling of reactive oxygen species, reactive nitrogen species, accumulation of compatible solutes, and osmoprotectant are significant under salinity stress which might be responsible for providing tolerance in these crops. The regulation at the molecular level is mediated by different genes, transcription factors, and proteins, which are vital in the tolerance mechanism. The present review aims to redraw the attention of the researchers to explore the mechanistic understanding and potential mitigation strategies against salinity stress in Solanaceous crops, which is an often-neglected commodity.
Collapse
Affiliation(s)
| | | | - Vikas Mangal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rajesh Kumar Singhal
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh, India
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Sanket More
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, Kerala, India
| | - Safina Naz
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Sayanti Mandal
- Institute of Bioinformatics Biotechnology (IBB), Savitribai Phule Pune University (SPPU), Pune, Maharashtra, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073, India
| | - Muhammad Saqib
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Gopi Kishan
- ICAR-Indian Institute of Seed Science, Mau, Uttar Pradesh, India
| | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India; and ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India; and ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
10
|
Xu L, Xue X, Yan Y, Zhao X, Li L, Sheng K, Zhang Z. Silicon Combined with Melatonin Reduces Cd Absorption and Translocation in Maize. PLANTS (BASEL, SWITZERLAND) 2023; 12:3537. [PMID: 37896001 PMCID: PMC10609755 DOI: 10.3390/plants12203537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/30/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
Cadmium (Cd) is one of the most toxic and widely distributed heavy metal pollutants, posing a huge threat to crop production, food security, and human health. Corn is an important food source and feed crop. Corn growth is subject to Cd stress; thus, reducing cadmium stress, absorption, and transportation is of great significance for achieving high yields, a high efficiency, and sustainable and safe corn production. The use of silicon or melatonin alone can reduce cadmium accumulation and toxicity in plants, but it is unclear whether the combination of silicon and melatonin can further reduce the damage caused by cadmium. Therefore, pot experiments were conducted to study the effects of melatonin and silicon on maize growth and cadmium accumulation. The results showed that cadmium stress significantly inhibited the growth of maize, disrupted its physiological processes, and led to cadmium accumulation in plants. Compared to the single treatment of silicon or melatonin, the combined application of melatonin and silicon significantly alleviated the inhibition of the growth of maize seedlings caused by cadmium stress. This was demonstrated by the increased plant heights, stem diameters, and characteristic root parameters and the bioaccumulation in maize seedlings. Under cadmium stress, the combined application of silicon and melatonin increased the plant height and stem diameter by 17.03% and 59.33%, respectively, and increased the total leaf area by 43.98%. The promotion of corn growth is related to the reduced oxidative damage under cadmium stress, manifested in decreases in the malondialdehyde content and relative conductivity and increases in antioxidant enzyme superoxide dismutase and guaiacol peroxidase activities, as well as in soluble protein and chlorophyll contents. In addition, cadmium accumulation in different parts of maize seedlings and the health risk index of cadmium were significantly reduced, reaching 48.44% (leaves), 19.15% (roots), and 20.86% (health risk index), respectively. Therefore, melatonin and silicon have a significant synergistic effect in inhibiting cadmium absorption and reducing the adverse effects of cadmium toxicity.
Collapse
Affiliation(s)
- Lina Xu
- College of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China; (L.X.); (X.X.); (Y.Y.); (X.Z.); (L.L.)
| | - Xing Xue
- College of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China; (L.X.); (X.X.); (Y.Y.); (X.Z.); (L.L.)
| | - Yan Yan
- College of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China; (L.X.); (X.X.); (Y.Y.); (X.Z.); (L.L.)
| | - Xiaotong Zhao
- College of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China; (L.X.); (X.X.); (Y.Y.); (X.Z.); (L.L.)
| | - Lijie Li
- College of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China; (L.X.); (X.X.); (Y.Y.); (X.Z.); (L.L.)
| | - Kun Sheng
- School of Hydraulic Engineering, Yellow River Conservancy Technical Institute, Kaifeng 475004, China;
| | - Zhiyong Zhang
- College of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China; (L.X.); (X.X.); (Y.Y.); (X.Z.); (L.L.)
| |
Collapse
|
11
|
Jia Y, Kang L, Wu Y, Zhou C, Li D, Li J, Pan C. Review on Pesticide Abiotic Stress over Crop Health and Intervention by Various Biostimulants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13595-13611. [PMID: 37669447 DOI: 10.1021/acs.jafc.3c04013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Plants are essential for life on earth, and agricultural crops are a primary food source for humans. For the One Health future, crop health is crucial for safe, high-quality agricultural products and the development of future green commodities. However, the overuse of pesticides in modern agriculture raises concerns about their adverse effects on crop resistance and product quality. Recently, biostimulants, including microecological bacteria agents and nanoparticles, have garnered worldwide interest for their ability to sustain plant health and enhance crop resistance. This review analyzed the effects and mechanisms of pesticide stress on crop health. It also investigated the regulation of biostimulants on crop health and the multiomics mechanism, combining research on nanoselenium activating various crop health aspects conducted by the authors' research group. The paper helps readers understand the impact of pesticides on crop health and the positive influence of various biostimulants, especially nanomaterials and small molecules, on crop health.
Collapse
Affiliation(s)
- Yujiao Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| | - Lu Kang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R. China
| | - Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| | - Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, P. R. China
| | - Jiaqi Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
12
|
Altaf MA, Lal MK, Tiwari RK, Naz S, Gahlaut V. Editorial: The potential role of melatonin in the regulation of abiotic stress in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1271973. [PMID: 37771482 PMCID: PMC10523384 DOI: 10.3389/fpls.2023.1271973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Affiliation(s)
- Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya, China
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | | | - Safina Naz
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Vijay Gahlaut
- Department of Biotechnology and University Center for Research and Development, Chandigarh University, Mohali, India
| |
Collapse
|
13
|
Altaf MA, Sharma N, Srivastava D, Mandal S, Adavi S, Jena R, Bairwa RK, Gopalakrishnan AV, Kumar A, Dey A, Lal MK, Tiwari RK, Kumar R, Ahmed P. Deciphering the melatonin-mediated response and signalling in the regulation of heavy metal stress in plants. PLANTA 2023; 257:115. [PMID: 37169910 DOI: 10.1007/s00425-023-04146-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
MAIN CONCLUSION Melatonin has a protective effect against heavy metal stress in plants by immobilizing HM in cell walls and sequestering them in root cell vacuoles, reducing HM's translocation from roots to shoots. It enhances osmolyte production, increases antioxidant enzyme activity, and improves photosynthesis, thereby improving cellular functions. Understanding the melatonin-mediated response and signalling can sustain crop production in heavy metal-stressed soils. Melatonin is a pleiotropic signal molecule that plays a critical role in plant growth and stress tolerance, particularly against heavy metals in soil. Heavy metals (HMs) are ubiquitously found in the soil-water environment and readily taken up by plants, thereby disrupting mineral nutrient homeostasis, osmotic balance, oxidative stress, and altered primary and secondary metabolism. Plants combat HM stress through inbuilt defensive mechanisms, such as metal exclusion, restricted foliar translocation, metal sequestration and compartmentalization, chelation, and scavenging of free radicals by antioxidant enzymes. Melatonin has a protective effect against the damaging effects of HM stress in plants. It achieves this by immobilizing HM in cell walls and sequestering them in root cell vacuoles, reducing HM's translocation from roots to shoots. This mechanism improves the uptake of macronutrients and micronutrients in plants. Additionally, melatonin enhances osmolyte production, improving the plant's water relations, and increasing the activity of antioxidant enzymes to limit lipid peroxidation and reactive oxygen species (ROS) levels. Melatonin also decreases chlorophyll degradation while increasing its synthesis, and enhances RuBisCO activity for better photosynthesis. All these functions contribute to improving the cellular functions of plants exposed to HM stress. This review aims to gain better insight into the melatonin-mediated response and signalling under HM stress in plants, which may be useful in sustaining crop production in heavy metal-stressed soils.
Collapse
Affiliation(s)
- Muhammad Ahsan Altaf
- School of Horticulture, Hainan University, Haikou, 570228, People's Republic of China
| | - Nitin Sharma
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173230, India
| | - Dipali Srivastava
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sayanti Mandal
- Institute of Bioinformatics Biotechnology (IBB), Savitribai Phule Pune University (SPPU), Pune, Maharashtra, India
- Department of Biotechnology, Dr. D. Y. Patil Arts, Commerce & Science College, Pimpri, Pune, 411018, India
| | - Sandeep Adavi
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- ICAR-National Institute of Biotic Stress Management, Raipur, 493225, India
| | - Rupak Jena
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Rakesh Kumar Bairwa
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
| | - Parvaiz Ahmed
- Department of Botany, GDC, Pulwama, Jammu and Kashmir, 192301, India.
| |
Collapse
|
14
|
Colombage R, Singh MB, Bhalla PL. Melatonin and Abiotic Stress Tolerance in Crop Plants. Int J Mol Sci 2023; 24:7447. [PMID: 37108609 PMCID: PMC10138880 DOI: 10.3390/ijms24087447] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Increasing food demand by the growing human population and declining crop productivity due to climate change affect global food security. To meet the challenges, developing improved crops that can tolerate abiotic stresses is a priority. Melatonin in plants, also known as phytomelatonin, is an active component of the various cellular mechanisms that alleviates oxidative damage in plants, hence supporting the plant to survive abiotic stress conditions. Exogenous melatonin strengthens this defence mechanism by enhancing the detoxification of reactive by-products, promoting physiological activities, and upregulating stress-responsive genes to alleviate damage during abiotic stress. In addition to its well-known antioxidant activity, melatonin protects against abiotic stress by regulating plant hormones, activating ER stress-responsive genes, and increasing protein homoeostasis, heat shock transcription factors and heat shock proteins. Under abiotic stress, melatonin enhances the unfolded protein response, endoplasmic reticulum-associated protein degradation, and autophagy, which ultimately protect cells from programmed cell death and promotes cell repair resulting in increased plant survival.
Collapse
Affiliation(s)
| | | | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia; (R.C.); (M.B.S.)
| |
Collapse
|
15
|
Zulfiqar F, Moosa A, Darras A, Nafees M, Ferrante A, Siddique KHM. Preharvest melatonin foliar treatments enhance postharvest longevity of cut tuberose via altering physio-biochemical traits. FRONTIERS IN PLANT SCIENCE 2023; 14:1151722. [PMID: 37035084 PMCID: PMC10076727 DOI: 10.3389/fpls.2023.1151722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Melatonin (MLT) is a bioactive molecule involved in the physiological functioning of plants. Reports related to preharvest applications of melatonin on the postharvest performance of cut flowers are not available in the literature. MATERIALS & METHODS This study evaluated the effects of different concentrations of exogenous MLT [0 mM (MT0), 0.5 mM (MT1), 0.7 mM (MT2), 1 mM (MT3)] applied preharvest on the physiological characteristics and postharvest performance of cut tuberose, a globally demanded cut flower. RESULTS & DISCUSSION The results revealed that all treatments increased postharvest vase life by up to 4 d. The MT1, MT2, and MT3 treatments increased total soluble proteins (TSP) by 25%, 41%, and 17%, soluble sugars (SS) by 21%, 36%, and 33%, an+d postharvest catalase (CAT) activity by 52%, 66%, and 70%, respectively. Malondialdehyde (MDA) and hydrogen peroxide (H2O2) decreased in all preharvest treatments by up to 23% and 56%, respectively. Proline concentration decreased in all treatments, particularly MT3 (38%). These findings suggest that preharvest MLT treatment is a promising strategy for improving the postharvest quality of cut tuberose.
Collapse
Affiliation(s)
- Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Anastasios Darras
- Department of Agriculture, University of the Peloponnese, Kalamata, Greece
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Kadambot H. M. Siddique
- The University of Western Australia (UWA) Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
16
|
Chang Q, Zhang L, Chen S, Gong M, Liu L, Hou X, Mi Y, Wang X, Wang J, Zhang Y, Sun Y. Exogenous Melatonin Enhances the Yield and Secondary Metabolite Contents of Prunella vulgaris by Modulating Antioxidant System, Root Architecture and Photosynthetic Capacity. PLANTS (BASEL, SWITZERLAND) 2023; 12:1129. [PMID: 36903989 PMCID: PMC10005377 DOI: 10.3390/plants12051129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Melatonin (MT) plays a number of key roles in regulating plant growth and secondary metabolite accumulation. Prunella vulgaris is an important traditional Chinese herbal medicinal plant which is used for the treatment of lymph, goiter, and mastitis. However, the effect of MT on the yield and medicinal component content of P. vulgaris remains still unclear. In this research, we have examined the influence of different concentrations of MT (0, 50, 100, 200, 400 μM) on the physiological characteristics, secondary metabolite contents, and yield of P. vulgaris biomass. The results showed that 50-200 μM MT treatment had a positive effect on P. vulgaris. MT treatment at 100 μM greatly increased the activities of superoxide dismutase and peroxidase, the contents of soluble sugar and proline, and obviously decreased the relative electrical conductivity, the contents of malondialdehyde and hydrogen peroxide of leaves. Furthermore, it markedly promoted the growth and development of the root system, increased the content of photosynthetic pigments, improved the performance of photosystems I and II and the coordination of both photosystems, and enhanced the photosynthetic capacity of P. vulgaris. In addition, it significantly increased the dry mass of whole plant and spica and promoted the accumulation of total flavonoids, total phenolics, caffeic acid, ferulic acid, rosmarinic acid, and hyperoside in the spica of P. vulgaris. These findings demonstrated that the application of MT could effectively activate the antioxidant defense system of P. vulgaris, protect the photosynthetic apparatus from photooxidation damage, and improve the photosynthetic capacity and the root absorption capacity, thereby promoting the yield and accumulation of secondary metabolites in P. vulgaris.
Collapse
Affiliation(s)
- Qingshan Chang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Lixia Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Shuangchen Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Minggui Gong
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Longchang Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Xiaogai Hou
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Yinfa Mi
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Xiaohui Wang
- Peony Research Institute, Luoyang Academy of Agriculture and Forestry Sciences, Luoyang 471023, China
| | - Jianzhang Wang
- Luoyang Greening Management Center, Luoyang 471023, China
| | - Yue Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Yiming Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| |
Collapse
|
17
|
Ahmad R, Manzoor M, Muhammad HMD, Altaf MA, Shakoor A. Exogenous Melatonin Spray Enhances Salinity Tolerance in Zizyphus Germplasm: A Brief Theory. Life (Basel) 2023; 13:life13020493. [PMID: 36836849 PMCID: PMC9958626 DOI: 10.3390/life13020493] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Fruit orchards are frequently irrigated with brackish water. Irrigation with poor quality water is also a major cause of salt accumulation in soil. An excess of salts results in stunted growth, poor yield, inferior quality and low nutritional properties. Melatonin is a low molecular weight protein that shows multifunctional, regulatory and pleiotropic behavior in the plant kingdom. Recently, its discovery brought a great revolution in sustainable fruit production under salinity-induced environments. Melatonin contributed to enhanced tolerance in Zizyphus fruit species by improving the plant defense system's potential to cope with the adverse effects of salinity. The supplemental application of melatonin has improved the generation of antioxidant assays and osmolytes involved in the scavenging of toxic ROS. The tolerance level of the germplasm is chiefly based on the activation of the defense system against the adverse effects of salinity. The current study explored the contribution of melatonin against salinity stress and provides information regarding which biochemical mechanism can be effective and utilized for the development of salt-tolerant germplasm in Zizyphus.
Collapse
Affiliation(s)
- Riaz Ahmad
- Department of Horticulture, The University of Agriculture, Dera Ismail Khan 29220, Pakistan
| | - Meryam Manzoor
- Department of Horticulture, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | | | - Awais Shakoor
- Teagasc, Environment, Soils and Land Use Department, Johnstown Castle, Co., Y35 Y521 Wexford, Ireland
| |
Collapse
|
18
|
Hernández-Ruiz J, Giraldo-Acosta M, El Mihyaoui A, Cano A, Arnao MB. Melatonin as a Possible Natural Anti-Viral Compound in Plant Biocontrol. PLANTS (BASEL, SWITZERLAND) 2023; 12:781. [PMID: 36840129 PMCID: PMC9961163 DOI: 10.3390/plants12040781] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Melatonin is a multifunctional and ubiquitous molecule. In animals, melatonin is a hormone that is involved in a wide range of physiological activities and is also an excellent antioxidant. In plants, it has been considered a master regulator of multiple physiological processes as well as of hormonal homeostasis. Likewise, it is known for its role as a protective biomolecule and activator of tolerance and resistance against biotic and abiotic stress in plants. Since infections by pathogens such as bacteria, fungi and viruses in crops result in large economic losses, interest has been aroused in determining whether melatonin plays a relevant role in plant defense systems against pathogens in general, and against viruses in particular. Currently, several strategies have been applied to combat infection by pathogens, one of them is the use of eco-friendly chemical compounds that induce systemic resistance. Few studies have addressed the use of melatonin as a biocontrol agent for plant diseases caused by viruses. Exogenous melatonin treatments have been used to reduce the incidence of several virus diseases, reducing symptoms, virus titer, and even eradicating the proliferation of viruses such as Tobacco Mosaic Virus, Apple Stem Grooving Virus, Rice Stripe Virus and Alfalfa Mosaic Virus in tomato, apple, rice and eggplant, respectively. The possibilities of using melatonin as a possible natural virus biocontrol agent are discussed.
Collapse
|
19
|
Melatonin Affects the Photosynthetic Performance of Pepper ( Capsicum annuum L.) Seedlings under Cold Stress. Antioxidants (Basel) 2022; 11:antiox11122414. [PMID: 36552621 PMCID: PMC9774265 DOI: 10.3390/antiox11122414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Photosynthesis is an important plant metabolic mechanism that improves carbon absorption and crop yield. Photosynthetic efficiency is greatly hampered by cold stress (CS). Melatonin (ME) is a new plant growth regulator that regulates a wide range of abiotic stress responses. However, the molecular mechanism of ME-mediated photosynthetic regulation in cold-stressed plants is not well understood. Our findings suggest that under low-temperature stress (15/5 °C for 7 days), spraying the plant with ME (200 µM) enhanced gas exchange characteristics and the photosynthetic pigment content of pepper seedlings, as well as upregulated their biosynthetic gene expression. Melatonin increased the activity of photosynthetic enzymes (Rubisco and fructose-1, 6-bisphosphatase) while also enhancing starch, sucrose, soluble sugar, and glucose content under CS conditions. Low-temperature stress significantly decreased the photochemical activity of photosystem II (PSII) and photosystem I (PSI), specifically their maximum quantum efficiency PSII (Fv/Fm) and PSI (Pm). In contrast, ME treatment improved the photochemical activity of PSII and PSI. Furthermore, CS dramatically reduced the actual PSII efficiency (ΦPSII), electron transport rate (ETR) and photochemical quenching coefficient (qP), while enhancing nonphotochemical quenching (NPQ); however, ME treatment substantially mitigated the effects of CS. Our results clearly show the probable function of ME treatment in mitigating the effects of CS by maintaining photosynthetic performance, which might be beneficial when screening genotypes for CS tolerance.
Collapse
|
20
|
Arnao MB, Hernández-Ruiz J, Cano A. Role of Melatonin and Nitrogen Metabolism in Plants: Implications under Nitrogen-Excess or Nitrogen-Low. Int J Mol Sci 2022; 23:ijms232315217. [PMID: 36499543 PMCID: PMC9741234 DOI: 10.3390/ijms232315217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Melatonin is a new plant hormone involved in multiple physiological functions in plants such as germination, photosynthesis, plant growth, flowering, fruiting, and senescence, among others. Its protective role in different stress situations, both biotic and abiotic, has been widely demonstrated. Melatonin regulates several routes in primary and secondary plant metabolism through the up/down-regulation of many enzyme/factor genes. Many of the steps of nitrogen metabolism in plants are also regulated by melatonin and are presented in this review. In addition, the ability of melatonin to enhance nitrogen uptake under nitrogen-excess or nitrogen-low conditions is analyzed. A model that summarizes the distribution of nitrogen compounds, and the osmoregulation and redox network responses mediated by melatonin, are presented. The possibilities of using melatonin in crops for more efficient uptake, the assimilation and metabolization of nitrogen from soil, and the implications for Nitrogen Use Efficiency strategies to improve crop yield are also discussed.
Collapse
|
21
|
Chen Q, Hou S, Pu X, Li X, Li R, Yang Q, Wang X, Guan M, Rengel Z. Dark secrets of phytomelatonin. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5828-5839. [PMID: 35522068 DOI: 10.1093/jxb/erac168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Phytomelatonin is a newly identified plant hormone, and its primary functions in plant growth and development remain relatively poorly appraised. Phytomelatonin is a master regulator of reactive oxygen species (ROS) signaling and acts as a darkness signal in circadian stomatal closure. Plants exhibit at least three interrelated patterns of interaction between phytomelatonin and ROS production. Exogenous melatonin can induce flavonoid biosynthesis, which might be required for maintenance of antioxidant capacity under stress, after harvest, and in leaf senescence conditions. However, several genetic studies have provided direct evidence that phytomelatonin plays a negative role in the biosynthesis of flavonoids under non-stress conditions. Phytomelatonin delays flowering time in both dicot and monocot plants, probably via its receptor PMTR1 and interactions with the gibberellin, strigolactone, and ROS signaling pathways. Furthermore, phytomelatonin signaling also functions in hypocotyl and shoot growth in skotomorphogenesis and ultraviolet B (UV-B) exposure; the G protein α-subunit (Arabidopsis GPA1 and rice RGA1) and constitutive photomorphogenic1 (COP1) are important signal components during this process. Taken together, these findings indicate that phytomelatonin acts as a darkness signal with important regulatory roles in circadian stomatal closure, flavonoid biosynthesis, flowering, and hypocotyl and shoot growth.
Collapse
Affiliation(s)
- Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Suying Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaojun Pu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaomin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Rongrong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xinjia Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Miao Guan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth WA, Australia
- Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
| |
Collapse
|
22
|
Song Z, Yang Q, Dong B, Li N, Wang M, Du T, Liu N, Niu L, Jin H, Meng D, Fu Y. Melatonin enhances stress tolerance in pigeon pea by promoting flavonoid enrichment, particularly luteolin in response to salt stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5992-6008. [PMID: 35727860 DOI: 10.1093/jxb/erac276] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/17/2022] [Indexed: 05/27/2023]
Abstract
Melatonin improves plant resistance to multiple stresses by participating in the biosynthesis of metabolites. Flavonoids are an important family of plant secondary metabolites and are widely recognized to be involved in resistance; however, the crosstalk between melatonin and flavonoid is largely unknown. We found that the resistance of pigeon pea (Cajanus cajan) to salt, drought, and heat stresses were significantly enhanced by pre-treatment with melatonin. Combined transcriptome and LC-ESI-MS/MS metabolomics analyses showed that melatonin significantly induced the enrichment of flavonoids and mediated the reprogramming of biosynthetic pathway genes. The highest fold-increase in expression in response to melatonin treatment was observed for the CcF3´H family, which encodes an enzyme that catalyses the biosynthesis of luteolin, and the transcription factor CcPCL1 directly bonded to the CcF3´H-5 promoter to enhance its expression. In addition, salt stress also induced the expression of CcPCL1 and CcF3´H-5, and their overexpression in transgenic plants greatly enhanced salt tolerance by promoting the biosynthesis of luteolin. Overall, our results indicated that pre-treatment of pigeon pea with melatonin promoted luteolin biosynthesis through the CcPCL1 and CcF3´H-5 pathways, resulting in salt tolerance. Our study shows that melatonin enhances plant tolerance to multiple stresses by mediating flavonoid biosynthesis, providing new avenues for studying the crosstalk between melatonin and flavonoids.
Collapse
Affiliation(s)
- Zhihua Song
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Qing Yang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Biying Dong
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Na Li
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Mengying Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Tingting Du
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Ni Liu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Lili Niu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Haojie Jin
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Dong Meng
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Yujie Fu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
23
|
Arnao MB, Cano A, Hernández-Ruiz J. Phytomelatonin: an unexpected molecule with amazing performances in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5779-5800. [PMID: 35029657 DOI: 10.1093/jxb/erac009] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/11/2022] [Indexed: 05/14/2023]
Abstract
Phytomelatonin, a multifunctional molecule that has been found to be present in all plants examined to date, has an important role in plants as a modulatory agent (a biostimulator) that improves plant tolerance to both biotic and abiotic stress. We present a review of phytomelatonin that considers its roles in plant metabolism and in particular its interactions with plant hormone network. In the primary metabolism of plants, melatonin improves the rate and efficiency of photosynthesis, as well related factors such as stomatal conductance, intercellular CO2, and Rubisco activity. It has also been shown to down-regulate some senescence transcription factors. Melatonin up-regulates many enzyme transcripts related to carbohydrates (including sucrose and starch), amino acids, and lipid metabolism, optimizing N, P, and S uptake. With respect to the secondary metabolism, clear increases in polyphenol, glucosinolate, terpenoid, and alkaloid contents have been described in numerous melatonin-treated plants. Generally, the most important genes of these secondary biosynthesis pathways have been found to be up-regulated by melatonin. The great regulatory capacity of melatonin is a result of its control of the redox and plant hormone networks. Melatonin acts as a plant master regulator, up-/down-regulating different plant hormone levels and signalling, and is a key player in redox homeostasis. It has the capacity to counteract diverse critical situations such as pathogen infections and abiotic stresses, and provide plants with varying degrees of tolerance. We propose possible future applications of melatonin for crop improvement and post-harvest product preservation.
Collapse
Affiliation(s)
- Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100-Murcia, Spain
| | - Antonio Cano
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100-Murcia, Spain
| | - Josefa Hernández-Ruiz
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100-Murcia, Spain
| |
Collapse
|
24
|
Wang LF, Lu KK, Li TT, Zhang Y, Guo JX, Song RF, Liu WC. Maize PHYTOMELATONIN RECEPTOR1 functions in plant tolerance to osmotic and drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5961-5973. [PMID: 34922349 DOI: 10.1093/jxb/erab553] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Phytomelatonin is a universal signal molecule that regulates plant growth and stress responses; however, only one receptor that can directly bind with and perceive melatonin signaling has been identified so far, namely AtPMTR1/CAND2 in Arabidopsis. Whether other plants contain a similar receptor and, if so, how it functions is still unknown. In this study, we identified a new phytomelatonin receptor in the monocot maize (Zea mays), and investigated its role in plant responses to osmotic and drought stress. Using homology searching, we identified a plasma membrane-localized protein, Zm00001eb214610/ZmPMTR1, with strong binding activity to melatonin as a potential phytomelatonin receptor in maize. Overexpressing ZmPMTR1 in Arabidopsis Col-0 promoted osmotic stress tolerance, and rescued osmotic stress sensitivity of the Arabidopsis cand2-1 mutant. Furthermore, ZmPMTR1 also largely rescued defects in melatonin-induced stomatal closure in the cand2-1 mutant, thereby reducing water loss rate and increasing tolerance to drought stress. In addition, we identified a maize mutant of ZmPMTR1, EMS4-06e2fl, with a point-mutation causing premature termination of protein translation, and found that this mutant had lower leaf temperatures, increased rate of water loss, and enhanced drought stress sensitivity. Thus, we present ZmPMTR1 as the first phytomelatonin receptor to be identified and examined in a monocot plant, and our results indicate that it plays an important function in the response of maize to drought stress.
Collapse
Affiliation(s)
- Lin-Feng Wang
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Kai-Kai Lu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Ting-Ting Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yu Zhang
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jia-Xing Guo
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Ru-Feng Song
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wen-Cheng Liu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
25
|
Maity S, Guchhait R, Pramanick K. Melatonin mediated activation of MAP kinase pathway may reduce DNA damage stress in plants: A review. Biofactors 2022; 48:965-971. [PMID: 35938772 DOI: 10.1002/biof.1882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/20/2022] [Indexed: 12/21/2022]
Abstract
Melatonin is an important biomolecule found in diverse groups of organisms. Under different abiotic stresses, the synthesis of melatonin is markedly increased suggesting pivotal roles of melatonin in plants enduring stresses. Being an endogenous signaling molecule with antioxidant activity, melatonin alters many physiological responses and is found to be involved in regulating DNA damage responses. However, the molecular mechanisms of melatonin in response to DNA damage have not yet been studied. The present review aims to provide insights into the molecular mechanisms of melatonin in response to DNA damage in plants. We propose that the MAP kinase pathway is involved in regulating melatonin dependent response of plants under DNA damage stress. Where melatonin might activate MAPK via H2 O2 or Ca2+ dependent pathways. The activated MAPK in turn might phosphorylate and activate SOG1 and repressor type MYBs to mitigate DNA damage under abiotic stress.
Collapse
Affiliation(s)
- Sukhendu Maity
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Rajkumar Guchhait
- P.G. Department of Zoology, Mahishadal Raj College, Purba Medinipur, West Bengal, India
| | - Kousik Pramanick
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
26
|
Altaf MA, Shahid R, Altaf MM, Kumar R, Naz S, Kumar A, Alam P, Tiwari RK, Lal MK, Ahmad P. Melatonin: First-line soldier in tomato under abiotic stress current and future perspective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:188-197. [PMID: 35700585 DOI: 10.1016/j.plaphy.2022.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/13/2022] [Accepted: 06/02/2022] [Indexed: 05/26/2023]
Abstract
Melatonin is a natural, multifunctional, nontoxic, regulatory, and ubiquitous biomolecule, having low molecular weight and pleiotropic effects in the plant kingdom. It is a recently discovered plant master regulator which has a crucial role under abiotic stress conditions (salinity, drought, heat, cold, alkalinity, acid rain, ozone, and metals stress). In the solanaceous family, the tomato is highly sensitive to abiotic stresses that affect its growth and development, ultimately hampering production and productivity. Melatonin acts as a strong antioxidant, bio-stimulator, and growth regulator, facilitating photosynthesis, delaying leaf senescence, and increasing the antioxidant enzymes system through direct scavenging of reactive oxygen species (ROS) under abiotic stresses. In addition, melatonin also boosts morphological traits such as vegetative growth, leaf photosynthesis, root architecture system, mineral nutrient elements, and antioxidant activities in tomato plants, confirming their tolerances against salinity, drought, heat, cold, alkalinity, acid rain, chemical, pathogen, and metals stress. In this review, an attempt has been made to summarize the potential role of melatonin for tomato plant endurance towards abiotic stresses, along with the known relationship between the two.
Collapse
Affiliation(s)
| | - Rabia Shahid
- School of Management, Hainan University, Haikou, 570228, China
| | | | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, 171001, HP, India
| | - Safina Naz
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, 171001, HP, India; ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, 171001, HP, India; ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
27
|
Effect of Melatonin in Broccoli Postharvest and Possible Melatonin Ingestion Level. PLANTS 2022; 11:plants11152000. [PMID: 35956477 PMCID: PMC9370688 DOI: 10.3390/plants11152000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/28/2023]
Abstract
The post-harvest stage of broccoli production requires cold storage to obtain enough days of shelf life. It has been proved that melatonin is useful as a post-harvest agent in fruits and vegetables, including broccoli. In this study, the broccoli heads treated with melatonin have a longer shelf life than the control samples, which was reflected in parameters such as fresh weight, hue angle (expresses color quality), and chlorophyll and carotenoid contents. Treatments with 100 μM melatonin for 15 or 30 min seem to be the most appropriate, extending the broccoli’s shelf life to almost 42 days, when it is normally around 4 weeks. In addition, a study on the possible impact that melatonin treatments in broccoli could have on melatonin intake in humans is presented. The levels of superficial melatonin, called washing or residual melatonin, are measured, showing the possible incidence in estimated blood melatonin levels. Our results suggest that post-harvest treatments with melatonin do not have to be a handicap from a nutritional point of view, but more research is needed.
Collapse
|
28
|
Tiwari RK, Lal MK, Kumar R, Mangal V, Altaf MA, Sharma S, Singh B, Kumar M. Insight into melatonin-mediated response and signaling in the regulation of plant defense under biotic stress. PLANT MOLECULAR BIOLOGY 2022; 109:385-399. [PMID: 34783977 DOI: 10.1007/s11103-021-01202-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/24/2021] [Indexed: 05/11/2023]
Abstract
Melatonin plays a crucial role in the mitigation of plant biotic stress through induced defense responses and pathogen attenuation. Utilizing the current knowledge of signaling and associated mechanism of this phytoprotectant will be invaluable in sustainable plant disease management. Biotic stress in plants involves complex regulatory networks of various sensory and signaling molecules. In this context, the polyfunctional, ubiquitous-signaling molecule melatonin has shown a regulatory role in biotic stress mitigation in plants. The present review conceptualized the current knowledge concerning the melatonin-mediated activation of the defense signaling network that leads to the resistant or tolerant phenotype of the infected plants. Fundamentals of signaling networks involved in melatonin-induced reactive oxygen species (ROS) or reactive nitrogen species (RNS) scavenging through enzymatic and non-enzymatic antioxidants have also been discussed. Increasing evidence has suggested that melatonin acts upstream of mitogen-activated proteinase kinases in activation of defense-related genes and heat shock proteins that provide immunity against pathogen attack. Besides, the direct application of melatonin on virulent fungi and bacteria showed disrupted spore morphology, destabilization of cell ultrastructure, reduced biofilm formation, and enhanced mortality that led to attenuate disease symptoms on melatonin-treated plants. The transcriptome analysis has revealed the down-regulation of pathogenicity genes, metabolism-related genes, and up-regulation of fungicide susceptibility genes in melatonin-treated pathogens. The activation of melatonin-mediated systemic acquired resistance (SAR) through cross-talk with salicylic acid (SA), jasmonic acid (JA) has been essential for viral disease management. The high endogenous melatonin concentration has also been correlated with the up-regulation of genes involved in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI). The present review highlights the versatile functions of melatonin towards direct inhibition of pathogen propagule along with active participation in mediating oxidative burst and simulating PTI, ETI and SAR responses. The hormonal cross-talk involving melatonin mediated biotic stress tolerance through defense signaling network suggests its suitability in a sustainable plant protection system.
Collapse
Affiliation(s)
- Rahul Kumar Tiwari
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Milan Kumar Lal
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
| | - Vikas Mangal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | | | - Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Manoj Kumar
- ICAR-Central Potato Research Institute, Regional Station, Modipuram, UP, 250 110, India
| |
Collapse
|
29
|
Melatonin Alleviates Copper Toxicity via Improving ROS Metabolism and Antioxidant Defense Response in Tomato Seedlings. Antioxidants (Basel) 2022; 11:antiox11040758. [PMID: 35453443 PMCID: PMC9025625 DOI: 10.3390/antiox11040758] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 12/21/2022] Open
Abstract
The excessive accumulation of copper (Cu2+) has become a threat to worldwide crop production. Recently, it was revealed that melatonin (MT) could play a crucial role against heavy metal (HM) stresses in plants. However, the underlying mechanism of MT function acted upon by Cu2+ stress (CS) has not been substantiated in tomatoes. In the present work, we produced MT-rich tomato plants by foliar usage of MT, and MT-deficient tomato plants by employing a virus-induced gene silencing methodology and exogenous foliar application of MT synthesis inhibitor para-chlorophenylalanine (pCPA). The obtained results indicate that exogenous MT meaningfully alleviated the dwarf phenotype and impeded the reduction in plant growth caused by excess Cu2+. Furthermore, MT effectively restricted the generation of reactive oxygen species (ROS) and habilitated cellular integrity by triggering antioxidant enzyme activities, especially via CAT and APX, but not SOD and POD. In addition, MT increased nonenzymatic antioxidant activity, including FRAP and the GSH/GSSG and ASA/DHA ratios. MT usage improved the expression of several defense genes (CAT, APX, GR and MDHAR) and MT biosynthesis-related genes (TDC, SNAT and COMT). Taken together, our results preliminarily reveal that MT alleviates Cu2+ toxicity via ROS scavenging, enhancing antioxidant capacity when subjected to excessive Cu2+. These results build a solid foundation for developing new insights to solve problems related to CS.
Collapse
|
30
|
Li X, Rengel Z, Chen Q. Phytomelatonin prevents bacterial invasion during nighttime. TRENDS IN PLANT SCIENCE 2022; 27:331-334. [PMID: 34996703 DOI: 10.1016/j.tplants.2021.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Phytomelatonin is an emerging new plant hormone. The identification of phytomelatonin receptor 1 (PMTR1) has been a turning point for understanding phytomelatonin functions, but many uncertainties remain. Here we highlight how PMTR1-mediated phytomelatonin signaling closes stomata, not just to avoid water loss but also to prevent bacterial invasion at night.
Collapse
Affiliation(s)
- Xiaomin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia
| | - Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
31
|
Giraldo Acosta M, Cano A, Hernández-Ruiz J, Arnao MB. Melatonin as a Possible Natural Safener in Crops. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070890. [PMID: 35406870 PMCID: PMC9003551 DOI: 10.3390/plants11070890] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 05/04/2023]
Abstract
Melatonin is a well-known animal hormone with relevant and multiple cellular and hormonal roles. Its discovery in plants in 1995 has led to a great diversity of molecular and physiological studies that have been showing its multiple actions also in plants. Its roles as a biostimulator and modulator agent of responses to abiotic and biotic stresses have been widely studied. This review raises the possible use of melatonin as a natural safener in herbicide treatments. Existing studies have shown excellent co-acting qualities between both the following agents: herbicide and melatonin. The presence of melatonin reduces the damage caused by the herbicide in the crop and enhances the stress antioxidant response of plants. In this area, a similar role is suggested in the co-action between fungicides and melatonin, where a synergistic response has been demonstrated in some cases. The possible reduction in the fungicide doses is proposed as an eco-friendly advance in the use of these pesticides in certain crops. Finally, future research and applied actions of melatonin on these pest control agents are suggested.
Collapse
|
32
|
Function, Mechanism, and Application of Plant Melatonin: An Update with a Focus on the Cereal Crop, Barley (Hordeum vulgare L.). Antioxidants (Basel) 2022; 11:antiox11040634. [PMID: 35453319 PMCID: PMC9028855 DOI: 10.3390/antiox11040634] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
Melatonin is a multiple-function molecule that was first identified in animals and later in plants. Plant melatonin regulates versatile processes involved in plant growth and development, including seed germination, root architecture, flowering time, leaf senescence, fruit ripening, and biomass production. Published reviews on plant melatonin have been focused on two model plants: (1) Arabidopsis and (2) rice, in which the natural melatonin contents are quite low. Efforts to integrate the function and the mechanism of plant melatonin and to determine how plant melatonin benefits human health are also lacking. Barley is a unique cereal crop used for food, feed, and malt. In this study, a bioinformatics analysis to identify the genes required for barley melatonin biosynthesis was first performed, after which the effects of exogenous melatonin on barley growth and development were reviewed. Three integrated mechanisms of melatonin on plant cells were found: (1) serving as an antioxidant, (2) modulating plant hormone crosstalk, and (3) signaling through a putative plant melatonin receptor. Reliable approaches for characterizing the function of barley melatonin biosynthetic genes and to modulate the melatonin contents in barley grains are discussed. The present paper should be helpful for the improvement of barley production under hostile environments and for the reduction of pesticide and fungicide usage in barley cultivation. This study is also beneficial for the enhancement of the nutritional values and healthcare functions of barley in the food industry.
Collapse
|
33
|
Hernández-Ruiz J, Ruiz-Cano D, Giraldo-Acosta M, Cano A, Arnao MB. Melatonin in Brassicaceae: Role in Postharvest and Interesting Phytochemicals. Molecules 2022; 27:1523. [PMID: 35268624 PMCID: PMC8911641 DOI: 10.3390/molecules27051523] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 01/12/2023] Open
Abstract
Brassicaceae plants are of great interest for human consumption due to their wide variety and nutritional qualities. Of the more than 4000 species that make up this family, about a hundred varieties of 6-8 genera are extensively cultivated. One of the most interesting aspects is its high content of glucosinolates, which are plant secondary metabolites with widely demonstrated anti-oncogenic properties that make them healthy. The most relevant Brassicaceae studies related to food and melatonin are examined in this paper. The role of melatonin as a beneficial agent in seedling grown mainly in cabbage and rapeseed and in the postharvest preservation of broccoli is especially analyzed. The beneficial effect of melatonin treatments on the organoleptic properties of these commonly consumed vegetables can be of great interest in the agri-food industry. Melatonin application extends the shelf life of fresh-cut broccoli while maintaining optimal visual and nutritional parameters. In addition, an integrated model indicating the role of melatonin on the organoleptic properties, the biosynthesis of glucosinolates and the regulatory action of these health-relevant compounds with anti-oncogenic activity is presented.
Collapse
Affiliation(s)
| | | | | | | | - Marino B. Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (J.H.-R.); (D.R.-C.); (M.G.-A.); (A.C.)
| |
Collapse
|
34
|
Exogenous Melatonin Improves Cold Tolerance of Strawberry (Fragaria × ananassa Duch.) through Modulation of DREB/CBF-COR Pathway and Antioxidant Defense System. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030194] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The strawberry (Fragaria × ananassa Duch.) is an important fruit crop cultivated worldwide for its unique taste and nutritional properties. One of the major risks associated with strawberry production is cold damage. Recently, melatonin has emerged as a multifunctional signaling molecule that influences plant growth and development and reduces adverse consequences of cold stress. The present study was conducted to investigate the defensive role of melatonin and its potential interrelation with abscisic acid (ABA) in strawberry plants under cold stress. The results demonstrate that melatonin application conferred improved cold tolerance on strawberry seedlings by reducing malondialdehyde and hydrogen peroxide contents under cold stress. Conversely, pretreatment of strawberry plants with 100 μM melatonin increased soluble sugar contents and different antioxidant enzyme activities (ascorbate peroxidase, catalase, and peroxidase) and non-enzymatic antioxidant (ascorbate and glutathione) activities under cold stress. Furthermore, exogenous melatonin treatment stimulated the expression of the DREB/CBF—COR pathways’ downstream genes. Interestingly, ABA treatment did not change the expression of the DREB/CBF—COR pathway. These findings imply that the DREB/CBF-COR pathway confers cold tolerance on strawberry seedlings through exogenous melatonin application. Taken together, our results reveal that melatonin (100 μM) pretreatment protects strawberry plants from the damages induced by cold stress through enhanced antioxidant defense potential and modulating the DREB/CBF—COR pathway.
Collapse
|
35
|
Melatonin Improves Drought Stress Tolerance of Tomato by Modulation Plant Growth, Root Architecture, Photosynthesis, and Antioxidant Defense System. Antioxidants (Basel) 2022; 11:antiox11020309. [PMID: 35204192 PMCID: PMC8868175 DOI: 10.3390/antiox11020309] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Tomato is an important vegetable that is highly sensitive to drought (DR) stress which impairs the development of tomato seedlings. Recently, melatonin (ME) has emerged as a nontoxic, regulatory biomolecule that regulates plant growth and enhances the DR tolerance mechanism in plants. The present study was conducted to examine the defensive role of ME in photosynthesis, root architecture, and the antioxidant enzymes’ activities of tomato seedlings subjected to DR stress. Our results indicated that DR stress strongly suppressed growth and biomass production, inhibited photosynthesis, negatively affected root morphology, and reduced photosynthetic pigments in tomato seedlings. Per contra, soluble sugars, proline, and ROS (reactive oxygen species) were suggested to be improved in seedlings under DR stress. Conversely, ME (100 µM) pretreatment improved the detrimental-effect of DR by restoring chlorophyll content, root architecture, gas exchange parameters and plant growth attributes compared with DR-group only. Moreover, ME supplementation also mitigated the antioxidant enzymes [APX (ascorbate peroxidase), CAT (catalase), DHAR (dehydroascorbate reductase), GST (glutathione S-transferase), GR (glutathione reductase), MDHAR (monodehydroascorbate reductase), POD (peroxidase), and SOD (superoxide dismutase)], non-enzymatic antioxidant [AsA (ascorbate), DHA (dehydroascorbic acid), GSH (glutathione), and GSSG, (oxidized glutathione)] activities, reduced oxidative damage [EL (electrolyte leakage), H2O2 (hydrogen peroxide), MDA (malondialdehyde), and O2•− (superoxide ion)] and osmoregulation (soluble sugars and proline) of tomato seedlings, by regulating gene expression for SOD, CAT, APX, GR, POD, GST, DHAR, and MDHAR. These findings determine that ME pretreatment could efficiently improve the seedlings growth, root characteristics, leaf photosynthesis and antioxidant machinery under DR stress and thereby increasing the seedlings’ adaptability to DR stress.
Collapse
|
36
|
Iqbal S, Wang X, Mubeen I, Kamran M, Kanwal I, Díaz GA, Abbas A, Parveen A, Atiq MN, Alshaya H, Zin El-Abedin TK, Fahad S. Phytohormones Trigger Drought Tolerance in Crop Plants: Outlook and Future Perspectives. FRONTIERS IN PLANT SCIENCE 2022; 12:799318. [PMID: 35095971 PMCID: PMC8792739 DOI: 10.3389/fpls.2021.799318] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/27/2021] [Indexed: 05/20/2023]
Abstract
In the past and present, human activities have been involved in triggering global warming, causing drought stresses that affect animals and plants. Plants are more defenseless against drought stress; and therefore, plant development and productive output are decreased. To decrease the effect of drought stress on plants, it is crucial to establish a plant feedback mechanism of resistance to drought. The drought reflex mechanisms include the physical stature physiology and biochemical, cellular, and molecular-based processes. Briefly, improving the root system, leaf structure, osmotic-balance, comparative water contents and stomatal adjustment are considered as most prominent features against drought resistance in crop plants. In addition, the signal transduction pathway and reactive clearance of oxygen are crucial mechanisms for coping with drought stress via calcium and phytohormones such as abscisic acid, salicylic acid, jasmonic acid, auxin, gibberellin, ethylene, brassinosteroids and peptide molecules. Furthermore, microorganisms, such as fungal and bacterial organisms, play a vital role in increasing resistance against drought stress in plants. The number of characteristic loci, transgenic methods and the application of exogenous substances [nitric oxide, (C28H48O6) 24-epibrassinolide, proline, and glycine betaine] are also equally important for enhancing the drought resistance of plants. In a nutshell, the current review will mainly focus on the role of phytohormones and related mechanisms involved in drought tolerance in various crop plants.
Collapse
Affiliation(s)
- Shehzad Iqbal
- Faculty of Agriculture Sciences, Universidad De Talca, Talca, Chile
| | - Xiukang Wang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an, China
| | - Iqra Mubeen
- Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Muhammad Kamran
- School of Agriculture, Food, and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Iqra Kanwal
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Gonzalo A. Díaz
- Faculty of Agriculture Sciences, Universidad De Talca, Talca, Chile
| | - Aqleem Abbas
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aasma Parveen
- Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Nauman Atiq
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huda Alshaya
- Cell and Molecular Biology, University of Arkansas, Fayetteville, NC, United States
| | - Tarek K. Zin El-Abedin
- Department of Agriculture and Biosystems Engineering, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Department of Agronomy, The University of Haripur, Haripur, Pakistan
| |
Collapse
|
37
|
Ali S, Gill RA, Shafique MS, Ahmar S, Kamran M, Zhang N, Riaz M, Nawaz M, Fang R, Ali B, Zhou W. Role of phytomelatonin responsive to metal stresses: An omics perspective and future scenario. FRONTIERS IN PLANT SCIENCE 2022; 13:936747. [PMID: 36147242 PMCID: PMC9486320 DOI: 10.3389/fpls.2022.936747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/08/2022] [Indexed: 05/03/2023]
Abstract
A pervasive melatonin (N-acetyl-5-methoxytryptamine) reveals a crucial role in stress tolerance and plant development. Melatonin (MT) is a unique molecule with multiple phenotypic expressions and numerous actions within the plants. It has been extensively studied in crop plants under different abiotic stresses such as drought, salinity, heat, cold, and heavy metals. Mainly, MT role is appraised as an antioxidant molecule that deals with oxidative stress by scavenging reactive oxygen species (ROS) and modulating stress related genes. It improves the contents of different antioxidant enzyme activities and thus, regulates the redox hemostasis in crop plants. In this comprehensive review, regulatory effects of melatonin in plants as melatonin biosynthesis, signaling pathway, modulation of stress related genes and physiological role of melatonin under different heavy metal stress have been reviewed in detail. Further, this review has discussed how MT regulates different genes/enzymes to mediate defense responses and overviewed the context of transcriptomics and phenomics followed by the metabolomics pathways in crop plants.
Collapse
Affiliation(s)
- Skhawat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Rafaqat Ali Gill
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | | | - Sunny Ahmar
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, Australia
| | - Na Zhang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Muhammad Riaz
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, China
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Rouyi Fang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
- Basharat Ali,
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
- *Correspondence: Weijun Zhou,
| |
Collapse
|
38
|
Yang Q, Peng Z, Ma W, Zhang S, Hou S, Wei J, Dong S, Yu X, Song Y, Gao W, Rengel Z, Huang L, Cui X, Chen Q. Melatonin functions in priming of stomatal immunity in Panax notoginseng and Arabidopsis thaliana. PLANT PHYSIOLOGY 2021; 187:2837-2851. [PMID: 34618091 PMCID: PMC8644721 DOI: 10.1093/plphys/kiab419] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/30/2021] [Indexed: 05/05/2023]
Abstract
Melatonin (MT) plays important roles in plant disease response, but the mechanisms are largely unknown. Here, we show that MT functions in stomatal immunity in Panax notoginseng and Arabidopsis thaliana. Biochemical analyses showed that MT-induced stomatal closure plays a prominent role in preventing invasion of bacteria Pseudomonas syringe pv. tomato (Pst) DC3000 via activation of mitogen-activated protein kinase (MAPK) and NADPH oxidase-mediated reactive oxygen species production in P. notoginseng. The first putative phytomelatonin receptor 1 (PMTR1) is a plasma membrane protein required for perceiving MT signaling in stomatal closure and activation of MAPK. Biochemical and genetic tests found PMTR1 is essential for flg22- and MT-induced MAPK activation in a heterotrimeric GTP-binding protein Gα subunit GPA1-independent manner. GPA1 functions in the same genetic pathways of FLS2/BAK1 (Flagellin Sensing 2/Brassinosteroid Insensitive 1-associated kinase 1)- as well as PMTR1-mediated flg22 and MT signaling in stomatal closure. The stomata in pmtr1 are insensitive to MT and flg22, but the application of MT induces stomatal closure and reduces the bacterial growth in fls2 and bak1 plants, indicating that PMTR1 might be a downstream signaling component in FLS2- and BAK1-mediated stomatal immunity. In summary, our results (i) demonstrate that phytomelatonin functions in the priming of stomatal immunity and (ii) provide insights into the phytomelatonin signaling transduction pathway.
Collapse
Affiliation(s)
- Qian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources, Sanqi Research Institute of Yunnan province, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhongping Peng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Wenna Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Siqi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Suyin Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jian Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Shuwei Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuzhu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Wei Gao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Zed Rengel
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, Western Australia 6009, Australia
- Institute for Adriatic Crops and Karst Reclamation, Split 21000, Croatia
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources, Sanqi Research Institute of Yunnan province, Kunming University of Science and Technology, Kunming 650500, China
| | - Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources, Sanqi Research Institute of Yunnan province, Kunming University of Science and Technology, Kunming 650500, China
- Author for communication: ;
| |
Collapse
|
39
|
Ayyaz A, Farooq MA, Dawood M, Majid A, Javed M, Athar HUR, Bano H, Zafar ZU. Exogenous melatonin regulates chromium stress-induced feedback inhibition of photosynthesis and antioxidative protection in Brassica napus cultivars. PLANT CELL REPORTS 2021; 40:2063-2080. [PMID: 34417832 DOI: 10.1007/s00299-021-02769-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/09/2021] [Indexed: 05/06/2023]
Abstract
Melatonin is an early player in chromium stress response in canola plants; it promotes ROS scavenging and chlorophyll stability, modulates PSII stability and regulates feedback inhibition of photosynthesis conferring chromium tolerance. The development of heavy metals, especially chromium (Cr)-tolerant cultivars is mainly constrained due to poor knowledge of the mechanism behind Cr stress tolerance. In the present study, two Brassica napus contrasting cultivars Ac-Excel and DGL were studied for Cr stress tolerance by using chlorophyll a fluorescence technique and biochemical attributes with and without melatonin (MT) treatments. Cr stress significantly reduced the PSII and PSI efficiency, biomass accumulation, proline content and antioxidant enzymes in both the cultivars. The application of MT minimized the oxidative stress, as revealed via a lower level of reactive oxygen species (ROS) synthesis (H2O2 and OH-). Enhanced enzymatic activities of important antioxidants (SOD, APX, CAT, POD), proline and total soluble protein contents under MT application play an effective role in the regulation of multiple transcriptional pathways involved in oxidative stress responses. Higher NPQ and Y(NPQ) observed in Cr stress tolerant cv Ac-Excel, indicating that the MT-treated tolerant cultivar had better ability to protect PSII under Cr stress by increasing heat dissipation as photo-protective component of NPQ. Reduced PSI efficiency along with increased donor end limitation of PSI in both canola cultivars further confirmed the lower PSII activity and electron transport from PSII. The Cr content was higher in cv. DGL as compared to (that in Ac-Excel). The application of MT significantly decreased the Cr content in leaves of both cultivars. Overall, MT-induced Cr stress tolerance in canola cultivars can be related to improved PSII activity, Y(NPQ), and antioxidant potential and these physiological attributes can effectively be used to select cultivars for Cr stress tolerance.
Collapse
Affiliation(s)
- Ahsan Ayyaz
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Ahsan Farooq
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China.
| | - Muhammad Dawood
- Department of Environmental Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Abdul Majid
- Department of Biological Sciences, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Javed
- Department of Botany, University of Education, Lahore, Sub-Campus Dera Ghazi Khan, Lahore, Pakistan
| | - Habib-Ur-Rehman Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Hussan Bano
- Department of Botany, The Women University, Multan, 60000, Pakistan
| | - Zafar Ullah Zafar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan.
| |
Collapse
|
40
|
Hernández-Ruiz J, Cano A, Arnao MB. A Phytomelatonin-Rich Extract Obtained from Selected Herbs with Application as Plant Growth Regulator. PLANTS 2021; 10:plants10102143. [PMID: 34685952 PMCID: PMC8540480 DOI: 10.3390/plants10102143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
The animal hormone melatonin (N-acetyl-5-methoxytryptamine) is a pleiotropic molecule with multiple and various functions. Phytomelatonin is the melatonin from plants and was discovered in 1995 in some species. Phytomelatonin is considered an interesting molecule in the physiology of plants, as it seems to be involved in many actions, such as germination, growth, rooting and parthenocarpy, including fruit set and ripening; it also seems to play a role during postharvest. It has been studied in processes such as primary and secondary metabolism, photosynthesis and senescence, as well as in the nitrogen and sulfur cycles. Phytomelatonin up- and down-regulates many relevant genes related to plant hormones and key genes related to the above-mentioned aspects. One of the most decisive aspects of phytomelatonin is its relevant role as a bioprotective and alleviating agent against both biotic and abiotic stressors, which has opened up the possibility of using melatonin as a phytoprotector and biostimulant in agriculture. In this respect, using material of plant origin to obtain extracts rich in phytomelatonin instead of using synthetic melatonin (thus avoiding unwanted by-products) has become a topic of discussion. This work characterized the phytomelatonin-rich extracts obtained from selected herbs and determined their contents of phytomelatonin, phenols and flavonoids; the antioxidant activity was also measured. Finally, two melatonin-specific bioassays in plants were applied to demonstrate the excellent biological properties of the natural phytomelatonin-rich extracts obtained. The herb composition and the protocols for obtaining the extracts rich in phytomelatonin are in the process of registration for their legal protection.
Collapse
|
41
|
Arnao MB, Hernández-Ruiz J, Cano A, Reiter RJ. Melatonin and Carbohydrate Metabolism in Plant Cells. PLANTS (BASEL, SWITZERLAND) 2021; 10:1917. [PMID: 34579448 PMCID: PMC8472256 DOI: 10.3390/plants10091917] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022]
Abstract
Melatonin, a multifunctional molecule that is present in all living organisms studied, is synthesized in plant cells in several intercellular organelles including in the chloroplasts and in mitochondria. In plants, melatonin has a relevant role as a modulatory agent which improves their tolerance response to biotic and abiotic stress. The role of melatonin in stress conditions on the primary metabolism of plant carbohydrates is reviewed in the present work. Thus, the modulatory actions of melatonin on the various biosynthetic and degradation pathways involving simple carbohydrates (mono- and disaccharides), polymers (starch), and derivatives (polyalcohols) in plants are evaluated. The possible applications of the use of melatonin in crop improvement and postharvest products are examined.
Collapse
Affiliation(s)
- Marino B. Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (J.H.-R.); (A.C.)
| | - Josefa Hernández-Ruiz
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (J.H.-R.); (A.C.)
| | - Antonio Cano
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (J.H.-R.); (A.C.)
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA
| |
Collapse
|
42
|
Priming Strategies for Benefiting Plant Performance under Toxic Trace Metal Exposure. PLANTS 2021; 10:plants10040623. [PMID: 33805922 PMCID: PMC8064369 DOI: 10.3390/plants10040623] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022]
Abstract
Combating environmental stress related to the presence of toxic elements is one of the most important challenges in plant production. The majority of plant species suffer from developmental abnormalities caused by an exposure to toxic concentrations of metals and metalloids, mainly Al, As, Cd, Cu, Hg, Ni, Pb, and Zn. However, defense mechanisms are activated with diverse intensity and efficiency. Enhancement of defense potential can be achieved though exogenously applied treatments, resulting in a higher capability of surviving and developing under stress and become, at least temporarily, tolerant to stress factors. In this review, I present several already recognized as well as novel methods of the priming process called priming, resulting in the so-called “primed state” of the plant organism. Primed plants have a higher capability of surviving and developing under stress, and become, at least temporarily, tolerant to stress factors. In this review, several already recognized as well as novel methods of priming plants towards tolerance to metallic stress are discussed, with attention paid to similarities in priming mechanisms activated by the most versatile priming agents. This knowledge could contribute to the development of priming mixtures to counteract negative effects of multi-metallic and multi-abiotic stresses. Presentation of mechanisms is complemented with information on the genes regulated by priming towards metallic stress tolerance. Novel compounds and techniques that can be exploited in priming experiments are also summarized.
Collapse
|