1
|
Lyu SY, Xiao W, Cui GZ, Yu C, Liu H, Lyu M, Kuang QY, Xiao EH, Luo YH. Role and mechanism of DNA methylation and its inhibitors in hepatic fibrosis. Front Genet 2023; 14:1124330. [PMID: 37056286 PMCID: PMC10086238 DOI: 10.3389/fgene.2023.1124330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Liver fibrosis is a repair response to injury caused by various chronic stimuli that continually act on the liver. Among them, the activation of hepatic stellate cells (HSCs) and their transformation into a myofibroblast phenotype is a key event leading to liver fibrosis, however the mechanism has not yet been elucidated. The molecular basis of HSC activation involves changes in the regulation of gene expression without changes in the genome sequence, namely, via epigenetic regulation. DNA methylation is a key focus of epigenetic research, as it affects the expression of fibrosis-related, metabolism-related, and tumor suppressor genes. Increasing studies have shown that DNA methylation is closely related to several physiological and pathological processes including HSC activation and liver fibrosis. This review aimed to discuss the mechanism of DNA methylation in the pathogenesis of liver fibrosis, explore DNA methylation inhibitors as potential therapies for liver fibrosis, and provide new insights on the prevention and clinical treatment of liver fibrosis.
Collapse
Affiliation(s)
- Shi-Yi Lyu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Wang Xiao
- Department of Gastrointestinal Surgery, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Guang-Zu Cui
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Cheng Yu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Huan Liu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Min Lyu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Qian-Ya Kuang
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - En-Hua Xiao
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Yong-Heng Luo
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Technical, Biological and Molecular Aspects of Somatic Cell Nuclear Transfer – A Review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Since the announcement of the birth of the first cloned mammal in 1997, Dolly the sheep, 24 animal species including laboratory, farm, and wild animals have been cloned. The technique for somatic cloning involves transfer of the donor nucleus of a somatic cell into an enucleated oocyte at the metaphase II (MII) stage for the generation of a new individual, genetically identical to the somatic cell donor. There is increasing interest in animal cloning for different purposes such as rescue of endangered animals, replication of superior farm animals, production of genetically engineered animals, creation of biomedical models, and basic research. However, the efficiency of cloning remains relatively low. High abortion, embryonic, and fetal mortality rates are frequently observed. Moreover, aberrant developmental patterns during or after birth are reported. Researchers attribute these abnormal phenotypes mainly to incomplete nuclear remodeling, resulting in incomplete reprogramming. Nevertheless, multiple factors influence the success of each step of the somatic cloning process. Various strategies have been used to improve the efficiency of nuclear transfer and most of the phenotypically normal born clones can survive, grow, and reproduce. This paper will present some technical, biological, and molecular aspects of somatic cloning, along with remarkable achievements and current improvements.
Collapse
|
3
|
Ex Situ Conservation and Genetic Rescue of Endangered Polish Cattle and Pig Breeds with the Aid of Modern Reproductive Biotechnology – A Review. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The development and optimization of reproductive biotechnology – specifically semen cryopreservation, spermatological diagnostics, and intraspecies cloning by somatic cell nuclear transfer (SCNT) – have become essential techniques to conserve the genetic resources and establish genetic reserves of endangered or vanishing native Polish livestock breeds. Moreover, this biotechnology is necessary for perpetuating biological diversity and enhancing genetic variability as well as for restoring and reintroducing breeds into anthropogenic agricultural ecosystems. On the one hand, the purpose of our paper is to interpret recent efforts aimed at the ex situ conservation of native cattle and pig breeds. On the other, it emphasizes the prominent role played by the National Research Institute of Animal Production (NRIAP) in maintaining biodiversity in agricultural environmental niches. Furthermore, our paper provides an overview of the conventional and modern strategies of the banking and cryopreservation of germplasm-carrier biological materials and somatic cell lines, spermatological diagnostics, and semen-based and SCNT-mediated assisted reproductive technologies (ART s). These are the most reliable and powerful tools for ex situ protection of the genetic resources of endangered breeds of livestock, especially cattle and pigs.
Collapse
|
4
|
Jeong PS, Yang HJ, Park SH, Gwon MA, Joo YE, Kim MJ, Kang HG, Lee S, Park YH, Song BS, Kim SU, Koo DB, Sim BW. Combined Chaetocin/Trichostatin A Treatment Improves the Epigenetic Modification and Developmental Competence of Porcine Somatic Cell Nuclear Transfer Embryos. Front Cell Dev Biol 2021; 9:709574. [PMID: 34692674 PMCID: PMC8526721 DOI: 10.3389/fcell.2021.709574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023] Open
Abstract
Developmental defects in somatic cell nuclear transfer (SCNT) embryos are principally attributable to incomplete epigenetic reprogramming. Small-molecule inhibitors such as histone methyltransferase inhibitors (HMTi) and histone deacetylase inhibitors (HDACi) have been used to improve reprogramming efficiency of SCNT embryos. However, their possible synergistic effect on epigenetic reprogramming has not been studied. In this study, we explored whether combined treatment with an HMTi (chaetocin) and an HDACi (trichostatin A; TSA) synergistically enhanced epigenetic reprogramming and the developmental competence of porcine SCNT embryos. Chaetocin, TSA, and the combination significantly increased the cleavage and blastocyst formation rate, hatching/hatched blastocyst rate, and cell numbers and survival rate compared to control embryos. In particular, the combined treatment improved the rate of development to blastocysts more so than chaetocin or TSA alone. TSA and combined chaetocin/TSA significantly reduced the H3K9me3 levels and increased the H3K9ac levels in SCNT embryos, although chaetocin alone significantly reduced only the H3K9me3 levels. Moreover, these inhibitors also decreased global DNA methylation in SCNT embryos. In addition, the expression of zygotic genome activation- and imprinting-related genes was increased by chaetocin or TSA, and more so by the combination, to levels similar to those of in vitro-fertilized embryos. These results suggest that combined chaetocin/TSA have synergistic effects on improving the developmental competences by regulating epigenetic reprogramming and correcting developmental potential-related gene expression in porcine SCNT embryos. Therefore, these strategies may contribute to the generation of transgenic pigs for biomedical research.
Collapse
Affiliation(s)
- Pil-Soo Jeong
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea
| | - Hae-Jun Yang
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Soo-Hyun Park
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Animal Science, College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea
| | - Min Ah Gwon
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea
| | - Ye Eun Joo
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Animal Science, College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea
| | - Min Ju Kim
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Animal Science, College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea
| | - Hyo-Gu Kang
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Sanghoon Lee
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Young-Ho Park
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Bong-Seok Song
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea
| | - Deog-Bon Koo
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea
| | - Bo-Woong Sim
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| |
Collapse
|
5
|
Effects of Incubation Time and Method of Cell Cycle Synchronization on Collared Peccary Skin-Derived Fibroblast Cell Lines. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The success of cloning by somatic cell nuclear transfer depends on the efficiency of nuclear reprogramming, with the cycle stage of the donor cell playing a crucial role. Therefore, the aim was to evaluate three different approaches for cell cycle synchronization: (i) serum starvation (SS) for 1 to 4 days, (ii) contact inhibition (CI) for 1 to 3 days, and (iii) using cell cycle regulatory inhibitors (dimethyl sulfoxide, cycloheximide, cytochalasin B, or 6-dimethylaminopurine) for 1 and 2 days, in terms of their effects on synchronization in G0/G1 phases and viability of collared peccary skin fibroblasts. Flow cytometry analysis revealed that SS for 4 days (79.0% ± 1.6) and CI for 3 days (78.0% ± 1.4) increased the percentage of fibroblasts in G0/G1 compared to growing cells GC (68.1% ± 8.6). However, SS for 3 and 4 days reduced the viability evaluated by differential staining (81.4% ± 0.03 and 81.6% ± 0.06) compared to growing cells (GC, 95.9% ± 0.06). CI did not affect the viability at any of the analyzed time intervals. No cell cycle inhibitors promoted synchronization in G0/G1. These results indicate that CI for 3 days was the most efficient method for cell cycle synchronization in peccary fibroblasts.
Collapse
|
6
|
Abstract
Porcine cloning technology can be used to produce progenies genetically identical to the donor cells from high-quality breeding pigs. In addition, genetically modified pigs have been produced by somatic cell nuclear transfer using genetically modified porcine fetal fibroblasts. The method of preparing genetically modified pigs is critical for establishing pig models for human diseases, and for generating donor animals for future xenotransplantation. This chapter describes detailed procedures for generating cloned pigs using fetal fibroblasts as nuclear donors.
Collapse
Affiliation(s)
- Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China.
| | - Jianyong Han
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Aspergillus fumigatus, One Uninucleate Species with Disparate Offspring. J Fungi (Basel) 2021; 7:jof7010030. [PMID: 33419224 PMCID: PMC7825634 DOI: 10.3390/jof7010030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
Establishment of a fungal infection due to Aspergillus fumigatus relies on the efficient germination of the airborne conidia once they penetrate the respiratory tract. However, the features of conidial germination have been poorly explored and understood in this fungal species as well as in other species of filamentous fungi. We show here that the germination of A. fumigatus is asynchronous. If the nutritional environment and extensive gene deletions can modify the germination parameters for A. fumigatus, the asynchrony is maintained in all germinative conditions tested. Even though the causes for this asynchrony of conidial germination remain unknown, asynchrony is essential for the completion of the biological cycle of this filamentous fungus.
Collapse
|
8
|
Wu C, Zhang D, Zhang S, Sun L, Liu Y, Dai J. Effect of Rhodiola sachalinensis Aqueous Extract on In Vitro Maturation of Porcine Oocytes and Subsequent In Vitro Embryonic Development. Cell Reprogram 2020; 22:277-281. [PMID: 33124899 DOI: 10.1089/cell.2020.0041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oxidative stress can impede maturation of the nucleus and cytoplasm of oocytes during in vitro maturation (IVM). Rhodiola sachalinensis, an herb commonly used in traditional Chinese medicine, conveys antioxidative effects to cryopreserved bovine sperm. Therefore, the aims of this study were to evaluate the effects of different concentrations of R. sachalinensis aqueous extract (RSAE) on IVM and subsequent in vitro embryonic development after parthenogenetic activation (PA), in vitro fertilization (IVF), and somatic cell nuclear transfer (SCNT). The results showed that RSAE supplementation (6 and 60 mg/L) significantly increased intracellular glutathione levels, but had no effect on maturation rates or reactive oxygen species. After in vitro culture, greater blastocyst formation was observed in PA embryos (6 mg/L RSAE), as well as in IVF and SCNT embryos (60 mg/L) matured in RSAE-supplemented IVM media. In conclusion, although there was no significant improvement in the maturation rate, RSAE supplementation conveyed an antioxidative effect during IVM, and improved subsequent embryonic development in vitro. Further studies are needed to explore gene expression pattern in oocytes and embryos treated with RSAE.
Collapse
Affiliation(s)
- Caifeng Wu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agriculture Sciences, Shanghai, China.,Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, China
| | - Defu Zhang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agriculture Sciences, Shanghai, China.,Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, China
| | - Shushan Zhang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agriculture Sciences, Shanghai, China.,Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, China
| | - Lingwei Sun
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agriculture Sciences, Shanghai, China.,Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, China
| | - Ying Liu
- Department of Animal, Dairy, Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Jianjun Dai
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agriculture Sciences, Shanghai, China.,Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, China
| |
Collapse
|