1
|
Barton AM, Poulos HM, Crisfield E, Dillon A, Mello M, Selfridge J, Van de Poll R, Hardy S. Moths versus Bees: Contrasts in Habitat Preferences Across Barrens of the Northeastern USA. Ecol Evol 2024; 14:e70533. [PMID: 39539681 PMCID: PMC11560292 DOI: 10.1002/ece3.70533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Bees and moths are globally important pollinators. Xeric barrens in the largely mesic northeastern USA support high levels of pollinator diversity, including rare bees and moths. We investigated the response of bee vs. moth communities to abiotic and vegetation drivers in barrens across the region. We sampled local environmental conditions, vegetation, bees, and moths for 2-4 years in 19 preserves. Employing random forest analysis, we tested the role of 29 abiotic and vegetation predictors of bee vs. moth abundance, species richness, Shannon-Wiener Index, evenness, and species composition. Variables related to climate, canopy cover, and soils were the most important predictors of abundance, diversity, and species composition for both bees and moths. Vegetation variables, such as species richness of shrubs and hostplants, were also important for bees. The direction of these relationships contrasted sharply between bees and moths: bees were more abundant and species rich in more open, sandy sites and moths the opposite. Habitat preferences for a subset of moth xeric specialists were much more similar to bees than to other moths, with a preference for open, sandy conditions. Contrasts between bees and moths in habitat preferences likely stemmed from differences in their life histories: bees rely on flowers for feeding and porous substrates for nesting, whereas most moth adults feed on flowers, but many moth caterpillars use woody plants as hosts. In sharp contrast to the results for abundance and richness, bees and moths responded similarly for the Shannon-Wiener Index, which raises important general questions about the conservation value of these two metrics. Our results suggest that, because of differences in habitat preferences among pollinators, barrens management for both open and more closed habitats is likely to promote the highest abundance and diversity of local bee and moth pollinator communities jointly.
Collapse
Affiliation(s)
- Andrew M. Barton
- Department of BiologyUniversity of Maine at FarmingtonFarmingtonMaineUSA
| | - Helen M. Poulos
- Department of Earth and Environmental Sciences and the Bailey College of the EnvironmentWesleyan UniversityMiddletownConnecticutUSA
| | | | - Amanda Dillon
- New York State Department of Environmental ConservationAlbanyNew YorkUSA
| | - Mark Mello
- Lloyd Center for the EnvironmentDartmouthMassachusettsUSA
| | - Jennifer Selfridge
- Maryland Department of Natural ResourcesUnited States, Wye Mills Wildlife and Heritage ServiceWye MillsMarylandUSA
| | - Rick Van de Poll
- Ecosystem Management Consultants of New EnglandSandwichNew HampshireUSA
| | - Sarah Hardy
- Division of MathematicsUniversity of Maine at FarmingtonFarmingtonMaineUSA
| |
Collapse
|
2
|
Waters SM, Mitchell RM, Brown ER, Taber EM. Prescribed fire increases plant-pollinator network robustness to losses of rare native forbs. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2928. [PMID: 37876286 DOI: 10.1002/eap.2928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/07/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023]
Abstract
Restoration efforts often focus on changing the composition and structure of invaded plant communities, with two implicit assumptions: (1) functional interactions with species of other trophic levels, such as pollinators, will reassemble automatically when native plant diversity is restored and (2) restored communities will be more resilient to future stressors. However, the impact of restoration activities on pollinator richness, plant-pollinator interaction network structure, and network robustness is incompletely understood. Leveraging a restoration chronosequence in Pacific Northwest prairies, we examined the effects of restoration-focused prescribed fire and native forb replanting on floral resources, pollinator visitation, and plant-pollinator network structure. We then simulated the effects of plant species loss/removal scenarios on secondary extinction cascades in the networks. Specifically, we explored three management-relevant plant loss scenarios (removal of an abundant exotic forb, removal of an abundant forb designated a noxious weed, and loss of the rarest native forb) and compared them to control scenarios. Pyrodiversity and proportion of area recently burned increased the abundance and diversity of floral resources, with concomitant increases in pollinator visitation and diversity. Pyrodiversity also decreased network connectance and nestedness, increased modularity, and buffered networks against secondary extinction cascades. Rare forbs contributed disproportionately to network robustness in less restored prairies, while removal of typical "problem" plants like exotic and noxious species had relatively small impacts on network robustness, particularly in prairies with a long history of restoration activities. Restoration actions aimed mainly at improving the diversity and abundance of pollinator-provisioning plants may also produce plant-pollinator networks with increased resilience to plant species losses.
Collapse
Affiliation(s)
| | - Rachel M Mitchell
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
| | | | - Ethan M Taber
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
3
|
Atkinson J, Brudvig LA, Mallen-Cooper M, Nakagawa S, Moles AT, Bonser SP. Terrestrial ecosystem restoration increases biodiversity and reduces its variability, but not to reference levels: A global meta-analysis. Ecol Lett 2022; 25:1725-1737. [PMID: 35559594 PMCID: PMC9320827 DOI: 10.1111/ele.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/06/2022] [Accepted: 04/23/2022] [Indexed: 12/01/2022]
Abstract
Ecological restoration projects often have variable and unpredictable outcomes, and these can limit the overall impact on biodiversity. Previous syntheses have investigated restoration effectiveness by comparing average restored conditions to average conditions in unrestored or reference systems. Here, we provide the first quantification of the extent to which restoration affects both the mean and variability of biodiversity outcomes, through a global meta-analysis of 83 terrestrial restoration studies. We found that, relative to unrestored (degraded) sites, restoration actions increased biodiversity by an average of 20%, while decreasing the variability of biodiversity (quantified by the coefficient of variation) by an average of 14%. As restorations aged, mean biodiversity increased and variability decreased relative to unrestored sites. However, restoration sites remained, on average, 13% below the biodiversity of reference (target) ecosystems, and were characterised by higher (20%) variability. The lower mean and higher variability in biodiversity at restored sites relative to reference sites remained consistent over time, suggesting that sources of variation (e.g. prior land use, restoration practices) have an enduring influence on restoration outcomes. Our results point to the need for new research confronting the causes of variability in restoration outcomes, and close variability and biodiversity gaps between restored and reference conditions.
Collapse
Affiliation(s)
- Joe Atkinson
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, New South Wales, Australia
| | - Lars A Brudvig
- Department of Plant Biology and Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, Michigan, USA
| | - Max Mallen-Cooper
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, New South Wales, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, New South Wales, Australia
| | - Angela T Moles
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, New South Wales, Australia
| | - Stephen P Bonser
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, New South Wales, Australia
| |
Collapse
|
4
|
Abstract
Temporal trends in insect numbers vary across studies and habitats, but drivers are poorly understood. Suitable long-term data are scant and biased, and interpretations of trends remain controversial. By contrast, there is substantial quantitative evidence for drivers of spatial variation. From observational and experimental studies, we have gained a profound understanding of where insect abundance and diversity is higher-and identified underlying environmental conditions, resource change and disturbances. We thus propose an increased consideration of spatial evidence in studying the causes of insect decline. This is because for most time series available today, the number of sites and thus statistical power strongly exceed the number of years studied. Comparisons across sites allow quantifying insect population risks, impacts of land use, habitat destruction, restoration or management, and stressors such as chemical and light pollution, pesticides, mowing or harvesting, climatic extremes or biological invasions. Notably, drivers may not have to change in intensity to have long-term effects on populations, e.g. annually repeated disturbances or mortality risks such as those arising from agricultural practices. Space-for-time substitution has been controversially debated. However, evidence from well-replicated spatial data can inform on urgent actions required to halt or reverse declines-to be implemented in space.
Collapse
Affiliation(s)
- Nico Blüthgen
- Ecological Networks Lab, Technische Universität Darmstadt, Schnittspahnstraße 3, 64287 Darmstadt, Germany
| | - Michael Staab
- Ecological Networks Lab, Technische Universität Darmstadt, Schnittspahnstraße 3, 64287 Darmstadt, Germany
| | - Rafael Achury
- Terrestrial Ecology, Department of Ecology and Ecosystem Management, Technical University of Munich, 85354 Freising, Germany
| | - Wolfgang W Weisser
- Terrestrial Ecology, Department of Ecology and Ecosystem Management, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
5
|
Villalta I, Ledet R, Baude M, Genoud D, Bouget C, Cornillon M, Moreau S, Courtial B, Lopez-Vaamonde C. A DNA barcode-based survey of wild urban bees in the Loire Valley, France. Sci Rep 2021; 11:4770. [PMID: 33637824 PMCID: PMC7910470 DOI: 10.1038/s41598-021-83631-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/08/2021] [Indexed: 11/11/2022] Open
Abstract
The current decline of wild bees puts important ecosystem services such as pollination at risk. Both inventory and monitoring programs are needed to understand the causes of wild bee decline. Effective insect monitoring relies on both mass-trapping methods coupled with rapid and accurate identifications. Identifying wild bees using only morphology can be challenging, in particular, specimens from mass-trapped samples which are often in poor condition. We generated DNA barcodes for 2931 specimens representing 157 species (156 named and one unnamed species) and 28 genera. Automated cluster delineation reveals 172 BINs (Barcodes Index Numbers). A total of 36 species (22.93%) were found in highly urbanized areas. The majority of specimens, representing 96.17% of the species barcoded form reciprocally exclusive groups, allowing their unambiguous identification. This includes several closely related species notoriously difficult to identify. A total of 137 species (87.26%) show a "one-to-one" match between a named species and the BIN assignment. Fourteen species (8.92%) show deep conspecific lineages with no apparent morphological differentiation. Only two species pairs shared the same BIN making their identification with DNA barcodes alone uncertain. Therefore, our DNA barcoding reference library allows reliable identification by non-experts for the vast majority of wild bee species in the Loire Valley.
Collapse
Affiliation(s)
- Irene Villalta
- IRBI, UMR 7261, CNRS, Université de Tours, Tours, France.
| | - Romain Ledet
- INRAE USC 1328, LBLGC EA 1207, Université d'Orléans, Orléans, France
| | - Mathilde Baude
- INRAE USC 1328, LBLGC EA 1207, Université d'Orléans, Orléans, France
| | | | | | | | | | | | - Carlos Lopez-Vaamonde
- IRBI, UMR 7261, CNRS, Université de Tours, Tours, France
- INRAE, URZF, Orléans, France
| |
Collapse
|