1
|
Malbec M, Andreatta M, Wieser MJ. Multimodal assessment of the role of intolerance of uncertainty in fear acquisition and extinction. Biol Psychol 2024; 192:108860. [PMID: 39270923 DOI: 10.1016/j.biopsycho.2024.108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Personality traits linked to internalizing disorders influence the way we develop fears, but also how we regain a sense of safety. In the present study, we investigated the effect of intolerance of uncertainty (IU) on defensive responses using a differential fear conditioning protocol with an extinction phase. The conditioned stimulus was associated with an aversive sound (90 dB) in 75 % of the presentations during acquisition. A final sample of 176 participants completed the experiment. We measured self-reports of associative (expectancy of the unconditioned stimulus in acquisition) and evaluative learning (arousal and valence), and both physiological (skin conductance response) and electrocortical responses (steady-state visually evoked potentials, ssVEPs; late positive potentials, LPP) to the conditioned stimuli. Our results show that IU's impact is limited, with no effect in both acquisition and extinction. These findings emphasize the necessity of large samples in research on inter-individual differences and contribute to our understanding of how IU may or may not be involved in fear and safety learning processes considering multiple aspects of fear responding.
Collapse
Affiliation(s)
- Marcelo Malbec
- Department of Psychology, Education, and Child Studies, Erasmus University Rotterdam, the Netherlands.
| | - Marta Andreatta
- Department of General Psychiatry and Psychotherapy with Outpatient Clinic, University Hospital of Tübingen, Germany
| | - Matthias J Wieser
- Department of Psychology, Education, and Child Studies, Erasmus University Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Shner-Livne G, Barak N, Shitrit I, Abend R, Shechner T. Late positive potential reveals sustained threat contingencies despite extinction in adolescents but not adults. Psychol Med 2024:1-12. [PMID: 39238134 DOI: 10.1017/s0033291724001314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
BACKGROUND Major theories link threat learning processes to anxiety symptoms, which typically emerge during adolescence. While this developmental stage is marked by substantial maturation of the neural circuity involved in threat learning, research directly examining adolescence-specific patterns of neural responding during threat learning is scarce. This study compared adolescents and adults in acquisition and extinction of conditioned threat responses assessed at the cognitive, psychophysiological, and neural levels, focusing on the late positive potential (LPP), an event-related potential (ERP) component indexing emotional valence. METHOD Sixty-five adults and 63 adolescents completed threat acquisition and extinction, 24 h apart, using the bell conditioning paradigm. Self-reported fear, skin conductance responses (SCR), and ERPs were measured. RESULTS Developmental differences emerged in neural and psychophysiological responses during threat acquisition, with adolescents displaying heightened LPP responses to threat and safety cues as well as heightened threat-specific SCR compared to adults. During extinction, SCR suggested comparable reduction in conditioned threat responses across groups, while LPP revealed incomplete extinction only among adolescents. Finally, age moderated the link between anxiety severity and LPP-assessed extinction, whereby greater anxiety severity was associated with reduced extinction among younger participants. CONCLUSIONS In line with developmental theories, adolescence is characterized by a specific age-related difficulty adapting to diminishing emotional significance of prior threats, contributing to heightened vulnerability to anxiety symptoms. Further, LPP appears to be sensitive to developmental differences in threat learning and may thus potentially serve as a useful biomarker in research on adolescents, threat learning, and anxiety.
Collapse
Affiliation(s)
- Gil Shner-Livne
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Nadav Barak
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Ido Shitrit
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Rany Abend
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, Israel
| | - Tomer Shechner
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| |
Collapse
|
3
|
Schiller B, Sperl MFJ, Kleinert T, Nash K, Gianotti LRR. EEG Microstates in Social and Affective Neuroscience. Brain Topogr 2024; 37:479-495. [PMID: 37523005 PMCID: PMC11199304 DOI: 10.1007/s10548-023-00987-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023]
Abstract
Social interactions require both the rapid processing of multifaceted socio-affective signals (e.g., eye gaze, facial expressions, gestures) and their integration with evaluations, social knowledge, and expectations. Researchers interested in understanding complex social cognition and behavior face a "black box" problem: What are the underlying mental processes rapidly occurring between perception and action and why are there such vast individual differences? In this review, we promote electroencephalography (EEG) microstates as a powerful tool for both examining socio-affective states (e.g., processing whether someone is in need in a given situation) and identifying the sources of heterogeneity in socio-affective traits (e.g., general willingness to help others). EEG microstates are identified by analyzing scalp field maps (i.e., the distribution of the electrical field on the scalp) over time. This data-driven, reference-independent approach allows for identifying, timing, sequencing, and quantifying the activation of large-scale brain networks relevant to our socio-affective mind. In light of these benefits, EEG microstates should become an indispensable part of the methodological toolkit of laboratories working in the field of social and affective neuroscience.
Collapse
Affiliation(s)
- Bastian Schiller
- Laboratory for Biological Psychology, Clinical Psychology, and Psychotherapy, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.
- Freiburg Brain Imaging Center, University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.
| | - Matthias F J Sperl
- Department of Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior, Universities of Marburg and Giessen (Research Campus Central Hessen), Marburg, Germany
| | - Tobias Kleinert
- Laboratory for Biological Psychology, Clinical Psychology, and Psychotherapy, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Kyle Nash
- Department of Psychology, University of Alberta, Edmonton, Canada.
| | - Lorena R R Gianotti
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Bern, Switzerland.
| |
Collapse
|
4
|
Battaglia S, Nazzi C, Lonsdorf TB, Thayer JF. Neuropsychobiology of fear-induced bradycardia in humans: progress and pitfalls. Mol Psychiatry 2024:10.1038/s41380-024-02600-x. [PMID: 38862673 DOI: 10.1038/s41380-024-02600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024]
Abstract
In the last century, the paradigm of fear conditioning has greatly evolved in a variety of scientific fields. The techniques, protocols, and analysis methods now most used have undergone a progressive development, theoretical and technological, improving the quality of scientific productions. Fear-induced bradycardia is among these techniques and represents the temporary deceleration of heart beats in response to negative outcomes. However, it has often been used as a secondary measure to assess defensive responding to threat, along other more popular techniques. In this review, we aim at paving the road for its employment as an additional tool in fear conditioning experiments in humans. After an overview of the studies carried out throughout the last century, we describe more recent evidence up to the most contemporary research insights. Lastly, we provide some guidelines concerning the best practices to adopt in human fear conditioning studies which aim to investigate fear-induced bradycardia.
Collapse
Affiliation(s)
- Simone Battaglia
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology, University of Bologna, Bologna, Italy
- Department of Psychology, University of Torino, Torino, Italy
| | - Claudio Nazzi
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology, University of Bologna, Bologna, Italy
| | - Tina B Lonsdorf
- Department of Systems Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- Department of Psychology, Section for Biological Psychology and Cognitive Neuroscience, University of Bielefeld, Bielefeld, Germany
| | - Julian F Thayer
- Department of Psychological Science, 4201 Social and Behavioral Sciences Gateway, University of California, Irvine, CA, USA.
- Department of Psychology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Klein Z, Shner-Livne G, Danon-Kraun S, Ginat-Frolich R, Pine DS, Shechner T. Enhanced late positive potential to conditioned threat cue during delayed extinction in anxious youth. J Child Psychol Psychiatry 2024; 65:215-228. [PMID: 37157184 DOI: 10.1111/jcpp.13814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Deficits in threat learning relate to anxiety symptoms. Since several anxiety disorders arise in adolescence, impaired adolescent threat learning could contribute to adolescent changes in risk for anxiety. This study compared threat learning among anxious and non-anxious youth using self-reports, peripheral psychophysiology measures, and event-related potentials. Because exposure therapy, the first-line treatment for anxiety disorders, is largely based on principles of extinction learning, the study also examined the link between extinction learning and treatment outcomes among anxious youth. METHODS Clinically anxious (n = 28) and non-anxious (n = 33) youth completed differential threat acquisition and immediate extinction. They returned to the lab a week later to complete a threat generalization test and a delayed extinction task. Following these two experimental visits, anxious youth received exposure therapy for 12 weeks. RESULTS Anxious as compared to non-anxious youth demonstrated elevated cognitive and physiological responses across acquisition and immediate extinction learning, as well as greater threat generalization. In addition, anxious youth showed enhanced late positive potential response to the conditioned threat cue compared to the safety cue during delayed extinction. Finally, aberrant neural response during delayed extinction was associated with poorer treatment outcomes. CONCLUSIONS The study emphasizes differences between anxious and non-anxious youth in threat learning processes and provides preliminary support for a link between neural processing during delayed extinction and exposure-based treatment outcome in pediatric anxiety.
Collapse
Affiliation(s)
- Zohar Klein
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Gil Shner-Livne
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Shani Danon-Kraun
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Rivkah Ginat-Frolich
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Daniel S Pine
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tomer Shechner
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| |
Collapse
|
6
|
Ziereis A, Schacht A. Gender congruence and emotion effects in cross-modal associative learning: Insights from ERPs and pupillary responses. Psychophysiology 2023; 60:e14380. [PMID: 37387451 DOI: 10.1111/psyp.14380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/01/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023]
Abstract
Social and emotional cues from faces and voices are highly relevant and have been reliably demonstrated to attract attention involuntarily. However, there are mixed findings as to which degree associating emotional valence to faces occurs automatically. In the present study, we tested whether inherently neutral faces gain additional relevance by being conditioned with either positive, negative, or neutral vocal affect bursts. During learning, participants performed a gender-matching task on face-voice pairs without explicit emotion judgments of the voices. In the test session on a subsequent day, only the previously associated faces were presented and had to be categorized regarding gender. We analyzed event-related potentials (ERPs), pupil diameter, and response times (RTs) of N = 32 subjects. Emotion effects were found in auditory ERPs and RTs during the learning session, suggesting that task-irrelevant emotion was automatically processed. However, ERPs time-locked to the conditioned faces were mainly modulated by the task-relevant information, that is, the gender congruence of the face and voice, but not by emotion. Importantly, these ERP and RT effects of learned congruence were not limited to learning but extended to the test session, that is, after removing the auditory stimuli. These findings indicate successful associative learning in our paradigm, but it did not extend to the task-irrelevant dimension of emotional relevance. Therefore, cross-modal associations of emotional relevance may not be completely automatic, even though the emotion was processed in the voice.
Collapse
Affiliation(s)
- Annika Ziereis
- Department for Cognition, Emotion and Behavior, Affective Neuroscience and Psychophysiology Laboratory, Institute of Psychology, Georg-August-University of Göttingen, Göttingen, Germany
| | - Anne Schacht
- Department for Cognition, Emotion and Behavior, Affective Neuroscience and Psychophysiology Laboratory, Institute of Psychology, Georg-August-University of Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Ziereis A, Schacht A. Motivated attention and task relevance in the processing of cross-modally associated faces: Behavioral and electrophysiological evidence. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1244-1266. [PMID: 37353712 PMCID: PMC10545602 DOI: 10.3758/s13415-023-01112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/09/2023] [Indexed: 06/25/2023]
Abstract
It has repeatedly been shown that visually presented stimuli can gain additional relevance by their association with affective stimuli. Studies have shown effects of associated affect in event-related potentials (ERP) like the early posterior negativity (EPN), late positive complex (LPC), and even earlier components as the P1 or N170. However, findings are mixed as to the extent associated affect requires directed attention to the emotional quality of a stimulus and which ERP components are sensitive to task instructions during retrieval. In this preregistered study ( https://osf.io/ts4pb ), we tested cross-modal associations of vocal affect-bursts (positive, negative, neutral) to faces displaying neutral expressions in a flash-card-like learning task, in which participants studied face-voice pairs and learned to correctly assign them to each other. In the subsequent EEG test session, we applied both an implicit ("old-new") and explicit ("valence-classification") task to investigate whether the behavior at retrieval and neurophysiological activation of the affect-based associations were dependent on the type of motivated attention. We collected behavioral and neurophysiological data from 40 participants who reached the preregistered learning criterium. Results showed EPN effects of associated negative valence after learning and independent of the task. In contrast, modulations of later stages (LPC) by positive and negative associated valence were restricted to the explicit, i.e., valence-classification, task. These findings highlight the importance of the task at different processing stages and show that cross-modal affect can successfully be associated to faces.
Collapse
Affiliation(s)
- Annika Ziereis
- Department for Cognition, Emotion and Behavior, Affective Neuroscience and Psychophysiology Laboratory, Georg-August-University of Göttingen, Goßlerstraße 14, 37073 Göttingen, Germany
| | - Anne Schacht
- Department for Cognition, Emotion and Behavior, Affective Neuroscience and Psychophysiology Laboratory, Georg-August-University of Göttingen, Goßlerstraße 14, 37073 Göttingen, Germany
| |
Collapse
|
8
|
Liu D, Schwieter JW, Liu W, Mu L, Liu H. The COMT gene modulates the relationship between bilingual adaptation in executive function and decision-making: an EEG study. Cogn Neurodyn 2023; 17:893-907. [PMID: 37522041 PMCID: PMC10374516 DOI: 10.1007/s11571-022-09867-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
Bilingual adaptive control mechanisms appear to be linked to congenital genetic factors such as dopamine (DA) genes. However, it is unclear as to whether acquired cognitive exercise can vanquish innate influences that allow bilingual executive advantages to be shown in other cognitive areas. In the present study, we examine the relationship between gene-dependent executive control and decision-making by targeting the enzyme catecholamine-O-methyltransferase (COMT) and employing electroencephalography (EEG). Chinese-English bilinguals (N = 101) participated in a language switching task and the Iowa Gambling Task (IGT). The findings showed that COMT Val158Met polymorphism played a complex role in decision-making and bilingual executive control processing: Bilinguals with Valine (Val) homozygotes had poorer performance in the IGT, while Methionine (Met) carriers had larger switch costs in the language switching task. Second, the cross-task relationships varied among bilinguals with different COMT genotypes: Bilinguals with Met allele genotypes showed larger switch costs and better performance on the IGT. These findings suggest that bilinguals who carry Met allele are equipped with more efficient adaptive mechanisms of executive functions that are generalized to other cognitive domains. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09867-2.
Collapse
Affiliation(s)
- Dongxue Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029 China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, 116029 Liaoning Province China
| | - John W. Schwieter
- Language Acquisition, Multilingualism, and Cognition Laboratory / Bilingualism Matters, Wilfrid Laurier University, Waterloo, Canada
| | - Wenxin Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029 China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, 116029 Liaoning Province China
| | - Li Mu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029 China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, 116029 Liaoning Province China
| | - Huanhuan Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029 China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, 116029 Liaoning Province China
| |
Collapse
|
9
|
Bierwirth P, Antov MI, Stockhorst U. Oscillatory and non-oscillatory brain activity reflects fear expression in an immediate and delayed fear extinction task. Psychophysiology 2023:e14283. [PMID: 36906880 DOI: 10.1111/psyp.14283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 03/13/2023]
Abstract
Fear extinction is pivotal for inhibiting fear responding to former threat-predictive stimuli. In rodents, short intervals between fear acquisition and extinction impair extinction recall compared to long intervals. This is called Immediate Extinction Deficit (IED). Importantly, human studies of the IED are sparse and its neurophysiological correlates have not been examined in humans. We, therefore, investigated the IED by recording electroencephalography (EEG), skin conductance responses (SCRs), an electrocardiogram (ECG), and subjective ratings of valence and arousal. Forty male participants were randomly assigned to extinction learning either 10 min after fear acquisition (immediate extinction) or 24 h afterward (delayed extinction). Fear and extinction recall were assessed 24 h after extinction learning. We observed evidence for an IED in SCR responses, but not in the ECG, subjective ratings, or in any assessed neurophysiological marker of fear expression. Irrespective of extinction timing (immediate vs. delayed), fear conditioning caused a tilt of the non-oscillatory background spectrum with decreased low-frequency power (<30 Hz) for threat-predictive stimuli. When controlling for this tilt, we observed a suppression of theta and alpha oscillations to threat-predictive stimuli, especially pronounced during fear acquisition. In sum, our data show that delayed extinction might be partially advantageous over immediate extinction in reducing sympathetic arousal (as assessed via SCR) to former threat-predictive stimuli. However, this effect was limited to SCR responses since all other fear measures were not affected by extinction timing. Additionally, we demonstrate that oscillatory and non-oscillatory activity is sensitive to fear conditioning, which has important implications for fear conditioning studies examining neural oscillations.
Collapse
Affiliation(s)
- Philipp Bierwirth
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, Osnabrück, Germany
| | - Martin I Antov
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, Osnabrück, Germany
| | - Ursula Stockhorst
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
10
|
Fear memory in humans is consolidated over time independently of sleep. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:100-113. [PMID: 36241964 PMCID: PMC9925495 DOI: 10.3758/s13415-022-01037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 02/15/2023]
Abstract
Fear memories can be altered after acquisition by processes, such as fear memory consolidation or fear extinction, even without further exposure to the fear-eliciting stimuli, but factors contributing to these processes are not well understood. Sleep is known to consolidate, strengthen, and change newly acquired declarative and procedural memories. However, evidence on the role of time and sleep in the consolidation of fear memories is inconclusive. We used highly sensitive electrophysiological measures to examine the development of fear-conditioned responses over time and sleep in humans. We assessed event-related brain potentials (ERP) in 18 healthy, young individuals during fear conditioning before and after a 2-hour afternoon nap or a corresponding wake interval in a counterbalanced within-subject design. The procedure involved pairing a neutral tone (CS+) with a highly unpleasant sound. As a control, another neutral tone (CS-) was paired with a neutral sound. Fear responses were examined before the interval during a habituation phase and an acquisition phase as well as after the interval during an extinction phase and a reacquisition phase. Differential fear conditioning during acquisition was evidenced by a more negative slow ERP component (stimulus-preceding negativity) developing before the unconditioned stimulus (loud noise). This differential fear response was even stronger after the interval during reacquisition compared with initial acquisition, but this effect was similarly pronounced after sleep and wakefulness. These findings suggest that fear memories are consolidated over time, with this effect being independent of intervening sleep.
Collapse
|
11
|
No trait anxiety influences on early and late differential neuronal responses to aversively conditioned faces across three different tasks. COGNITIVE, AFFECTIVE, & BEHAVIORAL NEUROSCIENCE 2022; 22:1157-1171. [PMID: 35352267 PMCID: PMC9458573 DOI: 10.3758/s13415-022-00998-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 11/08/2022]
Abstract
AbstractThe human brain's ability to quickly detect dangerous stimuli is crucial in selecting appropriate responses to possible threats. Trait anxiety has been suggested to moderate these processes on certain processing stages. To dissociate such different information-processing stages, research using classical conditioning has begun to examine event-related potentials (ERPs) in response to fear-conditioned (CS +) faces. However, the impact of trait anxiety on ERPs to fear-conditioned faces depending on specific task conditions is unknown. In this preregistered study, we measured ERPs to faces paired with aversive loud screams (CS +) or neutral sounds (CS −) in a large sample (N = 80) under three different task conditions. Participants had to discriminate face-irrelevant perceptual information, the gender of the faces, or the CS category. Results showed larger amplitudes in response to aversively conditioned faces for all examined ERPs, whereas interactions with the attended feature occurred for the P1 and the early posterior negativity (EPN). For the P1, larger CS + effects were observed during the perceptual distraction task, while the EPN was increased for CS + faces when deciding about the CS association. Remarkably, we found no significant correlations between ERPs and trait anxiety. Thus, fear-conditioning potentiates all ERP amplitudes, some processing stages being further modulated by the task. However, the finding that these ERP differences were not affected by individual differences in trait anxiety does not support theoretical accounts assuming increased threat processing or reduced threat discrimination depending on trait anxiety.
Collapse
|
12
|
Sperl MFJ, Panitz C, Skoluda N, Nater UM, Pizzagalli DA, Hermann C, Mueller EM. Alpha-2 Adrenoreceptor Antagonist Yohimbine Potentiates Consolidation of Conditioned Fear. Int J Neuropsychopharmacol 2022; 25:759-773. [PMID: 35748393 PMCID: PMC9515133 DOI: 10.1093/ijnp/pyac038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/26/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Hyperconsolidation of aversive associations and poor extinction learning have been hypothesized to be crucial in the acquisition of pathological fear. Previous animal and human research points to the potential role of the catecholaminergic system, particularly noradrenaline and dopamine, in acquiring emotional memories. Here, we investigated in a between-participants design with 3 groups whether the noradrenergic alpha-2 adrenoreceptor antagonist yohimbine and the dopaminergic D2-receptor antagonist sulpiride modulate long-term fear conditioning and extinction in humans. METHODS Fifty-five healthy male students were recruited. The final sample consisted of n = 51 participants who were explicitly aware of the contingencies between conditioned stimuli (CS) and unconditioned stimuli after fear acquisition. The participants were then randomly assigned to 1 of the 3 groups and received either yohimbine (10 mg, n = 17), sulpiride (200 mg, n = 16), or placebo (n = 18) between fear acquisition and extinction. Recall of conditioned (non-extinguished CS+ vs CS-) and extinguished fear (extinguished CS+ vs CS-) was assessed 1 day later, and a 64-channel electroencephalogram was recorded. RESULTS The yohimbine group showed increased salivary alpha-amylase activity, confirming a successful manipulation of central noradrenergic release. Elevated fear-conditioned bradycardia and larger differential amplitudes of the N170 and late positive potential components in the event-related brain potential indicated that yohimbine treatment (compared with a placebo and sulpiride) enhanced fear recall during day 2. CONCLUSIONS These results suggest that yohimbine potentiates cardiac and central electrophysiological signatures of fear memory consolidation. They thereby elucidate the key role of noradrenaline in strengthening the consolidation of conditioned fear associations, which may be a key mechanism in the etiology of fear-related disorders.
Collapse
Affiliation(s)
- Matthias F J Sperl
- Correspondence: Matthias F. J. Sperl, Justus Liebig University Giessen, Department of Psychology, Otto-Behaghel-Str. 10F, 35394 Giessen, Germany ()
| | - Christian Panitz
- Department of Psychology, Personality Psychology and Assessment, University of Marburg, Marburg, Germany,Department of Psychology, Experimental Psychology and Methods, University of Leipzig, Leipzig, Germany,Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida, USA
| | - Nadine Skoluda
- Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria
| | - Urs M Nater
- Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria
| | - Diego A Pizzagalli
- Department of Psychiatry, Harvard Medical School, & Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts, USA
| | - Christiane Hermann
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| | - Erik M Mueller
- Department of Psychology, Personality Psychology and Assessment, University of Marburg, Marburg, Germany
| |
Collapse
|
13
|
Exner A, Tapia León I, Mueller EM, Klucken T. Cardiac response in aversive and appetitive olfactory conditioning: Evidence for a valence-independent CS-elicited bradycardia. Psychophysiology 2021; 58:e13912. [PMID: 34388264 DOI: 10.1111/psyp.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022]
Abstract
While the examination of conditioned cardiac responses is well established in human fear conditioning research, comparable studies using less-aversive or rather appetitive unconditioned stimuli (UCS) are sparse and results are mixed. Therefore, the aim of this study was a systematic analysis of cardiac reactions in aversive and appetitive conditioning. Olfactory stimuli were used as unconditioned stimuli as they are suitable reinforcers in both an aversive and an appetitive conditioning offering the opportunity for a comparison between conditioned responses. In total, n = 86 participants took part in both an aversive and an appetitive differential conditioning task with a counterbalanced order across participants. Aversive or appetitive odors, respectively, served as UCS and neutral geometrical figures as CS. Subjective ratings, skin conductance response (SCRs), and evoked cardiac reactions were analyzed and compared between tasks. Conditioned responses in subjective ratings could be observed in both aversive conditioning and appetitive conditioning, while SCRs discriminated between CS+ and CS- in aversive conditioning only. Regarding conditioned cardiac responses, the deceleration for the CS+ was longer than for the CS- in both tasks. In addition, a higher deceleration magnitude and a shorter acceleration for the CS+ as compared to the CS- were found in aversive but not in appetitive conditioning. There were medium-size correlations between aversive and appetitive CRs for subjective ratings and none for physiological responses. The results suggest similarities between cardiac response patterns in aversive and appetitive conditioning, which implies that bradycardia in conditioning might not be fear-specific but presents a valence-independent CS-elicited bradycardia.
Collapse
Affiliation(s)
- Anna Exner
- Department of Clinical Psychology, University of Siegen, Siegen, Germany
| | - Isabell Tapia León
- Department of Clinical Psychology, University of Siegen, Siegen, Germany
| | - Erik M Mueller
- Department of Psychology, University of Marburg, Marburg, Germany
| | - Tim Klucken
- Department of Clinical Psychology, University of Siegen, Siegen, Germany
| |
Collapse
|
14
|
Bruchmann M, Schindler S, Heinemann J, Moeck R, Straube T. Increased early and late neuronal responses to aversively conditioned faces across different attentional conditions. Cortex 2021; 142:332-341. [PMID: 34343902 DOI: 10.1016/j.cortex.2021.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/26/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Faces with emotional information-by virtue of their expression or their history of affective learning-are prioritized during neuronal processing as compared to neutral faces. Classical conditioning studies have shown that aversively conditioned (CS+) faces potentiate different face processing stages as evidenced by increased early and late event-related potential (ERPs) components. However, it is unknown whether and how ERP modulations depend on certain attentional conditions. To examine this question, this preregistered study investigated ERPs to faces paired with aversive screams or neutral sounds under three tasks with increasing attention to CS + relevant features of the face: Participants (N = 40) had to discriminate either the orientation of superimposed lines, perceived gender, or the CS association. We found potentiation of the N170, the Early Posterior Negativity (EPN), and, most remarkably, the Late Positive Potential (LPP) to CS + faces regardless of task condition. This finding suggests that, in contrast to other types of emotional information and learning, classical conditioning boosts early and late processing stages, even if no explicit attention to the face information or the CS association is required.
Collapse
Affiliation(s)
- Maximilian Bruchmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Germany.
| | - Sebastian Schindler
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Germany.
| | - Jana Heinemann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany
| | - Robert Moeck
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Germany
| |
Collapse
|
15
|
Laing PAF, Harrison BJ. Safety learning and the Pavlovian conditioned inhibition of fear in humans: Current state and future directions. Neurosci Biobehav Rev 2021; 127:659-674. [PMID: 34023357 DOI: 10.1016/j.neubiorev.2021.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 01/02/2023]
Abstract
Safety learning occurs when an otherwise neutral stimulus comes to signal the absence of threat, allowing organisms to use safety information to inhibit fear and anxiety in nonthreatening environments. Although it continues to emerge as a topic of relevance in biological and clinical psychology, safety learning remains inconsistently defined and under-researched. Here, we analyse the Pavlovian conditioned inhibition paradigm and its application to the study of safety learning in humans. We discuss existing studies; address outstanding theoretical considerations; and identify prospects for its further application. Though Pavlovian conditioned inhibition presents a theoretically sound model of safety learning, it has been investigated infrequently, with decade-long interims between some studies, and notable methodological variability. Consequently, we argue that the full potential of conditioned inhibition as a model for human safety learning remains untapped, and propose that it could be revisited as a framework for addressing timely questions in the behavioural and clinical sciences.
Collapse
Affiliation(s)
- Patrick A F Laing
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia.
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
16
|
Linton SR, Levita L. Potentiated perceptual neural responses to learned threat during Pavlovian fear acquisition and extinction in adolescents. Dev Sci 2021; 24:e13107. [PMID: 33817917 DOI: 10.1111/desc.13107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/31/2021] [Accepted: 02/24/2021] [Indexed: 11/30/2022]
Abstract
Adolescents' experience of heightened anxiety and increased vulnerability to develop anxiety disorders is believed to partly result from blunted fear extinction processes. However, whether this anxiety is mediated by adolescent-specific differences in perceptual responses to learned threat is not known. To investigate this, we used EEG to examine reinforcement-dependent changes in early visual event-related potentials in adolescents (N = 28, 13-14 years) and adults (N = 23, 25-26 years old) during a differential Pavlovian fear conditioning task, with one conditioned stimulus (CS+) paired with an aversive sound (unconditioned stimulus [US]) on 50% of trials, and another (CS-) never paired with the US. An immediate extinction phase followed, where both CSs were presented alone. We found age-dependent dissociations between explicit and implicit measures of fear learning. Specifically, both adolescents and adults demonstrated successful fear conditioning and extinction according to their explicit awareness of changes in CS contingencies and their evaluative CS ratings, and their differential skin conductance responses. However, for the first time we show age differences at the neural level in perceptual areas. Only adolescents showed greater visual P1 and N1 responses to the CS+ compared to the CS- during acquisition, a dissociation that for the N1 was maintained during extinction. We suggest that the adolescent perceptual hyper-responsivity to learned threat and blunted extinction reported here could be an adaptive mechanism to protect adolescents from harm. However, this hyper-responsivity may also confer greater vulnerability to experience pathological levels of anxiety at this developmental stage.
Collapse
Affiliation(s)
| | - Liat Levita
- Department of Psychology, University of Sheffield, Sheffield, UK
| |
Collapse
|
17
|
Sperl MFJ, Wroblewski A, Mueller M, Straube B, Mueller EM. Learning dynamics of electrophysiological brain signals during human fear conditioning. Neuroimage 2020; 226:117569. [PMID: 33221446 DOI: 10.1016/j.neuroimage.2020.117569] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/13/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022] Open
Abstract
Electrophysiological studies in rodents allow recording neural activity during threats with high temporal and spatial precision. Although fMRI has helped translate insights about the anatomy of underlying brain circuits to humans, the temporal dynamics of neural fear processes remain opaque and require EEG. To date, studies on electrophysiological brain signals in humans have helped to elucidate underlying perceptual and attentional processes, but have widely ignored how fear memory traces evolve over time. The low signal-to-noise ratio of EEG demands aggregations across high numbers of trials, which will wash out transient neurobiological processes that are induced by learning and prone to habituation. Here, our goal was to unravel the plasticity and temporal emergence of EEG responses during fear conditioning. To this end, we developed a new sequential-set fear conditioning paradigm that comprises three successive acquisition and extinction phases, each with a novel CS+/CS- set. Each set consists of two different neutral faces on different background colors which serve as CS+ and CS-, respectively. Thereby, this design provides sufficient trials for EEG analyses while tripling the relative amount of trials that tap into more transient neurobiological processes. Consistent with prior studies on ERP components, data-driven topographic EEG analyses revealed that ERP amplitudes were potentiated during time periods from 33-60 ms, 108-200 ms, and 468-820 ms indicating that fear conditioning prioritizes early sensory processing in the brain, but also facilitates neural responding during later attentional and evaluative stages. Importantly, averaging across the three CS+/CS- sets allowed us to probe the temporal evolution of neural processes: Responses during each of the three time windows gradually increased from early to late fear conditioning, while long-latency (460-730 ms) electrocortical responses diminished throughout fear extinction. Our novel paradigm demonstrates how short-, mid-, and long-latency EEG responses change during fear conditioning and extinction, findings that enlighten the learning curve of neurophysiological responses to threat in humans.
Collapse
Affiliation(s)
- Matthias F J Sperl
- Department of Psychology, Personality Psychology and Assessment, University of Marburg, 35032 Marburg, Germany; Department of Psychology, Clinical Psychology and Psychotherapy, University of Giessen, 35394 Giessen, Germany.
| | - Adrian Wroblewski
- Department of Psychiatry and Psychotherapy, Translational Neuroimaging Marburg, University of Marburg, 35039 Marburg, Germany.
| | - Madeleine Mueller
- Department of Psychiatry and Psychotherapy, Translational Neuroimaging Marburg, University of Marburg, 35039 Marburg, Germany; Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, Translational Neuroimaging Marburg, University of Marburg, 35039 Marburg, Germany.
| | - Erik M Mueller
- Department of Psychology, Personality Psychology and Assessment, University of Marburg, 35032 Marburg, Germany.
| |
Collapse
|
18
|
Seligowski AV, Reffi AN, Phillips KA, Orcutt HK, Auerbach RP, Pizzagalli DA, Ressler KJ. Neurophysiological responses to safety signals and the role of cardiac vagal control. Behav Brain Res 2020; 396:112914. [PMID: 32976862 DOI: 10.1016/j.bbr.2020.112914] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Deficits in safety signal learning are well-established in fear-related disorders (e.g., PTSD, phobias). The current study used a fear conditioning paradigm to test associations among eye blink startle and event-related brain potential (ERP) latency measures of safety signal learning, as well as the role of cardiac vagal control (a measure of top-down inhibition necessary for safety learning). METHODS Participants were 49 trauma-exposed women ages 17 to 28 years. Eyeblink startle response and ERP amplitudes/latencies were derived for conditioned stimuli associated (CS+) and not associated (CS-) with an aversive unconditioned stimulus. ERPs included the P100 and late positive potential (LPP), which index early visual processing and sustained emotional encoding, respectively. Cardiac vagal control was assessed with resting heart rate variability (HRV). RESULTS P100 and LPP latencies for the CS- (safety signal stimulus) were significantly negatively associated with startle to the CS-, but not the CS + . LPP CS- latencies were significantly negatively associated with PTSD Intrusion scores, and this relationship was moderated by vagal control, such that the effect was only present among those with low HRV. CONCLUSIONS ERP-based markers of safety signal learning were associated with startle response to the CS- (but not CS+) and PTSD symptoms, indicating that these markers may have relevance for fear-related disorders. Cardiac vagal control indexed by HRV is a moderating factor in these associations and may be relevant to safety signal learning.
Collapse
Affiliation(s)
- Antonia V Seligowski
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, MA, USA.
| | - Anthony N Reffi
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | | | - Holly K Orcutt
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Randy P Auerbach
- Department of Psychiatry, Columbia University, New York, NY, USA; Division of Clinical Developmental Neuroscience, Sackler Institute, New York, NY USA
| | - Diego A Pizzagalli
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, MA, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, MA, USA
| |
Collapse
|
19
|
Measuring learning in human classical threat conditioning: Translational, cognitive and methodological considerations. Neurosci Biobehav Rev 2020; 114:96-112. [DOI: 10.1016/j.neubiorev.2020.04.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023]
|
20
|
Seligowski AV, Merker JB, Swiercz AP, Park J, Marvar PJ, Ressler KJ, Jovanovic T. Examining the cardiovascular response to fear extinction in a trauma-exposed sample. J Psychiatr Res 2020; 124:85-90. [PMID: 32126364 PMCID: PMC7097830 DOI: 10.1016/j.jpsychires.2020.02.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/24/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Trauma and symptoms of posttraumatic stress disorder (PTSD) have repeatedly been linked to impaired cardiovascular functioning. Poor fear extinction is a well-established biomarker of PTSD that may provide insight into mechanisms underlying cardiovascular risk. The current study probed the cardiovascular response to extinction in a sample of trauma-exposed individuals. METHODS Participants were 51 trauma-exposed women who underwent a fear conditioning paradigm. Heart rate (HR) during extinction was examined in response to a conditioned stimulus that was previously paired with an aversive unconditioned stimulus (CS+) and one that was never paired (CS-). Heart rate variability (HRV) was calculated at baseline and during the extinction session. RESULTS Consistent with fear bradycardia, initial HR deceleration (.5-2s) after CS + onset occurred during early extinction and appeared to extinguish over time. Higher baseline HRV was significantly associated with greater fear bradycardia during early extinction. CONCLUSIONS This is the first study to demonstrate a pattern of fear bradycardia in early extinction, which was associated with higher HRV levels and decreased over the course of the extinction phase. These results suggest that increased fear bradycardia may be indicative of greater vagal control (i.e., HRV), both of which are psychophysiological biomarkers that may influence cardiovascular and autonomic disease risk in trauma-exposed individuals.
Collapse
Affiliation(s)
- Antonia V Seligowski
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, MA, USA.
| | | | - Adam P Swiercz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Jeanie Park
- Emory University School of Medicine Renal Division and the Atlanta Veterans Administration Hospital, Atlanta, GA, USA
| | - Paul J Marvar
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA; Department of Psychiatry and Behavioral Sciences, George Washington University, Washington, DC, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, MA, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
21
|
Sperl MFJ, Panitz C, Rosso IM, Dillon DG, Kumar P, Hermann A, Whitton AE, Hermann C, Pizzagalli DA, Mueller EM. Fear Extinction Recall Modulates Human Frontomedial Theta and Amygdala Activity. Cereb Cortex 2020; 29:701-715. [PMID: 29373635 DOI: 10.1093/cercor/bhx353] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022] Open
Abstract
Human functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) studies, as well as animal studies, indicate that the amygdala and frontomedial brain regions are critically involved in conditioned fear and that frontomedial oscillations in the theta range (4-8 Hz) may support communication between these brain regions. However, few studies have used a multimodal approach to probe interactions among these key regions in humans. Here, our goal was to bridge the gap between prior human fMRI, EEG, and animal findings. Using simultaneous EEG-fMRI recordings 24 h after fear conditioning and extinction, conditioned stimuli presented (CS+E, CS-E) and not presented during extinction (CS+N, CS-N) were compared to identify effects specific to extinction versus fear recall. Differential (CS+ vs. CS-) electrodermal, frontomedial theta (EEG) and amygdala responses (fMRI) were reduced for extinguished versus nonextinguished stimuli. Importantly, effects on theta power covaried with effects on amygdala activation. Fear and extinction recall as indicated by theta explained 60% of the variance for the analogous effect in the right amygdala. Our findings show for the first time the interplay of amygdala and frontomedial theta activity during fear and extinction recall in humans and provide insight into neural circuits consistently linked with top-down amygdala modulation in rodents.
Collapse
Affiliation(s)
- Matthias F J Sperl
- Department of Psychology, Personality Psychology and Assessment, University of Marburg, Marburg, Germany.,Department of Psychology, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany.,Department of Psychiatry, Center for Depression, Anxiety and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Christian Panitz
- Department of Psychology, Personality Psychology and Assessment, University of Marburg, Marburg, Germany.,Department of Psychology, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| | - Isabelle M Rosso
- Department of Psychiatry, Center for Depression, Anxiety and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Daniel G Dillon
- Department of Psychiatry, Center for Depression, Anxiety and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Poornima Kumar
- Department of Psychiatry, Center for Depression, Anxiety and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Andrea Hermann
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| | - Alexis E Whitton
- Department of Psychiatry, Center for Depression, Anxiety and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Christiane Hermann
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| | - Diego A Pizzagalli
- Department of Psychiatry, Center for Depression, Anxiety and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Erik M Mueller
- Department of Psychology, Personality Psychology and Assessment, University of Marburg, Marburg, Germany.,Department of Psychology, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| |
Collapse
|
22
|
Ferreira de Sá DS, Michael T, Wilhelm FH, Peyk P. Learning to see the threat: temporal dynamics of ERPs of motivated attention in fear conditioning. Soc Cogn Affect Neurosci 2020; 14:189-203. [PMID: 30481357 PMCID: PMC6374602 DOI: 10.1093/scan/nsy103] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 11/13/2018] [Accepted: 11/21/2018] [Indexed: 01/10/2023] Open
Abstract
Social threat detection is important in everyday life. Studies of cortical activity have shown that event-related potentials (ERPs) of motivated attention are modulated during fear conditioning. The time course of motivated attention in learning and extinction of fear is, however, still largely unknown. We aimed to study temporal dynamics of learning processes in classical fear conditioning to social cues (neutral faces) by selecting an experimental setup that produces large effects on well-studied ERP components (early posterior negativity, EPN; late positive potential, LPP; stimulus preceding negativity, SPN) and then exploring small consecutive groups of trials. EPN, LPP, and SPN markedly and quickly increased during the acquisition phase in response to the CS+ but not the CS-. These changes were visible even at high temporal resolution and vanished completely during extinction. Moreover, some evidence was found for component differences in extinction learning, with differences between CS+ and CS- extinguishing faster for late as compared to early ERP components. Results demonstrate that fear learning to social cues is a very fast and highly plastic process and conceptually different ERPs of motivated attention are sensitive to these changes at high temporal resolution, pointing to specific neurocognitive and affective processes of social fear learning.
Collapse
Affiliation(s)
- Diana S Ferreira de Sá
- Division of Clinical Psychology and Psychotherapy, Department of Psychology, Saarland University, D-66123 Saarbrücken, Germany
| | - Tanja Michael
- Division of Clinical Psychology and Psychotherapy, Department of Psychology, Saarland University, D-66123 Saarbrücken, Germany
| | - Frank H Wilhelm
- Division of Clinical Psychology, Psychotherapy, and Health Psychology, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria
| | - Peter Peyk
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
23
|
Panitz C, Keil A, Mueller EM. Extinction-resistant attention to long-term conditioned threat is indexed by selective visuocortical alpha suppression in humans. Sci Rep 2019; 9:15809. [PMID: 31676781 PMCID: PMC6825167 DOI: 10.1038/s41598-019-52315-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/12/2019] [Indexed: 01/22/2023] Open
Abstract
Previous electrophysiological studies in humans have shown rapid modulations of visual attention after conditioned threat vs. safety cues (<500 ms post-stimulus), but it is unknown whether this attentional prioritization is sustained throughout later time windows and whether it is robust to extinction. To investigate sustained visual attention, we assessed visuocortical alpha suppression in response to conditioned and extinguished threat. We reanalysed data from N = 87 male participants that had shown successful long-term threat conditioning and extinction in self reports and physiological measures in a two-day conditioning paradigm. The current EEG time-frequency analyses on recall test data on Day 2 revealed that previously threat-conditioned vs. safety cues evoked stronger occipital alpha power suppression from 600 to 1200 ms. Notably, this suppression was resistant to previous extinction. The present study showed for the first time that threat conditioning enhances sustained modulation of visuocortical attention to threat in the long term. Long-term stability and extinction resistance of alpha suppression suggest a crucial role of visuocortical attention mechanisms in the maintenance of learned fears.
Collapse
Affiliation(s)
- Christian Panitz
- University of Marburg, Department of Psychology, Gutenbergstr. 18, 35032, Marburg, Germany.
| | - Andreas Keil
- University of Florida, Center for the Study of Emotion and Attention, 3063 Longleaf Road, Gainesville, FL, 32608, USA
| | - Erik M Mueller
- University of Marburg, Department of Psychology, Gutenbergstr. 18, 35032, Marburg, Germany
| |
Collapse
|
24
|
Abstract
In classical fear conditioning, neutral conditioned stimuli that have been paired with aversive physical unconditioned stimuli eventually trigger fear responses. Here, we tested whether aversive mental images systematically paired with a conditioned stimulus also cause de novo fear learning in the absence of any external aversive stimulation. In two experiments (N = 45 and N = 41), participants were first trained to produce aversive, neutral, or no imagery in response to three different visual-imagery cues. In a subsequent imagery-based differential-conditioning paradigm, each of the three cues systematically coterminated with one of three different neutral faces. Although the face that was paired with the aversive-imagery cue was never paired with aversive external stimuli or threat-related instructions, participants rated it as more arousing, unpleasant, and threatening and displayed relative fear bradycardia and fear-potentiated startle. These results could be relevant for the development of fear and related disorders without trauma.
Collapse
Affiliation(s)
- Erik M. Mueller
- Erik M. Mueller, University of Marburg, Department of Psychology, Gutenbergstrasse 18, 35032 Marburg, Germany E-mail:
| | | | | |
Collapse
|
25
|
Gruss LF, Keil A. Sympathetic responding to unconditioned stimuli predicts subsequent threat expectancy, orienting, and visuocortical bias in human aversive Pavlovian conditioning. Biol Psychol 2019; 140:64-74. [PMID: 30476520 PMCID: PMC6343857 DOI: 10.1016/j.biopsycho.2018.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/17/2022]
Abstract
Threat expectancy is the ability to predict an aversive outcome. What is not known is the influence of initial threat responding on the acquisition of verbal, attentional and perceptual biases towards conditioned threat cues. This study evaluated the extent to which initial unconditioned stimulus (UCS) responding was related to trial-by-trial self-reported expectancy, sensory processing (visuocortical EEG) and orienting (heart rate deceleration) to threat cues during extinction learning. Participants (n = 38) viewed oriented Gabor gratings, associated with the presence (CS+) or absence (CS-) of a 96 dB white noise (UCS), flickering at 12 Hz to elicit steady state visually evoked potentials (ssVEPs). Multivariate multiple regression revealed greater initial UCS skin conductance responding to predict extinction responding: enhanced visuocortical discrimination, greater heart rate deceleration to CS+, and greater threat expectancy endorsements. These results suggest that the motivational intensity of initial threat reactivity (sympathetic UCS responding) drives learning-induced defensive dispositions across multiple response systems.
Collapse
Affiliation(s)
- L Forest Gruss
- Center for the Study of Emotion and Attention, Department of Psychology, University of Florida, Gainesville, Florida, USA; Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| | - Andreas Keil
- Center for the Study of Emotion and Attention, Department of Psychology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
26
|
Stolz C, Endres D, Mueller EM. Threat-conditioned contexts modulate the late positive potential to faces-A mobile EEG/virtual reality study. Psychophysiology 2018; 56:e13308. [PMID: 30548599 DOI: 10.1111/psyp.13308] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/28/2018] [Accepted: 10/18/2018] [Indexed: 12/17/2022]
Abstract
In everyday life, the motivational value of faces is bound to the contexts in which faces are perceived. Electrophysiological studies have demonstrated that inherent negatively valent contexts modulate cortical face processing as assessed with ERP components. However, it is not well understood whether learned (rather than inherent) and three-dimensional aversive contexts similarly modulate the neural processing of faces. Using full immersive virtual reality (VR) and mobile EEG techniques, 25 participants underwent a differential fear conditioning paradigm, in which one virtual room was paired with an aversive noise burst (threat context) and another with a nonaversive noise burst (safe context). Subsequently, avatars with neutral or angry facial expressions were presented in the threat and safe contexts while EEG was recorded. Analysis of the late positive potential (LPP), which presumably indicates motivational salience, revealed a significant interaction of context (threat vs. safe) and face type (neutral vs. angry). Neutral faces evoked increased LPP amplitudes in threat versus safe contexts, while angry faces evoked increased early LPP amplitudes regardless of context. In addition to indicating that threat-conditioned contexts alter the processing of ambiguous faces, the present study demonstrates the successful integration of EEG and VR with particular relevance for affective neuroscience research.
Collapse
Affiliation(s)
| | - Dominik Endres
- Department of Psychology, University of Marburg, Marburg, Germany
| | - Erik M Mueller
- Department of Psychology, University of Marburg, Marburg, Germany
| |
Collapse
|
27
|
Swiercz AP, Seligowski AV, Park J, Marvar PJ. Extinction of Fear Memory Attenuates Conditioned Cardiovascular Fear Reactivity. Front Behav Neurosci 2018; 12:276. [PMID: 30483079 PMCID: PMC6244092 DOI: 10.3389/fnbeh.2018.00276] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/25/2018] [Indexed: 11/21/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is characterized by a heightened emotional and physiological state and an impaired ability to suppress or extinguish traumatic fear memories. Exaggerated physiological responses may contribute to increased cardiovascular disease (CVD) risk in this population, but whether treatment for PTSD can offset CVD risk remains unknown. To further evaluate physiological correlates of fear learning, we used a novel pre-clinical conditioned cardiovascular testing paradigm and examined the effects of Pavlovian fear conditioning and extinction training on mean arterial pressure (MAP) and heart rate (HR) responses. We hypothesized that a fear conditioned cardiovascular response could be detected in a novel context and attenuated by extinction training. In a novel context, fear conditioned mice exhibited marginal increases in MAP (∼3 mmHg) and decreases in HR (∼20 bpm) during CS presentation. In a home cage context, the CS elicited significant increases in both HR (100 bpm) and MAP (20 mmHg). Following extinction training, the MAP response was suppressed while CS-dependent HR responses were variable. These pre-clinical data suggest that extinction learning attenuates the acute MAP responses to conditioned stimuli over time, and that MAP and HR responses may extinguish at different rates. These results suggest that in mouse models of fear learning, conditioned cardiovascular responses are modified by extinction training. Understanding these processes in pre-clinical disease models and in humans with PTSD may be important for identifying interventions that facilitate fear extinction and attenuate hyper-physiological responses, potentially leading to improvements in the efficacy of exposure therapy and PTSD–CVD comorbidity outcomes.
Collapse
Affiliation(s)
- Adam P Swiercz
- Department of Pharmacology and Physiology and Institute for Neuroscience, George Washington University, Washington, DC, United States
| | | | - Jeanie Park
- Atlanta VA Medical Center, Division of Renal Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Paul J Marvar
- Department of Pharmacology and Physiology and Institute for Neuroscience, George Washington University, Washington, DC, United States.,Department of Psychiatry and Behavioral Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
28
|
Panitz C, Sperl MF, Hennig J, Klucken T, Hermann C, Mueller EM. Fearfulness, neuroticism/anxiety, and COMT Val158Met in long-term fear conditioning and extinction. Neurobiol Learn Mem 2018; 155:7-20. [DOI: 10.1016/j.nlm.2018.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 05/16/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
|
29
|
Lueckel M, Panitz C, Nater UM, Mueller EM. Reliability and robustness of feedback-evoked brain-heart coupling after placebo, dopamine, and noradrenaline challenge. Int J Psychophysiol 2018; 132:298-310. [DOI: 10.1016/j.ijpsycho.2018.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 12/20/2017] [Accepted: 01/24/2018] [Indexed: 12/13/2022]
|
30
|
Seligowski AV, Bondy E, Singleton P, Orcutt HK, Ressler KJ, Auerbach RP. Testing neurophysiological markers related to fear-potentiated startle. Psychiatry Res 2018; 267:195-200. [PMID: 29913378 DOI: 10.1016/j.psychres.2018.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/08/2018] [Accepted: 06/10/2018] [Indexed: 11/19/2022]
Abstract
Fear-potentiated startle (FPS) paradigms provide insight into fear learning mechanisms that contribute to impairment among individuals with posttraumatic stress symptoms (PTSS). Electrophysiology also has provided insight into these mechanisms through the examination of event-related potentials (ERPs) such as the P100 and LPP. It remains unclear, however, whether the P100 and LPP may be related to fear learning processes within the FPS paradigm. To this end, we tested differences in ERP amplitudes for conditioned stimuli associated (CS+) and not associated (CS-) with an aversive unconditioned stimulus (US) during fear acquisition. Participants included 54 female undergraduate students (mean age = 20.26). The FPS response was measured via electromyography of the orbicularis oculi muscle. EEG data were collected during the FPS paradigm. While the difference between CS+ and CS- P100 amplitude was not significant, LPP amplitudes were significantly enhanced following the CS+ relative to CS-. Furthermore, the LPP difference wave (CS+ minus CS-) was associated with FPS scores for the CS- during the later portion of fear acquisition. These findings suggest that conditioned stimuli may have altered emotional encoding (LPP) during the FPS paradigm. Thus, the LPP may be a promising neurophysiological marker that is related to fear learning processes.
Collapse
Affiliation(s)
- Antonia V Seligowski
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, MA, USA.
| | - Erin Bondy
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Paris Singleton
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, MA, USA
| | - Holly K Orcutt
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, MA, USA
| | - Randy P Auerbach
- McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Columbia University, New York, NY USA; Division of Clinical Developmental Neuroscience, New York, NY USA
| |
Collapse
|
31
|
Khalsa SS, Adolphs R, Cameron OG, Critchley HD, Davenport PW, Feinstein JS, Feusner JD, Garfinkel SN, Lane RD, Mehling WE, Meuret AE, Nemeroff CB, Oppenheimer S, Petzschner FH, Pollatos O, Rhudy JL, Schramm LP, Simmons WK, Stein MB, Stephan KE, Van den Bergh O, Van Diest I, von Leupoldt A, Paulus MP. Interoception and Mental Health: A Roadmap. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:501-513. [PMID: 29884281 PMCID: PMC6054486 DOI: 10.1016/j.bpsc.2017.12.004] [Citation(s) in RCA: 419] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/20/2017] [Accepted: 12/10/2017] [Indexed: 12/29/2022]
Abstract
Interoception refers to the process by which the nervous system senses, interprets, and integrates signals originating from within the body, providing a moment-by-moment mapping of the body's internal landscape across conscious and unconscious levels. Interoceptive signaling has been considered a component process of reflexes, urges, feelings, drives, adaptive responses, and cognitive and emotional experiences, highlighting its contributions to the maintenance of homeostatic functioning, body regulation, and survival. Dysfunction of interoception is increasingly recognized as an important component of different mental health conditions, including anxiety disorders, mood disorders, eating disorders, addictive disorders, and somatic symptom disorders. However, a number of conceptual and methodological challenges have made it difficult for interoceptive constructs to be broadly applied in mental health research and treatment settings. In November 2016, the Laureate Institute for Brain Research organized the first Interoception Summit, a gathering of interoception experts from around the world, with the goal of accelerating progress in understanding the role of interoception in mental health. The discussions at the meeting were organized around four themes: interoceptive assessment, interoceptive integration, interoceptive psychopathology, and the generation of a roadmap that could serve as a guide for future endeavors. This review article presents an overview of the emerging consensus generated by the meeting.
Collapse
Affiliation(s)
- Sahib S Khalsa
- Laureate Institute for Brain Research, University of Tulsa, Tulsa, Oklahoma; Oxley College of Health Sciences, University of Tulsa, Tulsa, Oklahoma.
| | - Ralph Adolphs
- California Institute of Technology, Pasadena, California
| | - Oliver G Cameron
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Hugo D Critchley
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, United Kingdom
| | - Paul W Davenport
- Department of Physiology, University of Florida, Gainesville, Florida
| | - Justin S Feinstein
- Laureate Institute for Brain Research, University of Tulsa, Tulsa, Oklahoma; Oxley College of Health Sciences, University of Tulsa, Tulsa, Oklahoma
| | - Jamie D Feusner
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Sarah N Garfinkel
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, United Kingdom
| | - Richard D Lane
- Department of Psychiatry, University of Arizona, Tucson, Arizona
| | - Wolf E Mehling
- Department of Family and Community Medicine, University of California, San Francisco, San Francisco, California
| | - Alicia E Meuret
- Department of Psychology, Southern Methodist University, Dallas, Texas
| | - Charles B Nemeroff
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, Florida
| | | | - Frederike H Petzschner
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich, Zurich, Switzerland
| | - Olga Pollatos
- Department of Clinical and Health Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Jamie L Rhudy
- Department of Psychology, University of Tulsa, Tulsa, Oklahoma
| | - Lawrence P Schramm
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland; Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland
| | - W Kyle Simmons
- Laureate Institute for Brain Research, University of Tulsa, Tulsa, Oklahoma; Oxley College of Health Sciences, University of Tulsa, Tulsa, Oklahoma
| | - Murray B Stein
- Department of Psychiatry, University of California, San Diego, San Diego, California
| | - Klaas E Stephan
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich, Zurich, Switzerland
| | | | - Ilse Van Diest
- Department of Health Psychology, University of Leuven, Leuven, Belgium
| | | | - Martin P Paulus
- Laureate Institute for Brain Research, University of Tulsa, Tulsa, Oklahoma
| |
Collapse
|
32
|
Thigpen NN, Bartsch F, Keil A. The malleability of emotional perception: Short-term plasticity in retinotopic neurons accompanies the formation of perceptual biases to threat. J Exp Psychol Gen 2017; 146:464-471. [PMID: 28383987 DOI: 10.1037/xge0000283] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Emotional experience changes visual perception, leading to the prioritization of sensory information associated with threats and opportunities. These emotional biases have been extensively studied by basic and clinical scientists, but their underlying mechanism is not known. The present study combined measures of brain-electric activity and autonomic physiology to establish how threat biases emerge in human observers. Participants viewed stimuli designed to differentially challenge known properties of different neuronal populations along the visual pathway: location, eye, and orientation specificity. Biases were induced using aversive conditioning with only 1 combination of eye, orientation, and location predicting a noxious loud noise and replicated in a separate group of participants. Selective heart rate-orienting responses for the conditioned threat stimulus indicated bias formation. Retinotopic visual brain responses were persistently and selectively enhanced after massive aversive learning for only the threat stimulus and dissipated after extinction training. These changes were location-, eye-, and orientation-specific, supporting the hypothesis that short-term plasticity in primary visual neurons mediates the formation of perceptual biases to threat. (PsycINFO Database Record
Collapse
Affiliation(s)
- Nina N Thigpen
- Center for the Study of Emotion & Attention, University of Florida
| | | | - Andreas Keil
- Center for the Study of Emotion & Attention, University of Florida
| |
Collapse
|
33
|
Lonsdorf TB, Menz MM, Andreatta M, Fullana MA, Golkar A, Haaker J, Heitland I, Hermann A, Kuhn M, Kruse O, Meir Drexler S, Meulders A, Nees F, Pittig A, Richter J, Römer S, Shiban Y, Schmitz A, Straube B, Vervliet B, Wendt J, Baas JMP, Merz CJ. Don't fear 'fear conditioning': Methodological considerations for the design and analysis of studies on human fear acquisition, extinction, and return of fear. Neurosci Biobehav Rev 2017; 77:247-285. [PMID: 28263758 DOI: 10.1016/j.neubiorev.2017.02.026] [Citation(s) in RCA: 489] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 12/24/2022]
Abstract
The so-called 'replicability crisis' has sparked methodological discussions in many areas of science in general, and in psychology in particular. This has led to recent endeavours to promote the transparency, rigour, and ultimately, replicability of research. Originating from this zeitgeist, the challenge to discuss critical issues on terminology, design, methods, and analysis considerations in fear conditioning research is taken up by this work, which involved representatives from fourteen of the major human fear conditioning laboratories in Europe. This compendium is intended to provide a basis for the development of a common procedural and terminology framework for the field of human fear conditioning. Whenever possible, we give general recommendations. When this is not feasible, we provide evidence-based guidance for methodological decisions on study design, outcome measures, and analyses. Importantly, this work is also intended to raise awareness and initiate discussions on crucial questions with respect to data collection, processing, statistical analyses, the impact of subtle procedural changes, and data reporting specifically tailored to the research on fear conditioning.
Collapse
Affiliation(s)
- Tina B Lonsdorf
- University Medical Center Hamburg-Eppendorf, Department of Systems Neuroscience, Hamburg, Germany.
| | - Mareike M Menz
- University Medical Center Hamburg-Eppendorf, Department of Systems Neuroscience, Hamburg, Germany
| | - Marta Andreatta
- University of Würzburg, Department of Psychology, Biological Psychology, Clinical Psychology and Psychotherapy, Würzburg, Germany
| | - Miguel A Fullana
- Anxiety Unit, Institute of Neuropsychiatry and Addictions, Hospital del Mar, CIBERSAM, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Department of Psychiatry, Autonomous University of Barcelona, Barcelona, Spain
| | - Armita Golkar
- Karolinska Institutet, Department of Clinical Neuroscience, Psychology Section, Stockholm, Sweden; University of Amsterdam, Department of Clinical Psychology, Amsterdam, Netherlands
| | - Jan Haaker
- University Medical Center Hamburg-Eppendorf, Department of Systems Neuroscience, Hamburg, Germany; Karolinska Institutet, Department of Clinical Neuroscience, Psychology Section, Stockholm, Sweden
| | - Ivo Heitland
- Utrecht University, Department of Experimental Psychology and Helmholtz Institute, Utrecht, The Netherlands
| | - Andrea Hermann
- Justus Liebig University Giessen, Department of Psychology, Psychotherapy and Systems Neuroscience, Giessen, Germany
| | - Manuel Kuhn
- University Medical Center Hamburg-Eppendorf, Department of Systems Neuroscience, Hamburg, Germany
| | - Onno Kruse
- Justus Liebig University Giessen, Department of Psychology, Psychotherapy and Systems Neuroscience, Giessen, Germany
| | - Shira Meir Drexler
- Ruhr-University Bochum, Institute of Cognitive Neuroscience, Department of Cognitive Psychology, Bochum, Germany
| | - Ann Meulders
- KU Leuven, Health Psychology, Leuven, Belgium; Maastricht University, Research Group Behavioral Medicine, Maastricht, The Netherlands
| | - Frauke Nees
- Heidelberg University, Medical Faculty Mannheim, Central Institute of Mental Health, Department of Cognitive and Clinical Neuroscience, Mannheim, Germany
| | - Andre Pittig
- Technische Universität Dresden, Institute of Clinical Psychology and Psychotherapy, Dresden, Germany
| | - Jan Richter
- University of Greifswald, Department of Physiological and Clinical Psychology/Psychotherapy, Greifswald, Germany
| | - Sonja Römer
- Saarland University, Department of Clinical Psychology and Psychotherapy, Saarbrücken, Germany
| | - Youssef Shiban
- University of Regensburg, Department of Psychology, Clinical Psychology and Psychotherapy, Regensburg, Germany
| | - Anja Schmitz
- University of Regensburg, Department of Psychology, Clinical Psychology and Psychotherapy, Regensburg, Germany
| | - Benjamin Straube
- Philipps-University Marburg, Department of Psychiatry and Psychotherapy, Marburg, Germany
| | - Bram Vervliet
- KU Leuven, Centre for the Psychology of Learning and Experimental Psychopathology, Leuven, Belgium; Center for Excellence on Generalization, University of Leuven, Leuven, Belgium; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Julia Wendt
- University of Greifswald, Department of Physiological and Clinical Psychology/Psychotherapy, Greifswald, Germany
| | - Johanna M P Baas
- Utrecht University, Department of Experimental Psychology and Helmholtz Institute, Utrecht, The Netherlands
| | - Christian J Merz
- Ruhr-University Bochum, Institute of Cognitive Neuroscience, Department of Cognitive Psychology, Bochum, Germany
| |
Collapse
|
34
|
Muench HM, Westermann S, Pizzagalli DA, Hofmann SG, Mueller EM. Self-relevant threat contexts enhance early processing of fear-conditioned faces. Biol Psychol 2016; 121:194-202. [DOI: 10.1016/j.biopsycho.2016.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
|
35
|
Sperl MFJ, Panitz C, Hermann C, Mueller EM. A pragmatic comparison of noise burst and electric shock unconditioned stimuli for fear conditioning research with many trials. Psychophysiology 2016; 53:1352-65. [PMID: 27286734 DOI: 10.1111/psyp.12677] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/28/2016] [Indexed: 01/01/2023]
Abstract
Several methods that are promising for studying the neurophysiology of fear conditioning (e.g., EEG, MEG) require a high number of trials to achieve an adequate signal-to-noise ratio. While electric shock and white noise burst are among the most commonly used unconditioned stimuli (US) in conventional fear conditioning studies with few trials, it is unknown whether these stimuli are equally well suited for paradigms with many trials. Here, N = 32 participants underwent a 260-trial differential fear conditioning and extinction paradigm with a 240-trial recall test 24 h later and neutral faces as conditioned stimuli. In a between-subjects design, either white noise bursts (n = 16) or electric shocks (n = 16) served as US, and intensities were determined using the most common procedure for each US (i.e., a fixed 95 dB noise burst and a work-up procedure for electric shocks, respectively). In addition to differing US types, groups also differed in closely linked US-associated characteristics (e.g., calibration methods, stimulus intensities, timing). Subjective ratings (arousal/valence), skin conductance, and evoked heart period changes (i.e., fear bradycardia) indicated more reliable, extinction-resistant, and stable conditioning in the white noise burst versus electric shock group. In fear conditioning experiments where many trials are presented, white noise burst should serve as US.
Collapse
Affiliation(s)
- Matthias F J Sperl
- Faculty of Psychology, Personality Psychology and Assessment, University of Marburg, Marburg, Germany.,Faculty of Psychology and Sports Science, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| | - Christian Panitz
- Faculty of Psychology, Personality Psychology and Assessment, University of Marburg, Marburg, Germany.,Faculty of Psychology and Sports Science, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| | - Christiane Hermann
- Faculty of Psychology and Sports Science, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| | - Erik M Mueller
- Faculty of Psychology, Personality Psychology and Assessment, University of Marburg, Marburg, Germany.,Faculty of Psychology and Sports Science, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| |
Collapse
|