1
|
Bott MJ, Toumbacaris N, Tan KS, Husta BC, Medina BD, Adusumilli PS, Beattie JA, Lee RP, Park BJ, Dycoco J, Jones DR, Chawla M, Rocco G, Kalchiem-Dekel O. Characterizing a learning curve for robotic-assisted bronchoscopy: Analysis of skills acquisition in a high-volume academic center. J Thorac Cardiovasc Surg 2025; 169:269-278.e6. [PMID: 38936600 PMCID: PMC11655264 DOI: 10.1016/j.jtcvs.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE Shape-sensing robotic-assisted bronchoscopy is an emerging technology for the sampling of pulmonary lesions. We seek to characterize the shape-sensing robotic-assisted bronchoscopy learning curve at an academic center. METHODS Shape-sensing robotic-assisted bronchoscopy procedures performed by 9 proceduralists at a single institution were analyzed. Cumulative sum analyses were performed to examine diagnostic sampling and procedure time over each operator's first 50 cases, with the acceptable yield threshold set to 73%. RESULTS During the study period, 442 patients underwent sampling of 551 lesions. Each operator sampled 61 lesions (interquartile range, 60-63 lesions). Lesion size was 1.90 cm (interquartile range, 1.33-2.80 cm). The median procedure time for single-target cases decreased from 62 minutes during the first 10 cases to 39 minutes after case 40 (P < .001). The overall diagnostic yield was 72% (range, 58%-83%). Six of 9 operators achieved proficiency over the study period. An aggregated cumulative sum analysis of those who achieved competency demonstrated a steep improvement between lesions 1 and 21 and crossing of the competency threshold by lesion 25. Temporal analysis of yield-related lesion characteristics demonstrated that at approximately lesion 20, more challenging lesions were increasingly targeted, as evidenced by smaller target size, higher rates of unfavorable radial endobronchial ultrasound views, and a negative bronchus sign. CONCLUSIONS Skills acquisition in shape-sensing robotic-assisted bronchoscopy is variable. Approximately half of proceduralists become facile with the technology within 25 lesions. After the initial learning phase, operators increasingly target lesions with more challenging features. Overall, these findings can inform certification and competency standards and provide new users with expectations related to performance over time.
Collapse
Affiliation(s)
- Matthew J Bott
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY.
| | - Nicolas Toumbacaris
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kay See Tan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Bryan C Husta
- Section of Interventional Pulmonology, Pulmonary Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Benjamin D Medina
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jason A Beattie
- Section of Interventional Pulmonology, Pulmonary Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Robert P Lee
- Section of Interventional Pulmonology, Pulmonary Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Bernard J Park
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Joseph Dycoco
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David R Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mohit Chawla
- Section of Interventional Pulmonology, Pulmonary Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gaetano Rocco
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Or Kalchiem-Dekel
- Section of Interventional Pulmonology, Pulmonary Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
2
|
Kalchiem-Dekel O, Bergemann R, Ma X, Christos PJ, Miodownik D, Gao Y, Mahmood U, Adusumilli PS, Bott MJ, Dycoco J, Gelblum DY, Lee RP, Park BJ, Rocco G, Solomon SB, Jones DR, Chawla M, Husta BC. Determinants of radiation exposure during mobile cone-beam CT-guided robotic-assisted bronchoscopy. Respirology 2024; 29:803-814. [PMID: 38806394 PMCID: PMC11329349 DOI: 10.1111/resp.14765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND AND OBJECTIVE Robotic-assisted bronchoscopy (RAB) is an emerging modality to sample pulmonary lesions. Cone-beam computed tomography (CBCT) can be incorporated into RAB. We investigated the magnitude and predictors of patient and staff radiation exposure during mobile CBCT-guided shape-sensing RAB. METHODS Patient radiation dose was estimated by cumulative dose area product (cDAP) and cumulative reference air kerma (cRAK). Staff equivalent dose was calculated based on isokerma maps and a phantom simulation. Patient, lesion and procedure-related factors associated with higher radiation doses were identified by logistic regression models. RESULTS A total of 198 RAB cases were included in the analysis. The median patient cDAP and cRAK were 10.86 Gy cm2 (IQR: 4.62-20.84) and 76.20 mGy (IQR: 38.96-148.38), respectively. Among staff members, the bronchoscopist was exposed to the highest median equivalent dose of 1.48 μSv (IQR: 0.85-2.69). Both patient and staff radiation doses increased with the number of CBCT spins and targeted lesions (p < 0.001 for all comparisons). Patient obesity, negative bronchus sign, lesion size <2.0 cm and inadequate sampling by on-site evaluation were associated with a higher patient dose, while patient obesity and inadequate sampling by on-site evaluation were associated with a higher bronchoscopist equivalent dose. CONCLUSION The magnitude of patient and staff radiation exposure during CBCT-RAB is aligned with safety thresholds recommended by regulatory authorities. Factors associated with a higher radiation exposure during CBCT-RAB can be identified pre-operatively and solicit procedural optimization by reinforcing radiation protective measures. Future studies are needed to confirm these findings across multiple institutions and practices.
Collapse
Affiliation(s)
- Or Kalchiem-Dekel
- Section of Interventional Pulmonology, Pulmonary Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Reza Bergemann
- Section of Interventional Pulmonology, Pulmonary Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiaoyue Ma
- Division of Biostatistics and Epidemiology, Weill Cornell School of Medicine, New York, NY, USA
| | - Paul J Christos
- Division of Biostatistics and Epidemiology, Weill Cornell School of Medicine, New York, NY, USA
| | - Daniel Miodownik
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yiming Gao
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Usman Mahmood
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew J Bott
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph Dycoco
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daphna Y Gelblum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert P Lee
- Section of Interventional Pulmonology, Pulmonary Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bernard J Park
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gaetano Rocco
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen B Solomon
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David R Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mohit Chawla
- Section of Interventional Pulmonology, Pulmonary Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bryan C Husta
- Section of Interventional Pulmonology, Pulmonary Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
3
|
Heymann JJ, D'Ambrosio D, Dombrowski KS, Desai N, Illei PB. Pulmonary Cytopathology: Current and Future Impact on Patient Care. Surg Pathol Clin 2024; 17:395-410. [PMID: 39129139 DOI: 10.1016/j.path.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Small biopsies of lung are routinely obtained by many methods, including several that result in cytologic specimens. Because lung cancer is often diagnosed at a stage for which primary resection is not an option, it is critical that all diagnostic, predictive, and prognostic information be derived from such small biopsy specimens. As the number of available diagnostic and predictive markers expands, cytopathologists must familiarize themselves with current requirements for specimen acquisition, handling, results reporting, and molecular and other ancillary testing, all of which are reviewed here.
Collapse
Affiliation(s)
- Jonas J Heymann
- Department of Pathology and Laboratory Medicine, New York-Presbyterian Hospital-Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| | - Danielle D'Ambrosio
- Department of Pathology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016, USA
| | - Katya S Dombrowski
- Department of Pathology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Niyati Desai
- Department of Pathology and Cell Biology, New York-Presbyterian Hospital-Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Peter B Illei
- Department of Pathology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| |
Collapse
|
4
|
Wijma IN, Casal RF, Cheng GZ, Einsiedel PF, Fantin A, Hall DJ, Herth FJF, Ng CSH, Pritchett MA, Shah PL, Steinfort DP, Trisolini R, Verhoeven RLJ, van der Heijden EHFM. Radiation Principles, Protection, and Reporting for Interventional Pulmonology: A World Association of Bronchology and Interventional Pulmonology White Paper. Respiration 2024; 103:707-722. [PMID: 39033746 PMCID: PMC11548093 DOI: 10.1159/000540102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
The use and availability of diverse advanced X-ray based imaging and guidance systems in the field of interventional pulmonology are rapidly growing. This popularity links inextricably to an increase in ionizing radiation use. Knowing ionizing radiation is hazardous, knowledge and competent use of X-ray imaging and guidance systems are important. The globally implemented As Low As Reasonably Achievable (ALARA) principle demands careful attention to minimize radiation exposure while achieving the precise goals of the intervention and imaging therein. To allow careful and targeted weighing of risk against reward while using X-ray based equipment, proper background knowledge of physics as well as imaging system aspects are needed. This white paper summarizes the principles of ionizing radiation which are crucial to enhance awareness and interpretation of dosimetric quantities. Consecutively, a consensus on standards for reporting radiation exposure in interventional pulmonology procedures is indicated to facilitate comparisons between different systems, approaches and results. Last but not least, it provides a list of practical measures, considerations and tips to optimize procedural imaging as well as reduce radiation dose to patients and staff.
Collapse
Affiliation(s)
- Inge N Wijma
- Department of Pulmonary Diseases, Interventional Pulmonology, Radboud University Medical Center, Nijmegen, The Netherlands,
| | - Roberto F Casal
- Department of Medicine, Advanced Bronchoscopy Program, Clinical Research Unit, Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - George Z Cheng
- Department of Interventional Pulmonology, Bronchoscopy, and Pleural Disease, Interventional Pulmonology Fellowship, University of California San Diego, La Jolla, California, USA
| | - Paul F Einsiedel
- Department of Medical Imaging, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Alberto Fantin
- Department of Pulmonology, University Hospital of Udine (ASUFC), Udine, Italy
| | - David J Hall
- Department of Radiology, Diagnostic Medical Physics, University of California, San Diego, California, USA
- UCSD Moores Cancer Center, La Jolla, California, USA
| | - Felix J F Herth
- Department of Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - Calvin S H Ng
- Department of Thoracic Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China
| | - Michael A Pritchett
- Chest Center of the Carolinas, FirstHealth of the Carolinas and Pinehurst Medical Clinic, Pinehurst, North Carolina, USA
| | - Pallav L Shah
- Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Daniel P Steinfort
- Department Respiratory Medicine, The Royal Melbourne Hospital City Campus, Parkville, Victoria, Australia
| | - Rocco Trisolini
- Department of Pulmonary Medicine and Interventional Pulmonolonology, Catholic University of the Sacred Hearth, Fondazione Polilcinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Roel L J Verhoeven
- Department of Pulmonary Diseases, Interventional Pulmonology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erik H F M van der Heijden
- Department of Pulmonary Diseases, Interventional Pulmonology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Husta BC, Menon A, Bergemann R, Lin IH, Schmitz J, Rakočević R, Nadig TR, Adusumilli PS, Beattie JA, Lee RP, Park BJ, Rocco G, Bott MJ, Chawla M, Kalchiem-Dekel O. The incremental contribution of mobile cone-beam computed tomography to the tool-lesion relationship during shape-sensing robotic-assisted bronchoscopy. ERJ Open Res 2024; 10:00993-2023. [PMID: 39040587 PMCID: PMC11261373 DOI: 10.1183/23120541.00993-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/16/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction This study aims to answer the question of whether adding mobile cone-beam computed tomography (mCBCT) imaging to shape-sensing robotic-assisted bronchoscopy (ssRAB) translates into a quantifiable improvement in the tool-lesion relationship. Methods Data from 102 peripheral lung lesions with ≥2 sequential mCBCT orbital spins and from 436 lesions with 0-1 spins were prospectively captured and retrospectively analysed. The primary outcome was the tool-lesion relationship status across the first and the last mCBCT spins. Secondary outcomes included 1) the change in distance between the tip of the sampling tool and the centre of the lesion between the first and the last spins and 2) the per-lesion diagnostic yield. Results Compared to lesions requiring 0-1 spins, lesions requiring ≥2 spins were smaller and had unfavourable bronchus sign and intra-operative sonographic view. On the first spin, 54 lesions (53%) were designated as non-tool-in-lesion (non-TIL) while 48 lesions (47%) were designated as TIL. Of the 54 initially non-TIL cases, 49 (90%) were converted to TIL status by the last spin. Overall, on the last spin, 96 out of 102 lesions (94%) were defined as TIL and six out of 102 lesions (6%) were defined as non-TIL (p<0.0001). The mean distance between the tool and the centre of the lesion decreased from 10.4 to 6.6 mm between the first and last spins (p<0.0001). The overall diagnostic yield was 77%. Conclusion Targeting traditionally challenging lung lesions, intra-operative volumetric imaging allowed for the conversion of 90% of non-TIL status to TIL. Guidance with mCBCT resulted in a significant decrease in the distance between the tip of the needle to lesion centre.
Collapse
Affiliation(s)
- Bryan C. Husta
- Section of Interventional Pulmonology, Pulmonary Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anu Menon
- Section of Interventional Pulmonology, Pulmonary Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Reza Bergemann
- Section of Interventional Pulmonology, Pulmonary Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - I-Hsin Lin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jaclyn Schmitz
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rastko Rakočević
- Section of Interventional Pulmonology, Pulmonary Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tejaswi R. Nadig
- Section of Interventional Pulmonology, Pulmonary Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prasad S. Adusumilli
- Thoracic Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jason A. Beattie
- Section of Interventional Pulmonology, Pulmonary Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert P. Lee
- Section of Interventional Pulmonology, Pulmonary Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bernard J. Park
- Thoracic Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gaetano Rocco
- Thoracic Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew J. Bott
- Thoracic Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mohit Chawla
- Section of Interventional Pulmonology, Pulmonary Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Or Kalchiem-Dekel
- Section of Interventional Pulmonology, Pulmonary Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
6
|
Xu D, Xie F, Zhang J, Chen H, Chen Z, Guan Z, Hou G, Ji C, Li H, Li M, Li W, Li X, Li Y, Lian H, Liao J, Liu D, Luo Z, Ouyang H, Shen Y, Shi Y, Tang C, Wan N, Wang T, Wang H, Wang H, Wang J, Wu X, Xia Y, Xiao K, Xu W, Xu F, Yang H, Yang J, Ye T, Ye X, Yu P, Zhang N, Zhang P, Zhang Q, Zhao Q, Zheng X, Zou J, Chen E, Sun J. Chinese expert consensus on cone-beam CT-guided diagnosis, localization and treatment for pulmonary nodules. Thorac Cancer 2024; 15:582-597. [PMID: 38337087 PMCID: PMC10912555 DOI: 10.1111/1759-7714.15222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/07/2024] [Indexed: 02/12/2024] Open
Abstract
Cone-beam computed tomography (CBCT) system can provide real-time 3D images and fluoroscopy images of the region of interest during the operation. Some systems can even offer augmented fluoroscopy and puncture guidance. The use of CBCT for interventional pulmonary procedures has grown significantly in recent years, and numerous clinical studies have confirmed the technology's efficacy and safety in the diagnosis, localization, and treatment of pulmonary nodules. In order to optimize and standardize the technical specifications of CBCT and guide its application in clinical practice, the consensus statement has been organized and written in a collaborative effort by the Professional Committee on Interventional Pulmonology of China Association for Promotion of Health Science and Technology.
Collapse
Affiliation(s)
- Dongyang Xu
- Department of Respiratory Endoscopy, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Respiratory and Critical Care Medicine, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Respiratory EndoscopyShanghaiChina
| | - Fangfang Xie
- Department of Respiratory Endoscopy, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Respiratory and Critical Care Medicine, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Respiratory EndoscopyShanghaiChina
| | - Jisong Zhang
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory DiseaseSir Run Run Shaw Hospital of Zhejiang UniversityHangzhouChina
| | - Hong Chen
- Department of Pulmonary and Critical Care MedicineSecond Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zhongbo Chen
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Medical SchoolNingbo UniversityNingboChina
| | - Zhenbiao Guan
- Department of Respiration, Changhai HospitalNaval Medical UniversityShanghaiChina
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, China‐Japan Friendship HospitalBeijingChina
| | - Cheng Ji
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Haitao Li
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Wei Li
- Department of Respiratory DiseaseThe First Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| | - Xuan Li
- Department of Respiratory Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Yishi Li
- Dept of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Hairong Lian
- Department of Respiratory MedicineAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Jiangrong Liao
- Department of Respiratory MedicineGuizhou Aerospace HospitalZunyiChina
| | - Dan Liu
- Department of Respiratory and Critical Care MedicineWest China Hospital of Sichuan UniversityChengduChina
| | - Zhuang Luo
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Haifeng Ouyang
- Department of Respiratory DiseasesXi'an International Medical CenterXi'anChina
| | - Yongchun Shen
- Department of Respiratory and Critical Care MedicineWest China Hospital of Sichuan UniversityChengduChina
| | - Yiwei Shi
- Department of Respiratory and Critical Care MedicineShanxi Medical University Affiliated First HospitalTaiyuanChina
| | - Chunli Tang
- China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory DiseaseThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Nansheng Wan
- Department of Respiratory and Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hong Wang
- Department of Respiratory MedicineLanzhou University Second HospitalLanzhouChina
| | - Huaqi Wang
- Department of Respiratory MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Juan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xuemei Wu
- Department of Respiratory CentreThe Second Affiliated Hospital of Xiamen Medical CollegeXiamenChina
| | - Yang Xia
- Department of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Kui Xiao
- Department of Respiratory Medicine, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Wujian Xu
- Department of Respiratory and Critical Care Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Fei Xu
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Huizhen Yang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Junyong Yang
- Department of Respiratory MedicineXinjiang Chest HospitalWulumuqiChina
| | - Taosheng Ye
- Department of TuberculosisThe Third People's Hospital of ShenzhenShenzhenChina
| | - Xianwei Ye
- Department of Pulmonary and Critical Care MedicineGuizhou Provincial People's HospitalGuiyangChina
| | - Pengfei Yu
- Department of Respiratory and Critical Care Medicine, Yantai Yuhuangding HospitalAffiliated with the Medical College of QingdaoYantaiChina
| | - Nan Zhang
- Department of Respiratory Medicine, Emergency General HospitalBeijingChina
| | - Peng Zhang
- Pulmonary Intervention DepartmentAnhui Chest HospitalHefeiChina
| | - Quncheng Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Qi Zhao
- Department of Respiratory Medicine, Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Xiaoxuan Zheng
- Department of Respiratory Endoscopy, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Respiratory and Critical Care Medicine, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Respiratory EndoscopyShanghaiChina
| | - Jun Zou
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Enguo Chen
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory DiseaseSir Run Run Shaw Hospital of Zhejiang UniversityHangzhouChina
| | - Jiayuan Sun
- Department of Respiratory Endoscopy, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Respiratory and Critical Care Medicine, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Respiratory EndoscopyShanghaiChina
| | | |
Collapse
|
7
|
Zhang C, Xie F, Li R, Cui N, Herth FJF, Sun J. Robotic-assisted bronchoscopy for the diagnosis of peripheral pulmonary lesions: A systematic review and meta-analysis. Thorac Cancer 2024; 15:505-512. [PMID: 38286133 PMCID: PMC10912532 DOI: 10.1111/1759-7714.15229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/31/2024] Open
Abstract
Robotic-assisted bronchoscopy (RAB) is a newly developed bronchoscopic technique for the diagnosis of peripheral pulmonary lesions (PPLs). The objective of this meta-analysis was to analyze the diagnostic yield and safety of RAB in patients with PPLs. Five databases (PubMed, Embase, Web of Science, CENTRAL, and ClinicalTrials.gov) were searched from inception to April 2023. Two independent investigators screened retrieved articles, extracted data, and assessed the study quality. The pooled diagnostic yield and complication rate were estimated. Subgroup analysis was used to explore potential sources of heterogeneity. Publication bias was assessed using funnel plots and the Egger test. Sensitivity analysis was also conducted to assess the robustness of the synthesized results. A total of 725 lesions from 10 studies were included in this meta-analysis. No publication bias was found. Overall, RAB had a pooled diagnostic yield of 80.4% (95% CI: 75.7%-85.1%). Lesion size of >30 mm, presence of a bronchus sign, and a concentric radial endobronchial ultrasound view were associated with a statistically significantly higher diagnostic yield. Heterogeneity exploration showed that studies using cryoprobes reported better yields than those without cryoprobes (90.0%, 95% CI: 83.2%-94.7% vs. 79.0%, 95% CI: 75.8%-82.2%, p < 0.01). The pooled complication rate was 3.0% (95% CI: 1.6%-4.4%). In conclusion, RAB is an effective and safe technique for PPLs diagnosis. Further high-quality prospective studies still need to be conducted.
Collapse
Affiliation(s)
- Chunxi Zhang
- Department of Respiratory Endoscopy, Department of Respiratory and Critical Care MedicineShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Respiratory EndoscopyShanghaiChina
| | - Fangfang Xie
- Department of Respiratory Endoscopy, Department of Respiratory and Critical Care MedicineShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Respiratory EndoscopyShanghaiChina
| | - Runchang Li
- Department of Respiratory Endoscopy, Department of Respiratory and Critical Care MedicineShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Respiratory EndoscopyShanghaiChina
| | - Ningxin Cui
- Department of Respiratory Endoscopy, Department of Respiratory and Critical Care MedicineShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Respiratory EndoscopyShanghaiChina
| | - Felix J. F. Herth
- Department of Pneumology and Critical Care Medicine, ThoraxklinikUniversity of HeidelbergHeidelbergGermany
| | - Jiayuan Sun
- Department of Respiratory Endoscopy, Department of Respiratory and Critical Care MedicineShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Respiratory EndoscopyShanghaiChina
| |
Collapse
|
8
|
Pyarali FF, Hakami-Majd N, Sabbahi W, Chaux G. Robotic-assisted Navigation Bronchoscopy: A Meta-Analysis of Diagnostic Yield and Complications. J Bronchology Interv Pulmonol 2024; 31:70-81. [PMID: 37700435 DOI: 10.1097/lbr.0000000000000942] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/03/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Robotic-assisted navigation bronchoscopy (RANB) is a novel method to biopsy lung nodules, with initial reports demonstrating excellent accuracy. We aimed to evaluate pooled estimates of diagnostic yields and complication rates with RANB by performing a meta-analysis of the available literature. METHODS We searched 3 databases, including PubMed, EmBase, and Web of Science. The resulting abstracts were reviewed by 2 investigators. Analyses were performed using random effects models, and diagnostic yield and complication rates were estimated after the Freeman-Tukey transformation. RESULTS A total of 23 articles, comprising 1409 patients and 1541 nodules, were included in the final analysis. Mean ages ranged from 63.2 to 69.3 years. The average size of the nodules ranged between 5.9 and 25.0 mm. Most patients (54.0% to 92.0%) had a current or prior smoking history in studies that reported them (n=8). The pooled diagnostic yield was 81.9% (12 studies, 838 nodules, 95% CI: 83.4%-91.0%), and the pooled sensitivity for malignancy was 87.6% (8 studies, 699 nodules, 95% CI: 81.3%-89.5%). The pooled incidence of pneumothorax rates was 0.60% (95% CI: 0.11%-1.35%). The pooled incidence of major bleeding was <0.01%. CONCLUSION Diagnostic yield for patients with pulmonary nodules undergoing RANB is high, though may be impacted by the prevalence of malignancy, participant selection, and publication bias. Complication rates, including pneumothoraces and bleeding rates, appear low across all studies. If RANB is available, clinicians should consider utilizing this platform to biopsy pulmonary nodules.
Collapse
Affiliation(s)
- Fahim F Pyarali
- Department of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Niv Hakami-Majd
- Division of Pulmonary and Critical Care, Cedars Sinai Medical Center, Los Angeles, CA
| | - Wesam Sabbahi
- Division of Pulmonary and Critical Care, Cedars Sinai Medical Center, Los Angeles, CA
| | - George Chaux
- Division of Pulmonary and Critical Care, Cedars Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
9
|
Vu LH, Yu Lee-Mateus A, Edell ES, Hartley C, Vierkant RA, Fernandez-Bussy S, Reisenauer J. Accuracy of Preliminary Pathology for Robotic Bronchoscopic Biopsy. Ann Thorac Surg 2023; 116:1028-1034. [PMID: 36470566 DOI: 10.1016/j.athoracsur.2022.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/24/2022] [Accepted: 11/11/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Diagnosis and treatment of peripheral pulmonary lesions (PPLs) currently require at least 2 procedures. An all-in-1 approach would require diagnosing malignancy with preliminary cytology results. This study investigated the concordance between preliminary cytology and final pathology results in biopsies of PPLs obtained by shape-sensing robotic-assisted bronchoscopy (ssRAB). METHODS This study was a retrospective, consecutive, single-arm, single-center study of 110 ssRABs for PPLs. Concordance was defined as agreement between preliminary cytology and final pathology results. Accuracy, sensitivity, specificity, positive and negative predictive values, and safety outcomes were examined. RESULTS The concordance was 89% for needle biopsies, 85% for forceps biopsies, and 92% overall, with substantial agreement. There was no significant association of concordance with patients' demographics or lesion characteristics. Preliminary cytology resulted in a malignant diagnosis in 70%, a nonmalignant diagnosis in 4%, and a nondiagnostic result in 26%, with accuracy of 86% and sensitivity of 84%. The total complication rate was 3.6%, with a pneumothorax rate of 1.8%. CONCLUSIONS This study compared the concordance of preliminary pathology results with final pathology results for ssRAB biopsies in PPLs. The results showed that preliminary samples have a high concordance with final pathology results and may enable management of PPLs with a single anesthetic procedure including biopsy, staging, and treatment.
Collapse
Affiliation(s)
- Linh H Vu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Alejandra Yu Lee-Mateus
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Jacksonville, Florida
| | - Eric S Edell
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Robert A Vierkant
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Sebastian Fernandez-Bussy
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Jacksonville, Florida
| | - Janani Reisenauer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota; Division of Thoracic Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
10
|
Ortiz-Jaimes G, Reisenauer J. Real-World Impact of Robotic-Assisted Bronchoscopy on the Staging and Diagnosis of Lung Cancer: The Shape of Current and Potential Opportunities. Pragmat Obs Res 2023; 14:75-94. [PMID: 37694262 PMCID: PMC10492559 DOI: 10.2147/por.s395806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
The approach to peripheral pulmonary lesions (PPL) has been evolving continuously. Advanced bronchoscopic navigational techniques have improved the airway-based approaches to these lesions. Robotic Assisted Bronchoscopy (RAB) can be considered the current pinnacle of this evolution; allowing for a safer approach to sampling lesions previously considered outside of bronchoscopic reach. We present a comprehensive review of the changing epidemiology of lung cancer and the importance of early tissue sampling, the evolution of sampling and navigational bronchoscopic techniques, technical considerations and evidence pertaining to the use of RAB, and adjunct techniques in the diagnosis of lung cancer. Complications and future applications of RAB are also discussed.
Collapse
Affiliation(s)
- Gabriel Ortiz-Jaimes
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Janani Reisenauer
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Thoracic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
11
|
Jain A, Sarkar A, Husnain SMN, Adkinson BC, Sadoughi A, Sarkar A. Digital Tomosynthesis: Review of Current Literature and Its Impact on Diagnostic Bronchoscopy. Diagnostics (Basel) 2023; 13:2580. [PMID: 37568943 PMCID: PMC10417238 DOI: 10.3390/diagnostics13152580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Bronchoscopy has garnered increased popularity in the biopsy of peripheral lung lesions. The development of navigational guided bronchoscopy systems along with radial endobronchial ultrasound (REBUS) allows clinicians to access and sample peripheral lesions. The development of robotic bronchoscopy improved localization of targets and diagnostic accuracy. Despite such technological advancements, published diagnostic yield remains lower compared to computer tomography (CT)-guided biopsy. The discordance between the real-time location of peripheral lesions and anticipated location from preplanned navigation software is often cited as the main variable impacting accurate biopsies. The utilization of cone beam CT (CBCT) with navigation-based bronchoscopy has been shown to assist with localizing targets in real-time and improving biopsy success. The resources, costs, and radiation associated with CBCT remains a hindrance in its wider adoption. Recently, digital tomosynthesis (DT) platforms have been developed as an alternative for real-time imaging guidance in peripheral lung lesions. In North America, there are several commercial platforms with distinct features and adaptation of DT. Early studies show the potential improvement in peripheral lesion sampling with DT. Despite the results of early observational studies, the true impact of DT-based imaging devices for peripheral lesion sampling cannot be determined without further prospective randomized trials and meta-analyses.
Collapse
Affiliation(s)
- Anant Jain
- Department of Pulmonary, Critical Care, and Sleep Medicine, Westchester Medical Center, New York Medical College, Valhalla, NY 10595, USA; (A.J.); (S.M.N.H.)
| | - Adrish Sarkar
- Department of Radiology, Nassau University Medical Center, East Meadow, NY 11554, USA;
| | - Shaikh Muhammad Noor Husnain
- Department of Pulmonary, Critical Care, and Sleep Medicine, Westchester Medical Center, New York Medical College, Valhalla, NY 10595, USA; (A.J.); (S.M.N.H.)
| | - Brian Cody Adkinson
- Department of Pulmonary, Critical Care, and Sleep Medicine, Miller School of Medicine, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA;
| | - Ali Sadoughi
- Department of Pulmonary Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10467, USA;
| | - Abhishek Sarkar
- Department of Pulmonary, Critical Care, and Sleep Medicine, Westchester Medical Center, New York Medical College, Valhalla, NY 10595, USA; (A.J.); (S.M.N.H.)
| |
Collapse
|
12
|
Advanced Imaging for Robotic Bronchoscopy: A Review. Diagnostics (Basel) 2023; 13:diagnostics13050990. [PMID: 36900134 PMCID: PMC10001114 DOI: 10.3390/diagnostics13050990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Recent advances in navigational platforms have led bronchoscopists to make major strides in diagnostic interventions for pulmonary parenchymal lesions. Over the last decade, multiple platforms including electromagnetic navigation and robotic bronchoscopy have allowed bronchoscopists to safely navigate farther into the lung parenchyma with increased stability and accuracy. Limitations persist, even with these newer technologies, in achieving a similar or higher diagnostic yield when compared to the transthoracic computed tomography (CT) guided needle approach. One of the major limitations to this effect is due to CT-to-body divergence. Real-time feedback that better defines the tool-lesion relationship is vital and can be obtained with additional imaging using radial endobronchial ultrasound, C-arm based tomosynthesis, cone-beam CT (fixed or mobile), and O-arm CT. Herein, we describe the role of this adjunct imaging with robotic bronchoscopy for diagnostic purposes, describe potential strategies to counteract the CT-to-body divergence phenomenon, and address the potential role of advanced imaging for lung tumor ablation.
Collapse
|
13
|
McLoughlin KC, Bott MJ. Robotic Bronchoscopy for the Diagnosis of Pulmonary Lesions. Thorac Surg Clin 2023; 33:109-116. [PMID: 36372527 PMCID: PMC10566151 DOI: 10.1016/j.thorsurg.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pulmonary nodules (lesions <3 cm in size) are commonly identified on computed tomographic scans, but radiographic features alone are inadequate to reliably differentiate between benign and malignant etiologies. Therefore, tissue biopsy remains the standard approach to determine the appropriate treatment course for many patients with pulmonary nodules. Although percutaneous biopsy is highly accurate, it poses substantial risks of procedural complications, including pneumothorax and bleeding. Robotic bronchoscopy has recently been developed to overcome many of the limitations of previous navigational platforms. Here, we explore the currently available systems for robotic bronchoscopy-in particular, electromagnetic-navigation robotic-assisted bronchoscopy and shape-sensing robotic-assisted bronchoscopy.
Collapse
Affiliation(s)
- Kaitlin C McLoughlin
- Department of Surgery, Thoracic Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA
| | - Matthew J Bott
- Department of Surgery, Thoracic Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA.
| |
Collapse
|
14
|
Manley CJ, Pritchett MA. Nodules, Navigation, Robotic Bronchoscopy, and Real-Time Imaging. Semin Respir Crit Care Med 2022; 43:473-479. [PMID: 36104024 DOI: 10.1055/s-0042-1747930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The process of detection, diagnosis, and management of lung nodules is complex due to the heterogeneity of lung pathology and a relatively low malignancy rate. Technological advances in bronchoscopy have led to less-invasive diagnostic procedures and advances in imaging technology have helped to improve nodule localization and biopsy confirmation. Future research is required to determine which modality or combination of complimentary modalities is best suited for safe, accurate, and cost-effective management of lung nodules.
Collapse
Affiliation(s)
- Christopher J Manley
- Division of Pulmonary and Critical Care, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Michael A Pritchett
- Division of Pulmonary and Critical Care Medicine, Chest Center of the Carolinas at FirstHealth, FirstHealth of the Carolinas and Pinehurst Medical Clinic, Pinehurst, North Carolina
| |
Collapse
|
15
|
Reisenauer J, Duke JD, Kern R, Fernandez-Bussy S, Edell E. Combining Shape-Sensing Robotic Bronchoscopy With Mobile Three-Dimensional Imaging to Verify Tool-in-Lesion and Overcome Divergence: A Pilot Study. MAYO CLINIC PROCEEDINGS: INNOVATIONS, QUALITY & OUTCOMES 2022; 6:177-185. [PMID: 35509435 PMCID: PMC9059066 DOI: 10.1016/j.mayocpiqo.2022.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Objective To determine whether CT-to-body divergence can be overcome to improve the diagnostic yield of peripheral pulmonary nodules with the combination of shape-sensing robotic-assisted bronchoscopy (SSRAB) and portable 3-dimensional (3D) imaging. Patients and Methods A single-center, prospective, pilot study was conducted from February 9, 2021, to August 4, 2021, to evaluate the combined use of SSRAB and portable 3D imaging to visualize tool-in-lesion as a correlate to diagnostic yield. Results Thirty lesions were subjected to biopsy in 17 men (56.7%) and 13 women (43.3%). The median lesion size was 17.5 mm (range, 10-30 mm), with the median airway generation of 7 and the median distance from pleura of 14.9 mm. Most lesions were in the upper lobes (18, 60.0%). Tool-in-lesion was visualized at the time of the procedure in 29 lesions (96.7%). On the basis of histopathologic review, 22 (73.3%) nodules were malignant and 6 (20.0%) were benign. Two (6.7%) specimens were suggestive of inflammation, and the patients elected observation. The mean number of spins was 2.5 (±1.6) with a mean fluoroscopy time of 8.7 min and a mean dose area product of 50.3 Gy cm2 (±32.0 Gy cm2). There were no episodes of bleeding or pneumothorax. The diagnostic yield was 93.3%. Conclusion This pilot study shows that the combination of mobile 3D imaging and SSRAB of pulmonary nodules appears to be safe and feasible. In conjunction with appropriate anesthetic pathways, nodule motion and divergence can be overcome in most patients. Trial Registration https://clinicaltrials.gov Identifier NCT04740047
Collapse
Affiliation(s)
- Janani Reisenauer
- Division of Thoracic Surgery, Mayo Clinic Rochester MN
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic Rochester MN
- Correspondence: Address to Janani Reisenauer, MD, Division of General Thoracic Surgery, Mayo Clinic, 200 1st St, SW, Rochester, MN 55905.
| | - Jennifer D. Duke
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic Rochester MN
| | - Ryan Kern
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic Rochester MN
| | | | - Eric Edell
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic Rochester MN
| |
Collapse
|
16
|
Folch E, Mittal A, Oberg C. Robotic bronchoscopy and future directions of interventional pulmonology. Curr Opin Pulm Med 2022; 28:37-44. [PMID: 34789649 DOI: 10.1097/mcp.0000000000000849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW To describe the emerging field of robotic bronchoscopy within advanced diagnostic bronchoscopy. We review the literature available for these two novel platforms to highlight their differences and discuss the impact on future directions. RECENT FINDINGS There are two distinct technologies both known as robotic bronchoscopy. The Monarch robotic-assisted bronchoscopy is based on electromagnetic guidance whereas the Ion robotic-assisted bronchoscopy is founded on shape sensing technology. Although there is ongoing work to explore the capabilities of these systems, studies have shown that both are safe modalities. Furthermore, both hold promise to improve diagnostic yield and may eventually pave the way for therapeutic bronchoscopic ablation in the future. SUMMARY Although both platforms fall under the umbrella term of robotic-assisted bronchoscopy, the Monarch and Ion systems are quite unique in their technology. Thus far, both have demonstrated safety, and early data shows promising results for improved diagnostic yield compared to previously advanced bronchoscopy modalities, especially when combined with advanced confirmatory imaging. Future directions may include bronchoscopic ablation of peripheral lesions given the stability and reach of these platforms.
Collapse
Affiliation(s)
- Erik Folch
- Department of Pulmonary & Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Abhinav Mittal
- Department of Pulmonary & Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Catherine Oberg
- Division of Pulmonary, Critical Care, Allergy and Immunology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
17
|
Shen YC, Chen CH, Tu CY. Advances in Diagnostic Bronchoscopy. Diagnostics (Basel) 2021; 11:diagnostics11111984. [PMID: 34829331 PMCID: PMC8620115 DOI: 10.3390/diagnostics11111984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
The increase in incidental discovery of pulmonary nodules has led to more urgent requirement of tissue diagnosis. The peripheral pulmonary nodules are especially challenging for clinicians. There are various modalities for diagnosis and tissue sampling of pulmonary lesions, but most of these modalities have their own limitations. This has led to the development of many advanced technical modalities, which have empowered pulmonologists to reach the periphery of the lung safely and effectively. These techniques include thin/ultrathin bronchoscopes, radial probe endobronchial ultrasound (RP-EBUS), and navigation bronchoscopy—including virtual navigation bronchoscopy (VNB) and electromagnetic navigation bronchoscopy (ENB). Recently, newer technologies—including robotic-assisted bronchoscopy (RAB), cone-beam CT (CBCT), and augmented fluoroscopy (AF)—have been introduced to aid in the navigation to peripheral pulmonary nodules. Technological advances will also enable more precise tissue sampling of smaller peripheral lung nodules for local ablative and other therapies of peripheral lung cancers in the future. However, we still need to overcome the CT-to-body divergence, among other limitations. In this review, our aim is to summarize the recent advances in diagnostic bronchoscopy technology.
Collapse
Affiliation(s)
- Yi-Cheng Shen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 40447, Taiwan;
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40447, Taiwan
| | - Chia-Hung Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 40447, Taiwan;
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40447, Taiwan
- School of Medicine, China Medical University, Taichung 40447, Taiwan
- Correspondence: (C.-H.C.); (C.-Y.T.); Tel.: +886-4-22052121 (ext. 2623) (C.-H.C.); +886-4-22052121 (ext. 3485) (C.-Y.T.); Fax: +886-4-22038883 (C.-H.C. & C.-Y.T.)
| | - Chih-Yen Tu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 40447, Taiwan;
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40447, Taiwan
- School of Medicine, China Medical University, Taichung 40447, Taiwan
- Correspondence: (C.-H.C.); (C.-Y.T.); Tel.: +886-4-22052121 (ext. 2623) (C.-H.C.); +886-4-22052121 (ext. 3485) (C.-Y.T.); Fax: +886-4-22038883 (C.-H.C. & C.-Y.T.)
| |
Collapse
|
18
|
Wagh A, Ho E, Murgu S, Hogarth DK. Improving diagnostic yield of navigational bronchoscopy for peripheral pulmonary lesions: a review of advancing technology. J Thorac Dis 2020; 12:7683-7690. [PMID: 33447461 PMCID: PMC7797818 DOI: 10.21037/jtd-2020-abpd-003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
With recommendations for low dose CT scan for lung cancer screening, there has been an increase in the finding of lung nodules and peripheral pulmonary lesions (PPLs). Additionally, when there is concern for malignancy, guidelines have recommended performing the least invasive evaluation. Conventional bronchoscopy diagnostic yields for PPLs have reportedly been quite low and prior electromagnetic navigation bronchoscopy (ENB) studies have reported variable yields. Navigation bronchoscopy in addition to endobronchial ultrasound allows a physician to evaluate peripheral lung lesions along with mediastinal and hilar lymph nodes for the diagnosis and staging of suspected malignancy in one procedure. More recent advances in navigational bronchoscopy including the use of augmented fluoroscopy (AF), cone beam CT, and robotic bronchoscopy have pushed the boundaries of capability in evaluating PPLs. These added bronchoscopic technologies have shown to improve diagnostic yield especially when modalities are used in combination. The ultimate goal of endoscopically localized ablative and therapeutic treatment for peripheral lung lesions will require a high level of physician confidence, accuracy, and precision. This article will review the innovative characteristics and data of some of the more recently available navigational bronchoscopy devices.
Collapse
Affiliation(s)
- Ajay Wagh
- Section of Pulmonary and Critical Care Medicine/Interventional Pulmonology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Elliot Ho
- Section of Pulmonary and Critical Care Medicine/Interventional Pulmonology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Septimiu Murgu
- Section of Pulmonary and Critical Care Medicine/Interventional Pulmonology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Douglas Kyle Hogarth
- Section of Pulmonary and Critical Care Medicine/Interventional Pulmonology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| |
Collapse
|