1
|
Donnelly BM, Hsu DT, Gardus J, Wang J, Yang J, Parsey RV, DeLorenzo C. Orbitofrontal and striatal metabolism, volume, thickness and structural connectivity in relation to social anhedonia in depression: A multimodal study. Neuroimage Clin 2023; 41:103553. [PMID: 38134743 PMCID: PMC10777107 DOI: 10.1016/j.nicl.2023.103553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Social anhedonia is common within major depressive disorder (MDD) and associated with worse treatment outcomes. The orbitofrontal cortex (OFC) is implicated in both reward (medial OFC) and punishment (lateral OFC) in social decision making. Therefore, to understand the biology of social anhedonia in MDD, medial/lateral OFC metabolism, volume, and thickness, as well as structural connectivity to the striatum, amygdala, and ventral tegmental area/nucleus accumbens were examined. A positive relationship between social anhedonia and these neurobiological outcomes in the lateral OFC was hypothesized, whereas an inverse relationship was hypothesized for the medial OFC. The association between treatment-induced changes in OFC neurobiology and depression improvement were also examined. METHODS 85 medication-free participants diagnosed with MDD were assessed with Wisconsin Schizotypy Scales to assess social anhedonia and received pretreatment simultaneous fluorodeoxyglucose positron emission tomography (FDG-PET) and magnetic resonance imaging (MRI), including structural and diffusion. Participants were then treated in an 8-week randomized placebo-controlled double-blind course of escitalopram. PET/MRI were repeated following treatment. Metabolic rate of glucose uptake was quantified from dynamic FDG-PET frames using Patlak graphical analysis. Structure (volume and cortical thickness) was quantified from structural MRI using Freesurfer. To assess structural connectivity, probabilistic tractography was performed on diffusion MRI and average FA was calculated within the derived tracts. Linear mixed models with Bonferroni correction were used to examine the relationships between variables. RESULTS A significantly negative linear relationship between pretreatment social anhedonia score and structural connectivity between the medial OFC and the amygdala (estimated coefficient: -0.006, 95 % CI: -0.0108 - -0.0012, p-value = 0.0154) was observed. However, this finding would not survive multiple comparisons correction. No strong evidence existed to show a significant linear relationship between pretreatment social anhedonia score and metabolism, volume, thickness, or structural connectivity to any of the regions examined. There was also no strong evidence to suggest significant linear relationships between improvement in depression and percent change in these variables. CONCLUSIONS Based on these multimodal findings, the OFC likely does not underlie social anhedonia in isolation and therefore should not be the sole target of treatment for social anhedonia. This is consistent with previous reports that other areas of the brain such as the amygdala and the striatum are highly involved in this behavior. Relatedly, amygdala-medial OFC structural connectivity could be a future target. The results of this study are crucial as, to our knowledge, they are the first to relate structure/function of the OFC with social anhedonia severity in MDD. Future work may need to involve a whole brain approach in order to develop therapeutics for social anhedonia.
Collapse
Affiliation(s)
| | - David T Hsu
- Department of Psychiatry and Behavioral Health, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA
| | - John Gardus
- Department of Psychiatry and Behavioral Health, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA
| | - Junying Wang
- Department of Applied Mathematics and Statistics, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA
| | - Jie Yang
- Department of Family, Population & Preventive Medicine, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA
| | - Ramin V Parsey
- Department of Psychiatry and Behavioral Health, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA
| | - Christine DeLorenzo
- Department of Psychiatry and Behavioral Health, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA; Department of Biomedical Engineering, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA.
| |
Collapse
|
2
|
Wang J, Liu G, Xu K, Ai K, Huang W, Zhang J. The role of neurotransmitters in mediating the relationship between brain alterations and depressive symptoms in patients with inflammatory bowel disease. Hum Brain Mapp 2023; 44:5357-5371. [PMID: 37530546 PMCID: PMC10543356 DOI: 10.1002/hbm.26439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/07/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023] Open
Abstract
A growing body of evidence from neuroimaging studies suggests that inflammatory bowel disease (IBD) is associated with functional and structural alterations in the central nervous system and that it has a potential link to emotional symptoms, such as anxiety and depression. However, the neurochemical underpinnings of depression symptoms in IBD remain unclear. We hypothesized that changes in cortical gamma-aminobutyric acid (GABA+) and glutamine (Glx) concentrations are related to cortical thickness and resting-state functional connectivity in IBD as compared to healthy controls. To test this, we measured whole-brain cortical thickness and functional connectivity within the medial prefrontal cortex (mPFC), as well as the concentrations of neurotransmitters in the same brain region. We used the edited magnetic resonance spectroscopy (MRS) with the MEGA-PRESS sequence at a 3 T scanner to quantitate the neurotransmitter levels in the mPFC. Subjects with IBD (N = 37) and healthy control subjects (N = 32) were enrolled in the study. Compared with healthy controls, there were significantly decreased GABA+ and Glx concentrations in the mPFC of patients with IBD. The cortical thickness of patients with IBD was thin in two clusters that included the right medial orbitofrontal cortex and the right posterior cingulate cortex. A seed-based functional connectivity analysis indicated that there was higher connectivity of the mPFC with the left precuneus cortex (PC) and the posterior cingulate cortex, and conversely, lower connectivity in the left frontal pole was observed. The functional connectivity between the mPFC and the left PC was negatively correlated with the IBD questionnaire score (r = -0.388, p = 0.018). GABA+ concentrations had a negative correlation with the Hamilton Depression Scale (HAMD) score (r = -0.497, p = 0.002). Glx concentration was negatively correlated with the HAMD score (r = -0.496, p = 0.002) and positively correlated with the Short-Form McGill Pain Questionnaire score (r = 0.330, p = 0.046, uncorrected). There was a significant positive correlation between the ratio of Glx to GABA+ and the HAMD score (r = 0.428, p = 0.008). Mediation analysis revealed that GABA+ significantly mediated the main effect of the relationship between the structural and functional alterations and the severity of depression in patients with IBD. Our study provides initial evidence of neurochemistry that can be used to identify potential mechanisms underlying the modulatory effects of GABA+ on the development of depression in patients with IBD.
Collapse
Affiliation(s)
- Jun Wang
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Guangyao Liu
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Kun Xu
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Kai Ai
- Deparment of Clinical and Technical Support, Philips HealthcareXi'anChina
| | - Wenjing Huang
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Jing Zhang
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| |
Collapse
|
3
|
Talaei N, Ghaderi A. Integration of structural brain networks is related to openness to experience: A diffusion MRI study with CSD-based tractography. Front Neurosci 2022; 16:1040799. [PMID: 36570828 PMCID: PMC9775296 DOI: 10.3389/fnins.2022.1040799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Openness to experience is one of the big five traits of personality which recently has been the subject of several studies in neuroscience due to its importance in understanding various cognitive functions. However, the neural basis of openness to experience is still unclear. Previous studies have found largely heterogeneous results, suggesting that various brain regions may be involved in openness to experience. Here we suggested that performing structural connectome analysis may shed light on the neural underpinnings of openness to experience as it provides a more comprehensive look at the brain regions that are involved in this trait. Hence, we investigated the involvement of brain network structural features in openness to experience which has not yet been explored to date. The magnetic resonance imaging (MRI) data along with the openness to experience trait score from the self-reported NEO Five-Factor Inventory of 100 healthy subjects were evaluated from Human Connectome Project (HCP). CSD-based whole-brain probabilistic tractography was performed using diffusion-weighted images as well as segmented T1-weighted images to create an adjacency matrix for each subject. Using graph theoretical analysis, we computed global efficiency (GE) and clustering coefficient (CC) which are measures of two important aspects of network organization in the brain: functional integration and functional segregation respectively. Results revealed a significant negative correlation between GE and openness to experience which means that the higher capacity of the brain in combining information from different regions may be related to lower openness to experience.
Collapse
Affiliation(s)
- Nima Talaei
- Department of Psychology, Faculty of Literature and Human Sciences, Shahid Bahonar University, Kerman, Iran,*Correspondence: Nima Talaei,
| | - Amirhossein Ghaderi
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Department of Psychology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
Li Y, Cai H, Li X, Qian Y, Zhang C, Zhu J, Yu Y. Functional connectivity of the central autonomic and default mode networks represent neural correlates and predictors of individual personality. J Neurosci Res 2022; 100:2187-2200. [PMID: 36069656 DOI: 10.1002/jnr.25121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/24/2022] [Indexed: 01/07/2023]
Abstract
There is solid evidence for the prominent involvement of the central autonomic and default mode systems in shaping personality. However, whether functional connectivity of these systems can represent neural correlates and predictors of individual variation in personality traits is largely unknown. Resting-state functional magnetic resonance imaging data of 215 healthy young adults were used to construct the sympathetic (SN), parasympathetic (PN), and default mode (DMN) networks, with intra- and internetwork functional connectivity measured. Personality factors were assessed using the five-factor model. We examined the associations between personality factors and functional network connectivity, followed by performance of personality prediction based on functional connectivity using connectome-based predictive modeling (CPM), a recently developed machine learning approach. All personality factors (neuroticism, extraversion, conscientiousness, and agreeableness) other than openness were significantly correlated with intra- and internetwork functional connectivity of the SN, PN, and DMN. Moreover, the CPM models successfully predicted conscientiousness and agreeableness at the individual level using functional network connectivity. Our findings may expand existing knowledge regarding the neural substrates underlying personality.
Collapse
Affiliation(s)
- Yating Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xueying Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| |
Collapse
|
5
|
Xiang G, Li Q, Xiao M, He L, Chen X, Du X, Liu X, Song S, Wu Y, Chen H. Goal setting and attaining: Neural correlates of positive coping style and hope. Psychophysiology 2021; 58:e13887. [PMID: 34180066 DOI: 10.1111/psyp.13887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/29/2022]
Abstract
Trait hope focuses on individual goal-related thoughts and is assumed to be a critical indicator for one's mental health. However, the neurobiological basis of hope and the neurological mechanisms underlying the relationship between positive coping style (PCS) and hope (including the two dimensions of pathway thinking and agency thinking) are still largely unknown. Thus, this study explored the neural basis of trait hope by correlating the regional amplitude of low-frequency fluctuations (ALFF) and resting-state functional connectivity (RSFC) with the self-reported hope of 576 healthy first-year college students underwent RS-fMRI. Our results showed that trait hope was positively associated with PCS. A whole-brain correlation analysis provided early evidence that higher levels of trait hope were associated with decreased ALFF in the left frontal pole cortex (FPC). Additionally, pathway thinking was associated with decreased ALFF in FPC, increased ALFF in the right postcentral gyrus (PCG), decreased RSFC of the left FPC and left posterior cingulate cortex, the left FPC and right middle temporal gyrus, and the right PCG and left cerebellum. Furthermore, mediation analyses demonstrated that the PCG-cerebellum connectivity might link to pathway thinking through PCS and PCS might relate to trait hope through PCG-cerebellum connectivity. Our findings contribute to the neurobiological basis of hope and the neural mechanism underlying the relationship between trait hope and coping style.
Collapse
Affiliation(s)
- Guangcan Xiang
- School of Psychology, Southwest University, Chongqing, Sichuan, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, Sichuan, China
| | - Qingqing Li
- School of Psychology, Southwest University, Chongqing, Sichuan, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, Sichuan, China
| | - Mingyue Xiao
- School of Psychology, Southwest University, Chongqing, Sichuan, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, Sichuan, China
| | - Li He
- School of Psychology, Southwest University, Chongqing, Sichuan, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, Sichuan, China
| | - Ximei Chen
- School of Psychology, Southwest University, Chongqing, Sichuan, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, Sichuan, China
| | - Xiaoli Du
- School of Psychology, Southwest University, Chongqing, Sichuan, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, Sichuan, China
| | - Xinyuan Liu
- School of Psychology, Southwest University, Chongqing, Sichuan, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, Sichuan, China
| | - Shiqing Song
- School of Psychology, Southwest University, Chongqing, Sichuan, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, Sichuan, China
| | - Yue Wu
- School of Psychology, Southwest University, Chongqing, Sichuan, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, Sichuan, China
| | - Hong Chen
- School of Psychology, Southwest University, Chongqing, Sichuan, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, Sichuan, China
| |
Collapse
|
6
|
Dispositional Negative Emotionality in Childhood and Adolescence Predicts Structural Variation in the Amygdala and Caudal Anterior Cingulate During Early Adulthood: Theoretically and Empirically Based Tests. Res Child Adolesc Psychopathol 2021; 49:1275-1288. [PMID: 33871795 DOI: 10.1007/s10802-021-00811-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Substantial evidence implicates the amygdala and related structures in the processing of negative emotions. Furthermore, neuroimaging evidence suggests that variations in amygdala volumes are related to trait-like individual differences in neuroticism/negative emotionality, although many questions remain about the nature of such associations. We conducted planned tests of the directional prediction that dispositional negative emotionality measured at 10-17 years using parent and youth ratings on the Child and Adolescent Dispositions Scale (CADS) would predict larger volumes of the amygdala in adulthood and conducted exploratory tests of associations with other regions implicated in emotion processing. Participants were 433 twins strategically selected for neuroimaging during wave 2 from wave 1 of the Tennessee Twins Study (TTS) by oversampling on internalizing and/or externalizing psychopathology risk. Controlling for age, sex, race-ethnicity, handedness, scanner, and total brain volume, youth-rated negative emotionality positively predicted bilateral amygdala volumes after correction for multiple testing. Each unit difference of one standard deviation (SD) in negative emotionality was associated with a .12 SD unit difference in larger volumes of both amygdalae. Parent-rated negative emotionality predicted greater thickness of the left caudal/dorsal anterior cingulate cortex (β = 0.28). Associations of brain structure with negative emotionality were not moderated by sex. These results are striking because dispositions assessed at 10-17 years of age were predictive of grey matter volumes measured 12-13 years later in adulthood. Future longitudinal studies should examine the timing of amygdala/cingulate associations with dispositional negative emotionality to determine when these associations emerge during development.
Collapse
|
7
|
Liu X, Lai H, Li J, Becker B, Zhao Y, Cheng B, Wang S. Gray matter structures associated with neuroticism: A meta-analysis of whole-brain voxel-based morphometry studies. Hum Brain Mapp 2021; 42:2706-2721. [PMID: 33704850 PMCID: PMC8127153 DOI: 10.1002/hbm.25395] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/28/2021] [Accepted: 02/22/2021] [Indexed: 02/05/2023] Open
Abstract
Neuroticism is major higher-order personality trait and has been robustly associated with mental and physical health outcomes. Although a growing body of studies have identified neurostructural markers of neuroticism, the results remained highly inconsistent. To characterize robust associations between neuroticism and variations in gray matter (GM) structures, the present meta-analysis investigated the concurrence across voxel-based morphometry (VBM) studies using the anisotropic effect size signed differential mapping (AES-SDM). A total of 13 studies comprising 2,278 healthy subjects (1,275 females, 29.20 ± 14.17 years old) were included. Our analysis revealed that neuroticism was consistently associated with the GM structure of a cluster spanning the bilateral dorsal anterior cingulate cortex and extending to the adjacent medial prefrontal cortex (dACC/mPFC). Meta-regression analyses indicated that the neuroticism-GM associations were not confounded by age and gender. Overall, our study is the first whole-brain meta-analysis exploring the brain structural correlates of neuroticism, and the findings may have implications for the intervention of high-neuroticism individuals, who are at risk of mental disorders, by targeting the dACC/mPFC.
Collapse
Affiliation(s)
- Xiqin Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Han Lai
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Jingguang Li
- College of Teacher Education, Dali University, Dali, China
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Yajun Zhao
- School of Education and Psychology, Southwest Minzu University, Chengdu, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Song Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Su Q, Yu M, Liu F, Zhang Z, Lei M, Jiang Y, Luo T, Guo W. Frequency-specific alterations of the frontal-cerebellar circuit in first-episode, drug-naive somatization disorder. J Affect Disord 2021; 280:319-325. [PMID: 33221718 DOI: 10.1016/j.jad.2020.11.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 09/28/2020] [Accepted: 11/08/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND With the development of imaging techniques, evidence of abnormal neural activity has been implicated in patients with somatization disorder (SD). It remains unclear whether abnormal spontaneous neural activities are related to specific frequency bands. In this study, resting-state functional magnetic resonance imaging (fMRI) using the frequency-specific amplitude of low frequency fluctuation (ALFF) approach was applied to investigate changes in spontaneous neural activity in different frequency bands in patients with SD. METHODS Twenty-five first-episode, medication-naive patients with SD and 28 age-, sex-, education-matched healthy controls (HCs) underwent resting-state fMRI. The ALFF method with the classical low-frequency (0.01 - 0.08 Hz), slow-5 (0.01 - 0.027 Hz) and slow-4 (0.027 - 0.08 Hz) bands was employed to analyze the data. RESULTS With the classical low-frequency and slow-5 bands, patients with SD showed significantly increased ALFF in the left orbitofrontal cortex (OFC) and reduced ALFF in the right cerebellum compared with HCs. With the slow-4 band, patients with SD exhibited significantly reduced ALFF in the right cerebellum compared with HCs. However, no significant correlation was observed between the ALFF value in the left OFC or right cerebellum and clinical/cognitive variables. CONCLUSIONS Our findings indicate that there are abnormal regional activities of the left OFC and right cerebellum in first-episode, treatment-naive patients with SD, suggesting that these alterations occur early in the course of the disease and are independent of medication status. Our study provides novel evidence that different regional activities of the frontal-cerebellar circuit may be involved in the pathophysiology of SD.
Collapse
Affiliation(s)
- Qinji Su
- Mental Health Center, The Second Affiliated Hospital, Guangxi Medical University; Nanning, Guangxi 530021, China
| | - Miaoyu Yu
- Mental Health Center, The Second Affiliated Hospital, Guangxi Medical University; Nanning, Guangxi 530021, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhikun Zhang
- Mental Health Center, The Second Affiliated Hospital, Guangxi Medical University; Nanning, Guangxi 530021, China
| | - Meiying Lei
- Mental Health Center, The Second Affiliated Hospital, Guangxi Medical University; Nanning, Guangxi 530021, China
| | - Yongmei Jiang
- Mental Health Center, The Second Affiliated Hospital, Guangxi Medical University; Nanning, Guangxi 530021, China
| | - Tiantian Luo
- Mental Health Center, The Second Affiliated Hospital, Guangxi Medical University; Nanning, Guangxi 530021, China
| | - Wenbin Guo
- Mental Health Center, The Second Affiliated Hospital, Guangxi Medical University; Nanning, Guangxi 530021, China; Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, Hunan 410011, China.
| |
Collapse
|
9
|
Linked patterns of biological and environmental covariation with brain structure in adolescence: a population-based longitudinal study. Mol Psychiatry 2021; 26:4905-4918. [PMID: 32444868 PMCID: PMC7981783 DOI: 10.1038/s41380-020-0757-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/11/2023]
Abstract
Adolescence is a period of major brain reorganization shaped by biologically timed and by environmental factors. We sought to discover linked patterns of covariation between brain structural development and a wide array of these factors by leveraging data from the IMAGEN study, a longitudinal population-based cohort of adolescents. Brain structural measures and a comprehensive array of non-imaging features (relating to demographic, anthropometric, and psychosocial characteristics) were available on 1476 IMAGEN participants aged 14 years and from a subsample reassessed at age 19 years (n = 714). We applied sparse canonical correlation analyses (sCCA) to the cross-sectional and longitudinal data to extract modes with maximum covariation between neuroimaging and non-imaging measures. Separate sCCAs for cortical thickness, cortical surface area and subcortical volumes confirmed that each imaging phenotype was correlated with non-imaging features (sCCA r range: 0.30-0.65, all PFDR < 0.001). Total intracranial volume and global measures of cortical thickness and surface area had the highest canonical cross-loadings (|ρ| = 0.31-0.61). Age, physical growth and sex had the highest association with adolescent brain structure (|ρ| = 0.24-0.62); at baseline, further significant positive associations were noted for cognitive measures while negative associations were observed at both time points for prenatal parental smoking, life events, and negative affect and substance use in youth (|ρ| = 0.10-0.23). Sex, physical growth and age are the dominant influences on adolescent brain development. We highlight the persistent negative influences of prenatal parental smoking and youth substance use as they are modifiable and of relevance for public health initiatives.
Collapse
|
10
|
Structure related to function: prefrontal surface area has an indirect effect on the relationship between amygdala volume and trait neuroticism. Brain Struct Funct 2019; 224:3309-3320. [PMID: 31673773 DOI: 10.1007/s00429-019-01974-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/18/2019] [Indexed: 10/25/2022]
Abstract
Trait neuroticism refers to individual differences in negative emotional response to threat, frustration, or loss, operationally defined by elevated levels of irritability, anger, sadness, anxiety, worry, hostility, self-consciousness, and vulnerability to mental and physical difficulties. While functional studies have been fairly consistent when identifying regions associated with neuroticism during emotional stimuli, structural imagining studies do not tend to find a relationship between amygdala volume and trait neuroticism. There is a great deal of functional evidence that frontoparietal areas are related to the amygdala, and to emotional reactivity more generally, as a function of their involvement in emotion regulation. Specifically, top-down emotion appraisal and expression appear to involve parts of the dorsolateral and dorsomedial prefrontal cortices, which operate at least in part via the indirect modulation of the amygdala. It was hypothesized that cortical surface area and cortical thickness in regions associated with emotion appraisal/expression and emotional attention (i.e., superior frontal and rostral middle frontal gyri, respectively) would have an indirect effect on the relationship between amygdala volume and self-reported neuroticism (respectively), potentially explaining the inconsistency in the structural literature. In sample of 1106 adults, superior frontal and rostral middle frontal gyri, as parcellated by Freesurfer, were examined as potentially restricting variance in a model of indirect effects, which may elucidate the overall relationship between cortical and subcortical gray matter volume and trait neuroticism. Results indicated that, despite no association between bilateral amygdala volume and trait neuroticism, when right superior frontal surface area was entered into the model of indirect effects, a significant relationship between amygdala volume and trait neuroticism emerged. Two of the three remaining models indicated that cortical surface area had an indirect effect on the relationship between amygdala volume and trait neuroticism. These findings highlight the relationship between structural and functional neuroimaging studies. Specifically, the results indicate that when volume is related to behavior, individual differences in higher-order cortical regions, particularly surface area, may help to better understand the relationship between emotion and subcortical gray matter volume.
Collapse
|