1
|
Chen L, Chen D, Gong H, Wang C, Gao Y, Li Y, Tang W, Zha P, Ran X. Pedal medial arterial calcification in diabetic foot ulcers: A significant risk factor of amputation and mortality. J Diabetes 2024; 16:e13527. [PMID: 38584152 PMCID: PMC10999494 DOI: 10.1111/1753-0407.13527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 12/25/2023] [Indexed: 04/09/2024] Open
Abstract
AIMS Pedal medial arterial calcification (MAC) is frequently observed in individuals with diabetic foot ulcers (DFUs). However, the impact of pedal MAC on individuals with DFUs remains uncertain. The main aim of this study was to evaluate the association between pedal MAC with amputation and mortality outcomes. METHODS A prospective, observational cohort study was conducted at West China Hospital from January 2012 to December 2021. Logistic regression analyses, Kaplan-Meier survival method, and Cox proportional hazards models were employed to evaluate the relationship between pedal MAC and amputation as well as mortality. RESULTS A total of 979 patients were enrolled in the study. Peripheral artery disease (PAD) was observed in 53% of patients with DFUs, and pedal MAC was found in 8%. Over a median follow-up of 46 (23-72) months, foot amputation was performed on 190 patients, and mortality occurred in 246 patients. Pedal MAC showed a significant association with amputation both in unadjusted analysis (odds ratio [OR] = 2.98, 95% confidence interval [CI] = 1.86-4.76, p < .001) and after adjusting sex, age, albumin levels, hemoglobin levels, and diabetic retinopathy status (OR 2.29, 95% CI 1.33-3.93, p = .003). The risk of amputation was found to be twofold higher in individuals with PAD and pedal MAC compared to those with PAD alone (OR 2.05, 95% CI 1.10-3.82, p = .024). Furthermore, the presence of pedal MAC was significantly associated with an increased risk of mortality (p = .005), particularly among individuals with DFUs but without PAD (HR 4.26, 95% CI 1.90-9.52, p < .001), rather than in individuals presenting with both DFUs and PAD. CONCLUSION The presence of pedal MAC is significantly associated with both amputation and mortality in individuals with DFUs. Moreover, pedal MAC could provide additional value to predict amputation other than PAD.
Collapse
Affiliation(s)
- Lihong Chen
- Department of Endocrinology & MetabolismWest China Hospital, Sichuan UniversityChengduChina
- Innovation Center for Wound Repair, Diabetic Foot Care CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Dawei Chen
- Department of Endocrinology & MetabolismWest China Hospital, Sichuan UniversityChengduChina
| | - Hongping Gong
- International Medical Center Ward, Department of General PracticeWest China Hospital, Sichuan UniversityChengduChina
| | - Chun Wang
- Department of Endocrinology & MetabolismWest China Hospital, Sichuan UniversityChengduChina
| | - Yun Gao
- Department of Endocrinology & MetabolismWest China Hospital, Sichuan UniversityChengduChina
| | - Yan Li
- Department of Clinical Research ManagementWest China Hospital, Sichuan UniversityChengduChina
| | - Weiwei Tang
- Department of Endocrinology & MetabolismWest China Hospital, Sichuan UniversityChengduChina
- Innovation Center for Wound Repair, Diabetic Foot Care CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Panpan Zha
- Department of Endocrinology & MetabolismWest China Hospital, Sichuan UniversityChengduChina
- Innovation Center for Wound Repair, Diabetic Foot Care CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Xingwu Ran
- Department of Endocrinology & MetabolismWest China Hospital, Sichuan UniversityChengduChina
- Innovation Center for Wound Repair, Diabetic Foot Care CenterWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
2
|
Pereira L, Mendonça L, Magalhães J, Neto R, Quelhas-Santos J, Oliveira A, Beco A, Frazão J. Vascular calcification in peritoneal dialysis patients and its association with bone-derived molecules and bone histomorphometry. Nefrologia 2024; 44:224-232. [PMID: 37179214 DOI: 10.1016/j.nefroe.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/10/2023] [Indexed: 05/15/2023] Open
Abstract
INTRODUCTION Data regarding vascular calcification (VC) in contemporary peritoneal dialysis (PD) patients is scarce. Bone-vascular axis has been demonstrated in hemodialysis (HD). However, studies showing the link between bone disease and VC in PD patients are lacking. The role of sclerostin, dickkopf-related protein 1 (DKK-1), receptor activator for nuclear factor kB ligand and osteoprotegerin (OPG) in VC in PD remains to clarify. MATERIALS AND METHODS Bone biopsy was performed in 47 prevalent PD patients with histomorphometric analysis. Patients were submitted to pelvis and hands X-ray to evaluate VC using the Adragão score (AS). Relevant clinical and biochemical data was collected. RESULTS Thirteen patients (27.7%) had positive AS (AS≥1). Patients with VC were significantly older (58.9 vs. 50.4 years, p=0.011), had a lower dialysis dose (KT/V 2.0 vs. 2.4, p=0.025) and a higher glycosylated hemoglobin (7.2 vs. 5.4%, p=0.001). There was not any laboratorial parameter of mineral and bone disease used in clinical practice different between patients with or without VC. All diabetic patients had VC but only 8.1% of non-diabetic had VC (p<0.001). Patients with VC showed significantly higher erythrocyte sedimentation rate (ESR) (91.1 vs. 60.0mm/h, p=0.001), sclerostin (2250.0 vs. 1745.8pg/mL, p=0.035), DKK-1 (1451.6 vs. 1042.9pg/mL, p=0.041) and OPG levels (2904.9 vs. 1518.2pg/mL, p=0.002). On multivariate analysis, only ESR remained statistically significant (OR 1.07; 95% CI 1.01-1.14; p=0.022). Bone histomorphometric findings were not different in patients with VC. There was no correlation between bone formation rate and AS (r=-0.039; p=0.796). CONCLUSION The presence of VC was not associated with bone turnover and volume evaluated by bone histomorphometry. Inflammation and diabetes seem to play a more relevant role in VC in PD.
Collapse
Affiliation(s)
- Luciano Pereira
- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal; INEB - National Institute of Biomedical Engineering, University of Porto, Porto, Portugal; Department of Nephrology, São João Hospital Center, Porto, Portugal; School of Medicine of University of Porto, Porto, Portugal.
| | - Luís Mendonça
- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal; INEB - National Institute of Biomedical Engineering, University of Porto, Porto, Portugal; Department of Nephrology, São João Hospital Center, Porto, Portugal; School of Medicine of University of Porto, Porto, Portugal
| | - Juliana Magalhães
- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal; INEB - National Institute of Biomedical Engineering, University of Porto, Porto, Portugal
| | - Ricardo Neto
- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal; INEB - National Institute of Biomedical Engineering, University of Porto, Porto, Portugal; Department of Nephrology, São João Hospital Center, Porto, Portugal; School of Medicine of University of Porto, Porto, Portugal
| | - Janete Quelhas-Santos
- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal; INEB - National Institute of Biomedical Engineering, University of Porto, Porto, Portugal; School of Medicine of University of Porto, Porto, Portugal
| | - Ana Oliveira
- Department of Nephrology, São João Hospital Center, Porto, Portugal
| | - Ana Beco
- Department of Nephrology, São João Hospital Center, Porto, Portugal
| | - João Frazão
- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal; INEB - National Institute of Biomedical Engineering, University of Porto, Porto, Portugal; Department of Nephrology, São João Hospital Center, Porto, Portugal; School of Medicine of University of Porto, Porto, Portugal
| |
Collapse
|
3
|
He L, Li Y, Jin J, Cheng M, Bai Y, Xu J. Comparative efficacy of sodium thiosulfate, bisphosphonates, and cinacalcet for the treatment of vascular calcification in patients with haemodialysis: a systematic review and network meta-analysis. BMC Nephrol 2024; 25:26. [PMID: 38254024 PMCID: PMC10804723 DOI: 10.1186/s12882-024-03460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Up to now, there is no unequivocal intervention to mitigate vascular calcification (VC) in patients with hemodialysis. This network meta-analysis aimed to systematically evaluate the clinical efficacy of sodium thiosulfate, bisphosphonates, and cinacalcet in treating vascular calcification. METHODS A comprehensive study search was performed using PubMed, Web of Science, the Cochrane Library, EMBASE and China National Knowledge Internet (CNKI) to collect randomized controlled trials (RCTs) of sodium thiosulfate, bisphosphonates, and cinacalcet for vascular calcification among hemodialysis patients. Then, network meta-analysis was conducted using Stata 17.0 software. RESULTS In total, eleven RCTs including 1083 patients were qualified for this meta-analysis. We found that cinacalcet (SMD - 0.59; 95% CI [-0.95, -0.24]) had significant benefit on vascular calcification compared with conventional therapy, while sodium thiosulfate or bisphosphonates did not show such efficiency. Furthermore, as for ranking the efficacy assessment, cinacalcet possessed the highest surface under the cumulative ranking curve (SUCRA) value (88.5%) of lessening vascular calcification and was superior to sodium thiosulfate (50.4%) and bisphosphonates (55.4%). Thus, above results suggested that cinacalcet might be the most promising drug for vascular calcification treatment in hemodialysis patients. Mechanistically, our findings illustrated that cinacalcet reduced serum calcium (SMD - 1.20; 95% CI [-2.08, - 0.33]) and showed the tendency in maintaining the balance of intact Parathyroid Hormone (iPTH) level. CONCLUSIONS This network meta-analysis indicated that cinacalcet appear to be more effective than sodium thiosulfate and bisphosphonates in mitigating vascular calcification through decreasing serum calcium and iPTH. And cinacalcet might be a reasonable option for hemodialysis patients with VC in clinical practice. SYSTEMATIC REVIEW REGISTRATION [ http://www.crd.york.ac.uk/PROSPERO ], identifier [CRD42022379965].
Collapse
Affiliation(s)
- Lei He
- Departments of Nephrology, Hebei Key Laboratory of vascular calcification in kidney disease; Hebei Clinical Research Center for Chronic Kidney Disease, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, 050011, Shijiazhuang, China
| | - Yuzhe Li
- Departments of Nephrology, Hebei Key Laboratory of vascular calcification in kidney disease; Hebei Clinical Research Center for Chronic Kidney Disease, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, 050011, Shijiazhuang, China
| | - Jingjing Jin
- Departments of Nephrology, Hebei Key Laboratory of vascular calcification in kidney disease; Hebei Clinical Research Center for Chronic Kidney Disease, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, 050011, Shijiazhuang, China
| | - Meijuan Cheng
- Departments of Nephrology, Hebei Key Laboratory of vascular calcification in kidney disease; Hebei Clinical Research Center for Chronic Kidney Disease, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, 050011, Shijiazhuang, China
| | - Yaling Bai
- Departments of Nephrology, Hebei Key Laboratory of vascular calcification in kidney disease; Hebei Clinical Research Center for Chronic Kidney Disease, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, 050011, Shijiazhuang, China
| | - Jinsheng Xu
- Departments of Nephrology, Hebei Key Laboratory of vascular calcification in kidney disease; Hebei Clinical Research Center for Chronic Kidney Disease, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, 050011, Shijiazhuang, China.
| |
Collapse
|
4
|
Amaya-Garrido A, Brunet M, Buffin-Meyer B, Piedrafita A, Grzesiak L, Agbegbo E, Del Bello A, Ferrandiz I, Ardeleanu S, Bermudez-Lopez M, Fedou C, Camus M, Burlet-Schiltz O, Massines J, Buléon M, Feuillet G, Alves M, Neau E, Casemayou A, Breuil B, Saulnier-Blache JS, Denis C, Voelkl J, Glorieux G, Hobson S, Arefin S, Rahman A, Kublickiene K, Stenvinkel P, Bascands JL, Faguer S, Valdivielso JM, Schanstra JP, Klein J. Calprotectin is a contributor to and potential therapeutic target for vascular calcification in chronic kidney disease. Sci Transl Med 2023; 15:eabn5939. [PMID: 37672568 DOI: 10.1126/scitranslmed.abn5939] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
Vascular calcification is an important risk factor for cardiovascular (CV) mortality in patients with chronic kidney disease (CKD). It is also a complex process involving osteochondrogenic differentiation of vascular smooth muscle cells (VSMCs) and abnormal deposition of minerals in the vascular wall. In an observational, multicenter European study, including 112 patients with CKD from Spain and 171 patients on dialysis from France, we used serum proteome analysis and further validation by ELISA to identify calprotectin, a circulating damage-associated molecular pattern protein, as being independently associated with CV outcome and mortality. This was confirmed in an additional cohort of 170 patients with CKD from Sweden, where increased serum calprotectin concentrations correlated with increased vascular calcification. In primary human VSMCs and mouse aortic rings, calprotectin exacerbated calcification. Treatment with paquinimod, a calprotectin inhibitor, as well as pharmacological inhibition of the receptor for advanced glycation end products and Toll-like receptor 4 inhibited the procalcifying effect of calprotectin. Paquinimod also ameliorated calcification induced by the sera of uremic patients in primary human VSMCs. Treatment with paquinimod prevented vascular calcification in mice with chronic renal failure induced by subtotal nephrectomy and in aged apolipoprotein E-deficient mice as well. These observations identified calprotectin as a key contributor of vascular calcification, and increased circulating calprotectin was strongly and independently associated with calcification, CV outcome, and mortality in patients with CKD. Inhibition of calprotectin might therefore be a promising strategy to prevent vascular calcification in patients with CKD.
Collapse
Affiliation(s)
- Ana Amaya-Garrido
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Manon Brunet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Bénédicte Buffin-Meyer
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Alexis Piedrafita
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Lucile Grzesiak
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Ezechiel Agbegbo
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Arnaud Del Bello
- Département de Néphrologie et Transplantation d'organes, Hôpital Rangueil, Centre Hospitalo-Universitaire de Toulouse, 31400 Toulouse, France
| | - Inés Ferrandiz
- Département de Néphrologie et Transplantation d'organes, Hôpital Rangueil, Centre Hospitalo-Universitaire de Toulouse, 31400 Toulouse, France
| | - Serban Ardeleanu
- AURAR Saint Louis Dialysis Center, 97421 Saint Louis, La Réunion, France
| | - Marcelino Bermudez-Lopez
- Vascular and Renal Translational Research Group, UDETMA, REDinREN del ISCIII, IRBLleida, 25198 Lleida, Spain
| | - Camille Fedou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Mylène Camus
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Jean Massines
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Marie Buléon
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Guylène Feuillet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Melinda Alves
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Eric Neau
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Audrey Casemayou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
- Département de Néphrologie et Transplantation d'organes, Hôpital Rangueil, Centre Hospitalo-Universitaire de Toulouse, 31400 Toulouse, France
| | - Benjamin Breuil
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Jean-Sébastien Saulnier-Blache
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Colette Denis
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, 4040 Linz, Austria
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Gent, Belgium
| | - Sam Hobson
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Samsul Arefin
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Awahan Rahman
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Jean-Loup Bascands
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97491 Sainte Clotilde, La Réunion, France
| | - Stanislas Faguer
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
- Département de Néphrologie et Transplantation d'organes, Hôpital Rangueil, Centre Hospitalo-Universitaire de Toulouse, 31400 Toulouse, France
| | - José M Valdivielso
- Vascular and Renal Translational Research Group, UDETMA, REDinREN del ISCIII, IRBLleida, 25198 Lleida, Spain
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Julie Klein
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| |
Collapse
|
5
|
Holmar J, Arund J, Adoberg A, Leis L, Luman M, Paats J, Pilt K, Tanner R, Fridolin I. Optical Real-Time Cardiorenal Toxin Uric Acid Measurement During Hemodialysis Using a Miniaturized Optical Sensor. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083248 DOI: 10.1109/embc40787.2023.10340379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Patients with chronic kidney disease (CKD) are at higher cardiovascular risk than the general population. Cardiovascular diseases, vascular calcification among them, are the leading cause of death in these patients. Factors influencing vascular calcification are oxidative stress, inflammation, and accumulation of uremic toxins during CKD. Uric acid is a cardiorenal toxin that accumulates in the case of kidney malfunction. The primary therapy for replacing kidney function and removing toxins from end-stage renal disease patients is hemodialysis. Effective removal of toxins can be estimated by blood or dialysate lab analysis or optical monitoring. In this study, the authors tested a miniaturized optical sensor for monitoring uric acid levels and removal for the first time in a more extensive clinical study, including Hemodialysis (HD) and Post-dilutional online hemodiafiltration (HDF) procedures with different settings in Tallinn, Estonia. The results (Mean±SD, Lab vs. Sensor) of the uric acid concentration 57.20±34.05 vs. 57.22±33.09 µmol/L, reduction ratio 68.72±10.91 vs. 67.89±12.48 %, and total removed amount 7.00±2.10 vs. 7.33±2.29 mmol did not differ significantly from the values obtained from the clinical laboratory (p<0.05).Clinical Relevance-During this study, a miniaturized optical sensor was tested for the first time in the clinic in different dialysis settings. The results confirm that the sensor is reliable for regularly monitoring cardiorenal toxin uric acid removal during hemodialysis.
Collapse
|
6
|
Lu CW, Lee CJ, Hsieh YJ, Hsu BG. Empagliflozin Attenuates Vascular Calcification in Mice with Chronic Kidney Disease by Regulating the NFR2/HO-1 Anti-Inflammatory Pathway through AMPK Activation. Int J Mol Sci 2023; 24:10016. [PMID: 37373164 DOI: 10.3390/ijms241210016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Vascular calcification (VC) is associated with increased cardiovascular risks in patients with chronic kidney disease (CKD). Sodium-glucose cotransporter 2 inhibitors, such as empagliflozin, can improve cardiovascular and renal outcomes. We assessed the expression of Runt-related transcription factor 2 (Runx2), interleukin (IL)-1β, IL-6, AMP-activated protein kinase (AMPK), nuclear factor erythroid-2-related factor (Nrf2), and heme oxygenase 1 (HO-1) in inorganic phosphate-induced VC in mouse vascular smooth muscle cells (VSMCs) to investigate the mechanisms underlying empagliflozin's therapeutic effects. We evaluated biochemical parameters, mean artery pressure (MAP), pulse wave velocity (PWV), transcutaneous glomerular filtration rate (GFR), and histology in an in vivo mouse model with VC induced by an oral high-phosphorus diet following a 5/6 nephrectomy in ApoE-/- mice. Compared to the control group, empagliflozin-treated mice showed significant reductions in blood glucose, MAP, PWV, and calcification, as well as increased calcium and GFR levels. Empagliflozin inhibited osteogenic trans-differentiation by decreasing inflammatory cytokine expression and increasing AMPK, Nrf2, and HO-1 levels. Empagliflozin mitigates high phosphate-induced calcification in mouse VSMCs through the Nrf2/HO-1 anti-inflammatory pathway by activating AMPK. Animal experiments suggested that empagliflozin reduces VC in CKD ApoE-/- mice on a high-phosphate diet.
Collapse
Affiliation(s)
- Chia-Wen Lu
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Chung-Jen Lee
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien 97005, Taiwan
| | - Yi-Jen Hsieh
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
| | - Bang-Gee Hsu
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
7
|
Kemp JA, Alvarenga L, Cardozo LFMF, Dai L, Stenvinkel P, Shiels PG, Hackeng TM, Schurgers LJ, Mafra D. Dysbiosis in Patients with Chronic Kidney Disease: Let Us Talk About Vitamin K. Curr Nutr Rep 2022; 11:765-779. [PMID: 36138326 DOI: 10.1007/s13668-022-00438-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW This narrative review aimed to summarize the current evidence on the connection between dysbiosis and vitamin K deficiency in patients with chronic kidney disease (CKD). The presence of dysbiosis (perturbations in the composition of the microbiota) has been described in several non-communicable diseases, including chronic kidney disease, and it has been hypothesized that dysbiosis may cause vitamin K deficiency. Patients with CKD present both vitamin K deficiency and gut dysbiosis; however, the relationship between gut dysbiosis and vitamin K deficiency remains to be addressed. RECENT FINDINGS Recently, few studies in animals have demonstrated that a dysbiotic environment is associated with low production of vitamin K by the gut microbiota. Vitamin K plays a vital role in blood coagulation as well as in the cardiovascular and bone systems. It serves as a cofactor for γ-glutamyl carboxylases and thus is essential for the post-translational modification and activation of vitamin K-dependent calcification regulators, such as osteocalcin, matrix Gla protein, Gla-rich protein, and proteins C and S. Additionally, vitamin K executes essential antioxidant and anti-inflammatory functions. Dietary intake is the main source of vitamin K; however, it also can be produced by gut microbiota. This review discusses the effects of uremia on the imbalance in gut microbiota, vitamin K-producing bacteria, and vitamin K deficiency in CKD patients, leading to a better understanding and raising hypothesis for future clinical studies.
Collapse
Affiliation(s)
- Julie Ann Kemp
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Brazil
| | - Livia Alvarenga
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Brazil
| | - Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Brazil
| | - Lu Dai
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Glasgow, UK
| | - Tilman M Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Brazil.
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
- Unidade de Pesquisa Clínica, Rua Marquês Do Paraná, Niterói, RJ, 30324033-900, Brazil.
| |
Collapse
|
8
|
Rowe PS, McCarthy EM, Yu AL, Stubbs JR. Correction of Vascular Calcification and Hyperphosphatemia in CKD Rats Treated with ASARM Peptide. KIDNEY360 2022; 3:1683-1698. [PMID: 36514737 PMCID: PMC9717652 DOI: 10.34067/kid.0002782022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023]
Abstract
Background Abnormalities in calcium, phosphorus, PTH, vitamin D metabolism, bone, and vascular calcification occur in chronic kidney disease mineral bone disorder (CKD-MBD). Calciphylaxis, involving painful, ulcerative skin lesions, is also a major problem associated with CKD-MBD. There are no quality medical interventions to address these clinical issues. Bone ASARM peptides are strong inhibitors of mineralization and induce hypophosphatemia by inhibiting phosphate uptake from the gut. We hypothesize treatment of CKD-MBD rats with ASARM peptides will reverse hyperphosphatemia, reduce soft-tissue calcification, and prevent calciphylaxis. Methods To test our hypothesis, we assessed the effects of synthetic ASARM peptide in rats that had undergone a subtotal 5/6th nephrectomy (56NEPHREX), a rodent model of CKD-MBD. All rats were fed a high phosphate diet (2% Pi) to worsen mineral metabolism defects. Changes in serum potassium, phosphate, BUN, creatinine, PTH, FGF23, and calcium were assessed in response to 28 days of ASARM peptide infusion. Also, changes in bone quality, soft-tissue calcification, and expression of gut Npt2b (Slc34a2) were studied following ASARM peptide treatment. Results Rats that had undergone 56NEPHREX treated with ASARM peptide showed major improvements in hyperphosphatemia, blood urea nitrogen (BUN), and bone quality compared with vehicle controls. Also, ASARM-infused 56NEPHREX rats displayed improved renal, brain, and cardiovascular calcification. Notably, ASARM peptide infusion prevented the genesis of subdermal medial blood vessel calcification and calciphylaxis-like lesions in 56NEPHREX rats compared with vehicle controls. Conclusions ASARM peptide infusion corrects hyperphosphatemia and improves vascular calcification, renal calcification, brain calcification, bone quality, renal function, and skin mineralization abnormalities in 56NEPHREX rats. These findings confirm our hypothesis and support the utility of ASARM peptide treatment in patients with CKD-MBD.
Collapse
Affiliation(s)
- Peter S. Rowe
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Ellen M. McCarthy
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Alan L. Yu
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Jason R. Stubbs
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
9
|
The Ameliorative Effect of Berberine on Vascular Calcification by Inhibiting Endoplasmic Reticulum Stress. J Cardiovasc Pharmacol 2022; 80:294-304. [PMID: 35580317 DOI: 10.1097/fjc.0000000000001303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/24/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Vascular calcification (VC), which currently cannot be prevented or treated, is an independent risk factor for cardiovascular events. We aimed to investigate the ameliorative effect of berberine on VC via the activation of Akt signaling and inhibition of endoplasmic reticulum stress (ERS). The VC model was induced by high-dose Vitamin D 3 in rats and beta-glycerophosphate in primary vascular smooth muscle cells of rat aortas, which were evaluated by Alizarin red staining to determine the calcium content and alkaline phosphatase activity. ERS was determined by the levels of GRP78 and CHOP, whereas that of the Akt signaling pathway was determined by the levels of phosphorylated Akt and GSK3β. VC was significantly ameliorated by berberine treatment in vivo and in vitro, and the inhibition of ERS and the activation of the Akt/GSK3 signaling pathway. In the vascular smooth muscle cells of primary rats, tunicamycin, an ERS activator, blocked the ameliorative effect of berberine on VC and ERS, but not the activation of Akt/GSK3. The ameliorative effects of berberine on VC, ERS, and the Akt signaling pathway were all prevented by inhibitor IV. Four-phenylbutyric acid, an ERS inhibitor, can restore the ameliorative effect of berberine on VC and ERS that was blocked by inhibitor IV. Our results are the first to demonstrate the ameliorative effect of VC that was mediated by the activation of the Akt signaling pathway and inhibition of ERS. These results may provide a new pharmaceutical candidate for the prevention and treatment of VC.
Collapse
|
10
|
Xu C, Smith ER, Tiong MK, Ruderman I, Toussaint ND. Interventions to Attenuate Vascular Calcification Progression in Chronic Kidney Disease: A Systematic Review of Clinical Trials. J Am Soc Nephrol 2022; 33:1011-1032. [PMID: 35232774 PMCID: PMC9063901 DOI: 10.1681/asn.2021101327] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/16/2022] [Indexed: 11/03/2022] Open
Abstract
Background Vascular calcification is associated with cardiovascular morbidity and mortality in people with chronic kidney disease (CKD). Evidence-based interventions that may attenuate its progression in CKD remain uncertain.
Methods We conducted a systematic review of prospective clinical trials of interventions to attenuate vascular calcification in people with CKD, compare with placebo, another comparator, or standard of care. We included prospective clinical trials (randomized and nonrandomized) involving participants with stage 3-5D CKD or kidney transplant recipients; the outcome was vascular calcification measured using radiological methods. Quality of evidence was determined by the Cochrane risk of bias assessment tool and the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) method.
Results There were 77 trials (63 randomized) involving 6898 participants eligible for inclusion (median sample size, 50; median duration, 12 months); 58 involved participants on dialysis, 15 involved individuals with nondialysis CKD, and 4 involved kidney transplant recipients. Risk of bias was moderate over all. Trials involving magnesium and sodium thiosulfate consistently showed attenuation of vascular calcification. Trials involving intestinal phosphate binders, alterations in dialysate calcium concentration, vitamin K therapy, calcimimetics, and antiresorptive agents had conflicting or inconclusive outcomes. Trials involving vitamin D therapy and HMG-CoA reductase inhibitors did not demonstrate attenuation of vascular calcification. Mixed results were reported for single studies of exercise, vitamin E-coated or high-flux hemodialysis membranes, interdialytic sodium bicarbonate, SNF472, spironolactone, sotatercept, nicotinamide, and oral activated charcoal.
Conclusions Currently, there are insufficient or conflicting data regarding interventions evaluated in clinical trials for mitigation of vascular calcification in people with CKD. Therapy involving magnesium or sodium thiosulfate appears most promising, but evaluable studies were small and of short duration.
Collapse
Affiliation(s)
- Chelsea Xu
- Department of Medicine, University of Melbourne, Parkville, Australia
| | - Edward R Smith
- Department of Medicine, University of Melbourne, Parkville, Australia
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Australia
| | - Mark K Tiong
- Department of Medicine, University of Melbourne, Parkville, Australia
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Australia
| | - Irene Ruderman
- Department of Medicine, University of Melbourne, Parkville, Australia
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Australia
| | - Nigel D Toussaint
- Department of Medicine, University of Melbourne, Parkville, Australia
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Australia
| |
Collapse
|
11
|
Canaud B, Stephens MP, Nikam M, Etter M, Collins A. Multitargeted interventions to reduce dialysis-induced systemic stress. Clin Kidney J 2021; 14:i72-i84. [PMID: 34987787 PMCID: PMC8711765 DOI: 10.1093/ckj/sfab192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Hemodialysis (HD) is a life-sustaining therapy as well as an intermittent and repetitive stress condition for the patient. In ridding the blood of unwanted substances and excess fluid from the blood, the extracorporeal procedure simultaneously induces persistent physiological changes that adversely affect several organs. Dialysis patients experience this systemic stress condition usually thrice weekly and sometimes more frequently depending on the treatment schedule. Dialysis-induced systemic stress results from multifactorial components that include treatment schedule (i.e. modality, treatment time), hemodynamic management (i.e. ultrafiltration, weight loss), intensity of solute fluxes, osmotic and electrolytic shifts and interaction of blood with components of the extracorporeal circuit. Intradialytic morbidity (i.e. hypovolemia, intradialytic hypotension, hypoxia) is the clinical expression of this systemic stress that may act as a disease modifier, resulting in multiorgan injury and long-term morbidity. Thus, while lifesaving, HD exposes the patient to several systemic stressors, both hemodynamic and non-hemodynamic in origin. In addition, a combination of cardiocirculatory stress, greatly conditioned by the switch from hypervolemia to hypovolemia, hypoxemia and electrolyte changes may create pro-arrhythmogenic conditions. Moreover, contact of blood with components of the extracorporeal circuit directly activate circulating cells (i.e. macrophages-monocytes or platelets) and protein systems (i.e. coagulation, complement, contact phase kallikrein-kinin system), leading to induction of pro-inflammatory cytokines and resulting in chronic low-grade inflammation, further contributing to poor outcomes. The multifactorial, repetitive HD-induced stress that globally reduces tissue perfusion and oxygenation could have deleterious long-term consequences on the functionality of vital organs such as heart, brain, liver and kidney. In this article, we summarize the multisystemic pathophysiological consequences of the main circulatory stress factors. Strategies to mitigate their effects to provide more cardioprotective and personalized dialytic therapies are proposed to reduce the systemic burden of HD.
Collapse
Affiliation(s)
- Bernard Canaud
- Montpellier University, Montpellier, France
- Global Medical Office, FMC Deutschland, Bad Homburg, Germany
| | - Melanie P Stephens
- MSL & Medical Strategies for Innovative Therapies, Fresenius Medical Care, Waltham, MA, USA
| | - Milind Nikam
- Global Medical Office, Fresenius Medical Care, Hong Kong
| | - Michael Etter
- Global Medical Office, Fresenius Medical Care, Hong Kong
| | - Allan Collins
- Global Medical Office, Fresenius Medical Care, Waltham, MA, USA
| |
Collapse
|
12
|
Inflammation: a putative link between phosphate metabolism and cardiovascular disease. Clin Sci (Lond) 2021; 135:201-227. [PMID: 33416083 PMCID: PMC7796315 DOI: 10.1042/cs20190895] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Dietary habits in the western world lead to increasing phosphate intake. Under physiological conditions, extraosseous precipitation of phosphate with calcium is prevented by a mineral buffering system composed of calcification inhibitors and tight control of serum phosphate levels. The coordinated hormonal regulation of serum phosphate involves fibroblast growth factor 23 (FGF23), αKlotho, parathyroid hormone (PTH) and calcitriol. A severe derangement of phosphate homeostasis is observed in patients with chronic kidney disease (CKD), a patient collective with extremely high risk of cardiovascular morbidity and mortality. Higher phosphate levels in serum have been associated with increased risk for cardiovascular disease (CVD) in CKD patients, but also in the general population. The causal connections between phosphate and CVD are currently incompletely understood. An assumed link between phosphate and cardiovascular risk is the development of medial vascular calcification, a process actively promoted and regulated by a complex mechanistic interplay involving activation of pro-inflammatory signalling. Emerging evidence indicates a link between disturbances in phosphate homeostasis and inflammation. The present review focuses on critical interactions of phosphate homeostasis, inflammation, vascular calcification and CVD. Especially, pro-inflammatory responses mediating hyperphosphatemia-related development of vascular calcification as well as FGF23 as a critical factor in the interplay between inflammation and cardiovascular alterations, beyond its phosphaturic effects, are addressed.
Collapse
|
13
|
Chao CT, Yeh HY, Tsai YT, Chiang CK, Chen HW. A combined microRNA and target protein-based panel for predicting the probability and severity of uraemic vascular calcification: a translational study. Cardiovasc Res 2021; 117:1958-1973. [PMID: 32866261 DOI: 10.1093/cvr/cvaa255] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/24/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
AIMS Vascular calcification (VC) increases the future risk of cardiovascular events in uraemic patients, but effective therapies are still unavailable. Accurate identification of those at risk of developing VC using pathogenesis-based biomarkers is of particular interest and may facilitate individualized risk stratification. We aimed to uncover microRNA (miRNA)-target protein-based biomarker panels for evaluating uraemic VC probability and severity. METHODS AND RESULTS We created a three-tiered in vitro VC model and an in vivo uraemic rat model receiving high phosphate diet to mimic uraemic VC. RNAs from the three-tiered in vitro and in vivo uraemic VC models underwent miRNA and mRNA microarray, with results screened for differentially expressed miRNAs and their target genes as biomarkers. Findings were validated in original models and additionally in an ex vivo VC model and human cells, followed by functional assays of identified miRNAs and target proteins, and tests of sera from end-stage renal disease (ESRD) and non-dialysis-dependent chronic kidney disease (CKD) patients without and with VC. Totally 122 down-regulated and 119 up-regulated miRNAs during calcification progression were identified initially; further list narrowing based on miRNA-mRNA pairing, anti-correlation, and functional enrichment left 16 and 14 differentially expressed miRNAs and mRNAs. Levels of four miRNAs (miR-10b-5p, miR-195, miR-125b-2-3p, and miR-378a-3p) were shown to decrease throughout all models tested, while one mRNA (SULF1, a potential target of miR-378a-3p) exhibited the opposite trend concurrently. Among 96 ESRD (70.8% with VC) and 59 CKD patients (61% with VC), serum miR-125b2-3p and miR-378a-3p decreased with greater VC severity, while serum SULF1 levels increased. Adding serum miR-125b-2-3p, miR-378a-3p, and SULF1 into regression models for VC substantially improved performance compared to using clinical variables alone. CONCLUSION Using a translational approach, we discovered a novel panel of biomarkers for gauging the probability/severity of uraemic VC based on miRNAs/target proteins, which improved the diagnostic accuracy.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Biomarkers/blood
- Cells, Cultured
- Disease Models, Animal
- Female
- Gene Expression Profiling
- Gene Regulatory Networks
- Humans
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Organ Culture Techniques
- Predictive Value of Tests
- Protein Interaction Maps
- Proteome
- Proteomics
- Rats, Sprague-Dawley
- Risk Assessment
- Risk Factors
- Severity of Illness Index
- Signal Transduction
- Sulfotransferases/blood
- Transcriptome
- Translational Research, Biomedical
- Uremia/complications
- Uremia/genetics
- Uremia/metabolism
- Vascular Calcification/etiology
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Rats
Collapse
Affiliation(s)
- Chia-Ter Chao
- Division of Nephrology, Department of Medicine, National Taiwan University Hospital Bei-Hu Branch, No. 87, Neijiang Street, Wanhua District, Taipei 10845, Taiwan
- Graduate Institute of Toxicology, National Taiwan University, College of Medicine, No.1, Section 4, Ren-Ai Road, Zhongzheng District, Taipei 10051, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, No.1, Section 4, Ren-Ai Road, Zhongzheng District, Taipei 10051, Taiwan
| | - Hsiang-Yuan Yeh
- School of Big Data Management, Soochow University, No.70, Linxi Road, Shilin District, Taipei 11102, Taiwan
| | - You-Tien Tsai
- Division of Nephrology, Department of Medicine, National Taiwan University Hospital Bei-Hu Branch, No. 87, Neijiang Street, Wanhua District, Taipei 10845, Taiwan
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, National Taiwan University, College of Medicine, No.1, Section 4, Ren-Ai Road, Zhongzheng District, Taipei 10051, Taiwan
- Department of Integrative Diagnostics and Therapeutics, National Taiwan University Hospital, No. 7, Zhongshan South Road, Zhongzheng District, Taipei 10002, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, National Taiwan University, College of Medicine, No.1, Section 4, Ren-Ai Road, Zhongzheng District, Taipei 10051, Taiwan
| |
Collapse
|
14
|
Bover J, Aguilar A, Arana C, Molina P, Lloret MJ, Ochoa J, Berná G, Gutiérrez-Maza YG, Rodrigues N, D'Marco L, Górriz JL. Clinical Approach to Vascular Calcification in Patients With Non-dialysis Dependent Chronic Kidney Disease: Mineral-Bone Disorder-Related Aspects. Front Med (Lausanne) 2021; 8:642718. [PMID: 34095165 PMCID: PMC8171667 DOI: 10.3389/fmed.2021.642718] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with a very high morbimortality, mainly from cardiovascular origin, and CKD is currently considered in the high- or very high risk- cardiovascular risk category. CKD-mineral and bone disorders (CKD-MBDs), including vascular and/or valvular calcifications, are also associated with these poor outcomes. Vascular calcification (VC) is very prevalent (both intimal and medial), even in non-dialysis dependent patients, with a greater severity and more rapid progression. Simple X-ray based-scores such as Adragão's (AS) are useful prognostic tools and AS (even AS based on hand-X-ray only) may be superior to the classic Kauppila's score when evaluating non-dialysis CKD patients. Thus, in this mini-review, we briefly review CKD-MBD-related aspects of VC and its complex pathophysiology including the vast array of contributors and inhibitors. Furthermore, although VC is a surrogate marker and is not yet considered a treatment target, we consider that the presence of VC may be relevant in guiding therapeutic interventions, unless all patients are treated with the mindset of reducing the incidence or progression of VC with the currently available armamentarium. Avoiding phosphate loading, restricting calcium-based phosphate binders and high doses of vitamin D, and avoiding normalizing (within the normal limits for the assay) parathyroid hormone levels seem logical approaches. The availability of new drugs and future studies, including patients in early stages of CKD, may lead to significant improvements not only in patient risk stratification but also in attenuating the accelerated progression of VC in CKD.
Collapse
Affiliation(s)
- Jordi Bover
- Department of Nephrology, Fundació Puigvert, IIB Sant Pau, Universitat Autònoma, REDinREN, Barcelona, Spain
| | - Armando Aguilar
- Department of Nephrology, Instituto Mexicano del Seguro Social, Hospital General de Zona No. 2, Tuxtla Gutiérrez, Mexico
| | - Carolt Arana
- Department of Nephrology, Fundació Puigvert, IIB Sant Pau, Universitat Autònoma, REDinREN, Barcelona, Spain
| | - Pablo Molina
- Department of Nephrology, Hospital Universitario Dr Peset, Universidad de Valencia, REDinREN, Valencia, Spain
| | - María Jesús Lloret
- Department of Nephrology, Fundació Puigvert, IIB Sant Pau, Universitat Autònoma, REDinREN, Barcelona, Spain
| | - Jackson Ochoa
- Department of Nephrology, Fundació Puigvert, IIB Sant Pau, Universitat Autònoma, REDinREN, Barcelona, Spain
| | - Gerson Berná
- Department of Nephrology, Fundació Puigvert, IIB Sant Pau, Universitat Autònoma, REDinREN, Barcelona, Spain
| | - Yessica G. Gutiérrez-Maza
- Department of Nephrology, Instituto Mexicano del Seguro Social, Hospital General de Zona No. 2, Tuxtla Gutiérrez, Mexico
| | - Natacha Rodrigues
- Division of Nephrology and Renal Transplantation, Department of Medicine, Centro Hospitalar Universitário Lisboa Norte, EPE, Lisboa, Portugal
| | - Luis D'Marco
- Servicio de Nefrología, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, Valencia, Spain
| | - José L. Górriz
- Servicio de Nefrología, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
15
|
Association of Zinc Deficiency with Development of CVD Events in Patients with CKD. Nutrients 2021; 13:nu13051680. [PMID: 34063377 PMCID: PMC8156917 DOI: 10.3390/nu13051680] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
Deficiency of the micronutrient zinc is common in patients with chronic kidney disease (CKD). The aim of this review is to summarize evidence presented in literature for consolidation of current knowledge regarding zinc status in CKD patients, including those undergoing hemodialysis. Zinc deficiency is known to be associated with various risk factors for cardiovascular disease (CVD), such as increased blood pressure, dyslipidemia, type 2 diabetes mellitus, inflammation, and oxidative stress. Zinc may protect against phosphate-induced arterial calcification by suppressing activation of nuclear factor kappa light chain enhancer of activated B. Serum zinc levels have been shown to be positively correlated with T50 (shorter T50 indicates higher calcification propensity) in patients with type 2 diabetes mellitus as well as those with CKD. Additionally, higher intake of dietary zinc was associated with a lower risk of severe abdominal aortic calcification. In hemodialysis patients, the beneficial effects of zinc supplementation in relation to serum zinc and oxidative stress levels was demonstrated in a meta-analysis of 15 randomized controlled trials. Thus, evidence presented supports important roles of zinc regarding antioxidative stress and suppression of calcification and indicates that zinc intake/supplementation may help to ameliorate CVD risk factors in CKD patients.
Collapse
|
16
|
Millán Á, Lanzer P, Sorribas V. The Thermodynamics of Medial Vascular Calcification. Front Cell Dev Biol 2021; 9:633465. [PMID: 33937234 PMCID: PMC8080379 DOI: 10.3389/fcell.2021.633465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Medial vascular calcification (MVC) is a degenerative process that involves the deposition of calcium in the arteries, with a high prevalence in chronic kidney disease (CKD), diabetes, and aging. Calcification is the process of precipitation largely of calcium phosphate, governed by the laws of thermodynamics that should be acknowledged in studies of this disease. Amorphous calcium phosphate (ACP) is the key constituent of early calcifications, mainly composed of Ca2+ and PO4 3- ions, which over time transform into hydroxyapatite (HAP) crystals. The supersaturation of ACP related to Ca2+ and PO4 3- activities establishes the risk of MVC, which can be modulated by the presence of promoter and inhibitor biomolecules. According to the thermodynamic parameters, the process of MVC implies: (i) an increase in Ca2+ and PO4 3- activities (rather than concentrations) exceeding the solubility product at the precipitating sites in the media; (ii) focally impaired equilibrium between promoter and inhibitor biomolecules; and (iii) the progression of HAP crystallization associated with nominal irreversibility of the process, even when the levels of Ca2+ and PO4 3- ions return to normal. Thus, physical-chemical processes in the media are fundamental to understanding MVC and represent the most critical factor for treatments' considerations. Any pathogenetical proposal must therefore comply with the laws of thermodynamics and their expression within the medial layer.
Collapse
Affiliation(s)
- Ángel Millán
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
| | - Peter Lanzer
- Division of Cardiovascular Disease, Department of Internal Medicine, Health Care Center Bitterfeld, Bitterfeld-Wolfen gGmbH, Bitterfeld-Wolfen, Germany
| | - Víctor Sorribas
- Molecular Toxicology Group, Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
17
|
Wei W, Guo X, Gu L, Jia J, Yang M, Yuan W, Rong S. Bone marrow mesenchymal stem cell exosomes suppress phosphate-induced aortic calcification via SIRT6-HMGB1 deacetylation. Stem Cell Res Ther 2021; 12:235. [PMID: 33849640 PMCID: PMC8042866 DOI: 10.1186/s13287-021-02307-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Background Vascular calcification associated with chronic kidney disease (CKD) can increase the risk of mortality. Elevated serum levels of high mobility group box 1 (HMGB1) promotes vascular calcification in CKD via the Wnt/β-catenin pathway. Sirtuin 6 (SIRT6) prevents fibrosis in CKD by blocking the expression of β-catenin target genes through deacetylation. This study aimed to investigate whether the inhibition of vascular calcification by bone marrow mesenchymal stem cell (BMSC)-derived exosomes is related to SIRT6 activity and assess the regulatory relationship between HMGB1 and SIRT6. Methods CKD characteristics, osteogenic markers, calcium deposition, and the differential expression of HMGB1 and SIRT6 have been measured in a 5/6 nephrectomized mouse CKD model fed a high-phosphate diet to induce aortic calcification. In vitro assays were also performed to validate the in vivo findings. Results High phosphate promotes the translocation of HMGB1 from the nucleus to the cytosol and induces the expression of Runx2, osteopontin, and Msx2. However, BMSC-derived exosomes were found to alleviate CKD-related fibrosis and the induction of osteogenic genes although less significantly when SIRT6 expression is suppressed. SIRT6 was found to modulate the cytosol translocation of HMGB1 by deacetylation in vascular smooth muscle cells. Conclusion Our results indicate that BMSC-derived exosomes inhibit high phosphate-induced aortic calcification and ameliorate renal function via the SIRT6–HMGB1 deacetylation pathway.
Collapse
Affiliation(s)
- Wenqian Wei
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 100, Haining Rd, Hongkou District, Shanghai, 200080, China
| | - Xiaodong Guo
- Department of Oncology, Yueyang Hospital of Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Lijie Gu
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 100, Haining Rd, Hongkou District, Shanghai, 200080, China
| | - Jieshuang Jia
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 100, Haining Rd, Hongkou District, Shanghai, 200080, China
| | - Man Yang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 100, Haining Rd, Hongkou District, Shanghai, 200080, China
| | - Weijie Yuan
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 100, Haining Rd, Hongkou District, Shanghai, 200080, China
| | - Shu Rong
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 100, Haining Rd, Hongkou District, Shanghai, 200080, China.
| |
Collapse
|
18
|
Keryakos HKH, Okaily NI, Boulis MAY, Salama AMS. Osteocalcin and vascular calcification in hemodialysis patients: an observational cohort study. Int Urol Nephrol 2021; 53:1015-1023. [PMID: 33433789 DOI: 10.1007/s11255-020-02753-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/15/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Vascular calcification contributes to morbidity and mortality in patients with ESRD on maintenance hemodialysis. AIMS To study the relationship between osteocalcin and vascular calcification. METHODS 160 patients with ESRD on maintenance hemodialysis and 60 age-and sex-matched healthy controls were recruited. Serum vitamin K2 and osteocalcin both intact and undercarboxylated were measured. Transthoracic echocardiography was done for valvular calcification and thickening, and carotid duplex was done for carotid intimal medial calcification and thickening. RESULTS Hemodialysis patients have higher median serum vitamin K2 (p < 0.001), higher undercarboxylated osteocalcin (p < 0.001). Only older age, duration of hypertension, and duration of established cardiovascular disease are associated with carotid media-intimal calcification. Old age is a strong predictor of carotid media intimal thickening. Female sex is associated with a valvular thickening. CONCLUSIONS Functional vitamin K deficiency is present in maintenance hemodialysis patients and serum osteocalcin is not associated with cardiovascular calcification.
Collapse
Affiliation(s)
- Hesham Kamal Habeeb Keryakos
- Internal Medicine Department, Faculty of Medicine, Minia University, Aswan-Cairo Agricultural Road, El-Minia, 61111, Egypt.
| | - Nagwa Ismail Okaily
- Clinical Pathology Department, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Mariam Asaad Yacoub Boulis
- Internal Medicine Department, Faculty of Medicine, Minia University, Aswan-Cairo Agricultural Road, El-Minia, 61111, Egypt
| | - Ahmed Mohamed Saadeldin Salama
- Internal Medicine Department, Faculty of Medicine, Minia University, Aswan-Cairo Agricultural Road, El-Minia, 61111, Egypt
| |
Collapse
|
19
|
Jia F, Wang S, Jing Y, Zhao H, Rong P, Zhang H, Lu W, Xue Y, Sun G. Osteocalcin and Abdominal Aortic Calcification in Hemodialysis Patients: An Observational Cross-Sectional Study. Front Endocrinol (Lausanne) 2021; 12:620350. [PMID: 33815281 PMCID: PMC8018234 DOI: 10.3389/fendo.2021.620350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/02/2021] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES To investigate the serum level of osteocalcin (OC), also known as bone Gla protein, in maintenance hemodialysis (MHD) patients and its correlation with abdominal aortic calcification (AAC). METHODS From July 2017 to February 2020, we enrolled 108 adult MHD patients. Routine fasting blood laboratory tests were performed before the start of the second hemodialysis in a week. Abdominal aortic calcification score (AACs) was assessed within 1 month. Pearson correlation and Logistic regression were used to analyze the data. RESULTS The OC level was 231.56 (25.92,361.33) ng/ml, elevating significantly in this group of MHD patients. It had a positive correlation with serum phosphorus (r = 0.511, P = 0.001), intact parathyroid hormone(iPTH) (r = 0.594, P = 0.0001), fibroblast growth factor 23(FGF23) (r = 0.485, P = 0.003) and a negative correlation with age(r = -0.356, P = 0.039). Based on the AACs, patients were divided into two groups. Serum OC level were higher in patients with AACs≥5 (p=0.032). A multiple logistics regression analysis revealed that age (odds ratio [OR]1.14, P=0.005) and OC(OR=1.10, P=0.008)were risk factors for high AACs(≥5). CONCLUSION The study implicated that OC elevated significantly in this group of MHD patients.OC is positively correlated with phosphorus, iPTH, FGF23, and a negative correlation with age. OC was a risk factor for vascular calcification in this study, but this study did not classify osteocalcin as c-OC and unOC. Whether unOC is associated more directly with vascular calcification requires further study.
Collapse
Affiliation(s)
- Fengyu Jia
- Department of Nephrology, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
| | - Suxia Wang
- Department of Nephrology, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
| | - Ying Jing
- Department of Nephrology, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
| | - Hanhui Zhao
- Department of Nephrology, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
| | - Peng Rong
- Department of Nephrology, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
| | - Hongbin Zhang
- Department of Nephrology, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
| | - Wenting Lu
- Department of Nephrology, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
| | - Yan Xue
- Department of Medical Imaging, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Yan Xue, ; Gang Sun,
| | - Gang Sun
- Department of Medical Imaging, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
- *Correspondence: Yan Xue, ; Gang Sun,
| |
Collapse
|
20
|
The Association between the Activin A Serum Level and Carotid Intima-Media Thickness in Chronic Kidney Disease Patients. Int J Nephrol 2020; 2020:8893653. [PMID: 33294228 PMCID: PMC7700056 DOI: 10.1155/2020/8893653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/18/2020] [Accepted: 10/25/2020] [Indexed: 12/23/2022] Open
Abstract
Introduction Chronic kidney disease (CKD) is associated with high mortality rates, mainly as a result of cardiovascular complications. Meanwhile, recent studies have suggested a role of a homodimer protein called activin A in chronic kidney disease-mineral and bone disorder (CKD-MBD) conditions that may exist in the vascular calcification and osteolytic process. Ultrasound examination of the carotid intima-media thickness (cIMT) is a noninvasive method to assess vascular calcification. This study aimed to analyze the relationship between the activin A serum level and cIMT in patients with CKD at Mohammad Hoesin Hospital, Palembang, Indonesia. Methods We conducted a hospital-based, cross-sectional study of consecutive CKD patients at the Department of Internal Medicine, Mohammad Hoesin Hospital, from July to November 2019. The level of activin A was measured by enzyme-linked immunosorbent assay. Meanwhile, cIMT measurements were collected by B-mode ultrasound imaging. Results A total of 55 patients with CKD were included in this investigation. The median serum activin A level in these patients was 236.17 (116.33–283) pg/mL, while the median cIMT was 0.8 (0.6–1.45) mm. A relationship between the serum activin A level and cIMT (r = 0.449; p = 0.001) was observed. During multivariate analysis with linear regression, triglyceride (p = 0.049), phosphate (p = 0.005), and activin A (p = 0.020) serum levels were factors associated with cIMT. Conclusion In this study, a relationship between the activin A serum level and cIMT in patients with CKD was identified. Vascular calcification should be screened for in all CKD patients by the measurement of cIMT.
Collapse
|
21
|
Holmar J, de la Puente-Secades S, Floege J, Noels H, Jankowski J, Orth-Alampour S. Uremic Toxins Affecting Cardiovascular Calcification: A Systematic Review. Cells 2020; 9:cells9112428. [PMID: 33172085 PMCID: PMC7694747 DOI: 10.3390/cells9112428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular calcification is highly prevalent and associated with increased morbidity in chronic kidney disease (CKD). This review examines the impact of uremic toxins, which accumulate in CKD due to a failing kidney function, on cardiovascular calcification. A systematic literature search identified 41 uremic toxins that have been studied in relation to cardiovascular calcification. For 29 substances, a potentially causal role in cardiovascular calcification was addressed in in vitro or animal studies. A calcification-inducing effect was revealed for 16 substances, whereas for three uremic toxins, namely the guanidino compounds asymmetric and symmetric dimethylarginine, as well as guanidinosuccinic acid, a calcification inhibitory effect was identified in vitro. At a mechanistic level, effects of uremic toxins on calcification could be linked to the induction of inflammation or oxidative stress, smooth muscle cell osteogenic transdifferentiation and/or apoptosis, or alkaline phosphatase activity. For all middle molecular weight and protein-bound uremic toxins that were found to affect cardiovascular calcification, an increasing effect on calcification was revealed, supporting the need to focus on an increased removal efficiency of these uremic toxin classes in dialysis. In conclusion, of all uremic toxins studied with respect to calcification regulatory effects to date, more uremic toxins promote rather than reduce cardiovascular calcification processes. Additionally, it highlights that only a relatively small part of uremic toxins has been screened for effects on calcification, supporting further investigation of uremic toxins, as well as of associated post-translational modifications, on cardiovascular calcification processes.
Collapse
Affiliation(s)
- Jana Holmar
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, University Hospital Aachen, 52074 Aachen, Germany; (J.H.); (S.d.l.P.-S.); (H.N.)
| | - Sofia de la Puente-Secades
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, University Hospital Aachen, 52074 Aachen, Germany; (J.H.); (S.d.l.P.-S.); (H.N.)
| | - Jürgen Floege
- Division of Nephrology, RWTH Aachen University, University Hospital Aachen, 52074 Aachen, Germany;
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, University Hospital Aachen, 52074 Aachen, Germany; (J.H.); (S.d.l.P.-S.); (H.N.)
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, University Hospital Aachen, 52074 Aachen, Germany; (J.H.); (S.d.l.P.-S.); (H.N.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence: (J.J.); (S.O.-A.); Tel.: +49-241-80-80580 (J.J. & S.O.-A.)
| | - Setareh Orth-Alampour
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, University Hospital Aachen, 52074 Aachen, Germany; (J.H.); (S.d.l.P.-S.); (H.N.)
- Correspondence: (J.J.); (S.O.-A.); Tel.: +49-241-80-80580 (J.J. & S.O.-A.)
| |
Collapse
|
22
|
Cardozo LFMF, Mafra D. Don't forget the zinc. Nephrol Dial Transplant 2020; 35:1094-1098. [PMID: 32417896 DOI: 10.1093/ndt/gfaa045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/30/2020] [Indexed: 01/09/2023] Open
Affiliation(s)
- Ludmila F M F Cardozo
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ), Brazil
| | - Denise Mafra
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ), Brazil.,Post Graduation Program in Medical Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Lee S, Chao C, Huang J, Huang K. Vascular Calcification as an Underrecognized Risk Factor for Frailty in 1783 Community-Dwelling Elderly Individuals. J Am Heart Assoc 2020; 9:e017308. [PMID: 32875940 PMCID: PMC7727009 DOI: 10.1161/jaha.120.017308] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
Background Vascular calcification (VC) is associated with high morbidity and mortality among older adults, a population that exhibits a higher tendency for developing frailty at the same time. Whether VC serves as a risk factor for the development of frailty in this population remains unclear. Methods and Results We analyzed a prospectively assembled cohort of community-dwelling older adults between 2014 and 2017 (n=1783). Frailty and prefrailty were determined on the basis of the Study of Osteoporotic Fractures criteria, and VC was measured using semiquantitative aortic arch calcification (AAC) and abdominal aortic calcification scoring. We conducted multiple logistic regression with prefrailty or frailty as the dependent variable, incorporating sociodemographic profiles, comorbidities, medications, laboratory data, AAC status/severity, and other geriatric phenotypes. Among all participants, 327 (18.3%) exhibited either prefrailty (15.3%) or frailty (3.1%), and 648 (36.3%) exhibited AAC. After adjusting for multiple confounders, we found that AAC incidence was associated with a substantially higher probability of prefrailty or frailty (odds ratio [OR], 11.9; 95% CI, 7.9-15.4), with a dose-responsive relationship (OR for older adults with AAC categories 1, 2, and 3 was 9.3, 13.6, and 52.5, respectively). Similar association was observed for older adults with abdominal aortic calcification (OR, 5.0; 95% CI, 1.3-19.5), and might be replicable in another cohort of patients with end-stage renal disease. Conclusions Severity of VC exhibited a linear positive relationship with frailty in older adults. Our findings suggest that a prompt diagnosis and potential management of VC may assist in risk mitigation for patients with frailty.
Collapse
Affiliation(s)
- Szu‐Ying Lee
- Nephrology Division, Department of Internal MedicineNational Taiwan University Hospital Yunlin BranchYunlin CountyTaiwan
| | - Chia‐Ter Chao
- Nephrology Division, Department of Internal MedicineNational Taiwan University Hospital BeiHu BranchTaipeiTaiwan
- Geriatric and Community Medicine Research CenterNational Taiwan University Hospital BeiHu BranchTaipeiTaiwan
- Graduate Institute of ToxicologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Jenq‐Wen Huang
- Nephrology Division, Department of Internal MedicineNational Taiwan University Hospital Yunlin BranchYunlin CountyTaiwan
| | - Kuo‐Chin Huang
- Nephrology Division, Department of Internal MedicineNational Taiwan University Hospital BeiHu BranchTaipeiTaiwan
- Geriatric and Community Medicine Research CenterNational Taiwan University Hospital BeiHu BranchTaipeiTaiwan
| |
Collapse
|
24
|
Ruderman I, Hewitson TD, Smith ER, Holt SG, Wigg B, Toussaint ND. Vascular calcification in skin and subcutaneous tissue in patients with chronic and end-stage kidney disease. BMC Nephrol 2020; 21:279. [PMID: 32677907 PMCID: PMC7364566 DOI: 10.1186/s12882-020-01928-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background Vascular calcification (VC) is well described in large- and medium-sized vessels in patients with chronic kidney disease (CKD), especially in those with end-stage kidney disease (ESKD) on dialysis. Medial calcification is particularly prevalent in this population and contributes to arterial stiffness and increased cardiovascular mortality and morbidity. Apart from in the setting of calciphylaxis, few studies have assessed skin and subcutaneous calcification and associations with abnormalities of bone and mineral metabolism in patients with CKD. Methods We performed a single-centre observational study to evaluate incisional skin tissue samples from three anatomical sites in patients with different stages of CKD undergoing elective surgery. We compared these samples to skin samples of a control cohort without CKD. Staining for calcification was performed with von Kossa method. A subgroup of skin samples were assessed by RT-PCR for upregulation of pro-calcific gene transcripts for tissue non-specific alkaline phosphatase (TNAP) and Runt-related transcription factor 2 (RUNX2). Results Forty-five patients were evaluated, 34 with CKD (including ESKD) and 11 control patients. VC was identified in 15 skin samples (13 CKD/ESKD and 2 controls). VC was present in the dermal and subcutaneous tissues of the neck, abdomen and arm samples. Two different histological types of VC were identified: speckled medial calcification and internal elastic lamina calcification. Presence of perieccrine calcification was identified in 14 samples, 10 with concurrent VC. There were no significant differences in serum parathyroid hormone, phosphate or calcium in patients with or without VC. Expression of TNAP or RUNX2 was not increased in samples from patients with ESKD or those with histological evidence of calcification. Conclusion This study reports the novel finding of dermal and subcutaneous calcification in multiple anatomical locations in 38% of patients with advanced CKD/ESKD undergoing elective surgery but free from calciphylaxis.
Collapse
Affiliation(s)
- Irene Ruderman
- Department of Nephrology, The Royal Melbourne Hospital, 300 Grattan St, Parkville, Victoria, 3050, Australia. .,Department of Medicine (RMH), The University of Melbourne, Parkville, Victoria, Australia.
| | - Tim D Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, 300 Grattan St, Parkville, Victoria, 3050, Australia.,Department of Medicine (RMH), The University of Melbourne, Parkville, Victoria, Australia
| | - Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, 300 Grattan St, Parkville, Victoria, 3050, Australia.,Department of Medicine (RMH), The University of Melbourne, Parkville, Victoria, Australia
| | - Stephen G Holt
- Department of Nephrology, The Royal Melbourne Hospital, 300 Grattan St, Parkville, Victoria, 3050, Australia.,Department of Medicine (RMH), The University of Melbourne, Parkville, Victoria, Australia
| | - Belinda Wigg
- Department of Nephrology, The Royal Melbourne Hospital, 300 Grattan St, Parkville, Victoria, 3050, Australia
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, 300 Grattan St, Parkville, Victoria, 3050, Australia.,Department of Medicine (RMH), The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
25
|
Pereira L, Frazão JM. The bone-vessel axis in chronic kidney disease: An update on biochemical players and its future role in laboratory medicine. Clin Chim Acta 2020; 508:221-227. [PMID: 32422129 DOI: 10.1016/j.cca.2020.05.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/31/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022]
Abstract
Vascular wall calcification (VC) is highly prevalent in patients with chronic kidney disease (CKD). In CKD, VC is more frequent and severe than in the general population and it is associated with increased cardiovascular mortality and morbidity. In the last years, laboratory and clinical evidence have drawn the attention to the relationship between bone disease and VC in CKD patients, leading to the concept of a bone-vessel or bone-vascular axis. It means that disorders of bone volume and bone turnover may influence the risk of VC and ultimately the high risk of cardiovascular mortality. In fact, a higher burden of VC has been associated to low bone volume and low bone turnover in hemodialysis (HD) patients with renal osteodystrophy characterized by histomorphometric evaluation of bone biopsies. The molecular mechanisms underlying the regulation of bone cells and vascular cells in CKD are poorly understood. In this review, we discuss relevant evidence linking bone disorders and VC in CKD and also rising molecular players involved in this bone-vascular axis. Indeed, accumulating data is available for two proposed systems: receptor activator for nuclear factor kB (RANK)/ RANK ligand (RANKL)/osteoprotegerin (OPG) system and inhibitors of Wnt signaling - mainly sclerostin. Although they are promising biochemical markers linking bone formation and bone reabsorption with VC, there is a long way to go as long evidence from laboratory studies is often divergent to the clinical data as will be discussed. Future prospective studies are needed in order to evaluate the role of these biochemical players as useful clinical markers for VC, bone volume and perhaps bone turnover.
Collapse
Affiliation(s)
- Luciano Pereira
- Institute of Investigation and Innovation in Health, University of Porto, Portugal; INEB - National Institute of Biomedical Engineering, University of Porto, Portugal; Department of Nephrology, São João Hospital Center, Porto, Portugal
| | - João M Frazão
- Institute of Investigation and Innovation in Health, University of Porto, Portugal; INEB - National Institute of Biomedical Engineering, University of Porto, Portugal; Department of Nephrology, São João Hospital Center, Porto, Portugal.
| |
Collapse
|
26
|
Rees-Milton KJ, Norman P, Babiolakis C, Hulbert M, Turner ME, Berger C, Anastassiades TP, Hopman WM, Adams MA, Powley WL, Holden RM. Statin Use is Associated With Insulin Resistance in Participants of the Canadian Multicentre Osteoporosis Study. J Endocr Soc 2020; 4:bvaa057. [PMID: 32715271 PMCID: PMC7371386 DOI: 10.1210/jendso/bvaa057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/08/2020] [Indexed: 12/15/2022] Open
Abstract
Context Statins have been linked to the development of diabetes and atherosclerotic plaque calcification in patients with cardiac disease. Objective To determine the association between statin use and statin characteristics and insulin resistance and abdominal aortic calcification (AAC) in participants of the Canadian Multicentre Osteoporosis Study (CaMos). Design Observational study. Setting General community. Participants Nondiabetic participants of the Kingston CaMos site. Intervention Insulin resistance and AAC in statin users and nonstatin users were compared with and without the inclusion of a propensity score (PS) to be on a statin. The covariates of hypertension, sex, body mass index, smoking, kidney stones, and age that were included in the PS were selected based on clinical judgment confirmed by the statistical analysis of a difference between statin users and nonstatin users. Main Outcome Measures Insulin resistance measured by the homeostasis model assessment (HOMA-IR) and AAC assessed on lateral spine radiographs using the Framingham methodology. Results Using a general linear model, statin use was associated with higher levels of HOMA-IR after stratified PS adjustment (β = 1.52, [1.18-1.95], P < 0.01). Hydrophilic statin users (n = 9) and lipophilic statins users (n = 30) had higher HOMA-IR compared to nonstatin users (n = 125) ([β = 2.29, (1.43-3.68), P < 0.001] and [β = 1.36, (1.04-1.78), P < 0.05]), respectively, in general linear models after stratified PS adjustment. Statin use was associated with AAC without stratifying by PS in the Wilcoxon test, but was no longer significant when stratified by PS. Conclusions Statins, widely prescribed drugs to lower cholesterol, may have unintended consequences related to glucose homeostasis that could be relevant in healthy aging.
Collapse
Affiliation(s)
| | - Patrick Norman
- Kingston General Health Research Institute, Kingston, ON
| | | | - Maggie Hulbert
- Department of Medicine, Queen's University, Kingston, ON
| | - Mandy E Turner
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON
| | - Claudie Berger
- Research Institute of the McGill University Health Centre, Montreal, QC
| | - Tassos P Anastassiades
- Department of Medicine, Queen's University, Kingston, ON.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON
| | - Wilma M Hopman
- Kingston General Health Research Institute, Kingston, ON.,Department of Public Health Sciences, Queen's University, Kingston, ON
| | - Michael A Adams
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON
| | | | - Rachel M Holden
- Department of Medicine, Queen's University, Kingston, ON.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON
| |
Collapse
|
27
|
Cholesterol-Lowering Action of a Novel Nutraceutical Combination in Uremic Rats: Insights into the Molecular Mechanism in a Hepatoma Cell Line. Nutrients 2020; 12:nu12020436. [PMID: 32050453 PMCID: PMC7071245 DOI: 10.3390/nu12020436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
Appropriate nutraceutical combinations may represent a valid approach to prevent vascular calcification associated with chronic kidney disease (CKD). In the present study, we tested the effect of a new nutraceutical combination named RenaTris®, containing MK-7, magnesium carbonate, and Sucrosomial® Iron, on vascular calcification in uremic rats. Rats were randomly divided into three groups, i.e. control (high-phosphate diet), uremic (high-phosphate diet containing 0.5% adenine), and supplemented uremic diet (0.5% adenine, MK-7, magnesium carbonate, and Sucrosomial® Iron). After six weeks, sera and vascular calcification were examined. The uremic diet increased creatinine and phosphate levels and induced extensive vascular calcification. The uremic condition also induced a mild hypercholesterolemic condition (+52% of total cholesterol; p < 0.05). The supplemented uremic diet did not reduce creatinine, phosphate levels, or vascular calcification, however, we observed a significant hypocholesterolemic effect (-18.9% in supplemental uremic vs. uremic diet; p < 0.05). Similar to simvastatin, incubation of cultured human hepatoma cells (Huh7) with MK-7 significantly reduced cholesterol biosynthesis (-38%) and induced 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase and low-density lipoprotein receptor (LDLR) at both mRNA and protein levels. The effect of MK-7 on LDLR was counteracted by the co-incubation with squalene. Unlike simvastatin, MK-7 reduced PCSK9 in Huh7. These results indicated that the new nutraceutical combination significantly impacts cholesterol metabolism and its supplementation may help to control mild hypercholesterolemic conditions in CKD patients.
Collapse
|
28
|
D'Marco L, Lima-Martínez M, Karohl C, Chacín M, Bermúdez V. Pseudoxanthoma Elasticum: An Interesting Model to Evaluate Chronic Kidney Disease-Like Vascular Damage without Renal Disease. KIDNEY DISEASES 2020; 6:92-97. [PMID: 32309291 DOI: 10.1159/000505026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022]
Abstract
Background Pseudoxanthoma elasticum (PXE; OMIM 264800) is an inherited multisystem disorder associated with accumulation of mineralized and fragmented elastic fibers in the skin, vascular walls, and brush membrane in the eye. Carriers exhibit characteristic lesions in the cardiovascular system, and peripheral and coronary arterial disease as well as mitral valvulopathy often present as a cardiovascular feature of this disease. PXE and chronic kidney disease (CKD) share some common patterns in the vascular damage and in therapeutic approaches as well. Summary To date, treating PXE has focused more on careful follow-up examinations with retinal specialists and cardiologist, avoiding long-term anticoagulation. Like CKD, maintaining a low-calcium diet, increasing dietary magnesium, and administering phosphate binders such as aluminum hydroxide or sevelamer may yield a modest benefit. Recently, 4-phenylbutyrate acid (4-PBA) has demonstrated a maturation of ABCC6 mutant effects into the plasma membrane. Moreover, in a humanized mouse model of PXE, 4-PBA administration restored the physiological function of ABCC6 mutants, resulting in enhanced calcification inhibition and thus a promising strategy for allele-specific therapy of ABCC6-associated calcification disorders. Key Message Vascular compromise in PXE patients share some components similar to CKD.
Collapse
Affiliation(s)
- Luis D'Marco
- Nephrology Department, Hospital Clinico Universitario, INCLIVA, Valencia, Spain
| | - Marcos Lima-Martínez
- Department of Physiological Sciences, Universidad de Oriente, Bolívar, Venezuela
| | - Cristina Karohl
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Porto Alegre, Brazil
| | - Maricarmen Chacín
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
29
|
De Vriese AS, Caluwé R, Pyfferoen L, De Bacquer D, De Boeck K, Delanote J, De Surgeloose D, Van Hoenacker P, Van Vlem B, Verbeke F. Multicenter Randomized Controlled Trial of Vitamin K Antagonist Replacement by Rivaroxaban with or without Vitamin K2 in Hemodialysis Patients with Atrial Fibrillation: the Valkyrie Study. J Am Soc Nephrol 2019; 31:186-196. [PMID: 31704740 DOI: 10.1681/asn.2019060579] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Vitamin K antagonists (VKAs), although commonly used to reduce thromboembolic risk in atrial fibrillation, have been incriminated as probable cause of accelerated vascular calcification (VC) in patients on hemodialysis. Functional vitamin K deficiency may further contribute to their susceptibility for VC. We investigated the effect of vitamin K status on VC progression in 132 patients on hemodialysis with atrial fibrillation treated with VKAs or qualifying for anticoagulation. METHODS Patients were randomized to VKAs with target INR 2-3, rivaroxaban 10 mg daily, or rivaroxaban 10 mg daily plus vitamin K2 2000 µg thrice weekly during 18 months. Systemic dp-ucMGP levels were quantified to assess vascular vitamin K status. Cardiac and thoracic aorta calcium scores and pulse wave velocity were measured to evaluate VC progression. RESULTS Baseline dp-ucMGP was severely elevated in all groups. Initiation or continuation of VKAs further increased dp-ucMGP, whereas levels decreased in the rivaroxaban group and to a larger extent in the rivaroxaban+vitamin K2 group, but remained nevertheless elevated. Changes in coronary artery, thoracic aorta, and cardiac valve calcium scores and pulse wave velocity were not significantly different among the treatment arms. All cause death, stroke, and cardiovascular event rates were similar between the groups. Bleeding outcomes were not significantly different, except for a lower number of life-threatening and major bleeding episodes in the rivaroxaban arms versus the VKA arm. CONCLUSIONS Withdrawal of VKAs and high-dose vitamin K2 improve vitamin K status in patients on hemodialysis, but have no significant favorable effect on VC progression. Severe bleeding complications may be lower with rivaroxaban than with VKAs.
Collapse
Affiliation(s)
- An S De Vriese
- Division of Nephrology and Infectious Diseases and .,Departments of Internal Medicine and
| | | | - Lotte Pyfferoen
- Department of Medical Imaging, AZ Sint-Jan Brugge, Brugge, Belgium
| | | | | | - Joost Delanote
- Department of Medical Imaging, AZ Sint-Jan Brugge, Brugge, Belgium
| | | | - Piet Van Hoenacker
- Department of Medical Imaging, Onze Lieve Vrouw Hospital, Aalst, Belgium
| | | | | |
Collapse
|
30
|
Mizuiri S, Nishizawa Y, Yamashita K, Ono K, Naito T, Tanji C, Usui K, Doi S, Masaki T, Shigemoto K. Relationship of matrix Gla protein and vitamin K with vascular calcification in hemodialysis patients. Ren Fail 2019; 41:770-777. [PMID: 31538831 PMCID: PMC7011966 DOI: 10.1080/0886022x.2019.1650065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 01/07/2023] Open
Abstract
Objective: This study evaluated associations of serum matrix Gla protein (MGP), plasma vitamin K1, and plasma vitamin K2 with coronary artery calcium score (CACS) and cardiovascular disease (CVD) in maintenance hemodialysis (MHD) patients. Methods: Subjects comprised 112 MHD patients aged 30-60 years and 40 age-matched healthy subjects. Total MGP, vitamin K1, vitamin K2, and lipid profile were examined in all subjects; other clinical data, medication use, and CACS were assessed only in MHD patients. Determinants of MGP in all subjects were identified by regression analysis. Factors associated with CACS and CVD in MHD patients were identified by regression analysis and logistic analysis, respectively. Results: Lower plasma levels of vitamin K1 corrected for triglycerides [0.39 (0.24-0.70) vs. 0.77 (0.48-1.34) ng/mg, p < 0.001], higher frequency of plasma vitamin K2 ≤ 0.05 ng/ml (p = 0.23), and higher serum total MGP (288.4 ± 44.2 vs. 159.7 ± 40.6 ng/ml, p < 0.0001) were observed in MHD patients than in healthy controls. Total MGP level was significantly associated with levels of vitamin K1 corrected for triglycerides (p <0 .001) and vitamin K2 ≤ 0.05 ng/ml (p < 0.05) in all subjects. Total MGP level was significantly associated with presence of CVD (p <0 .05), but not CACS, in MHD patients. Conclusion: The end-stage renal disease on hemodialysis is a deficiency state of vitamin K. Total MGP was significantly higher in MHD patients compared to healthy subjects and total MGP was associated with the presence of CVD, but not CACS, in MHD patients.
Collapse
Affiliation(s)
- Sonoo Mizuiri
- Division of Nephrology, Ichiyokai Harada
Hospital, Hiroshima, Japan
| | | | | | - Kyoka Ono
- Division of Nephrology, Ichiyokai Harada
Hospital, Hiroshima, Japan
| | | | - Chie Tanji
- Ichiyokai Ichiyokai Clinic,
Hiroshima, Japan
| | - Koji Usui
- Ichiyokai Ichiyokai Clinic,
Hiroshima, Japan
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University
Hospital, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University
Hospital, Hiroshima, Japan
| | | |
Collapse
|
31
|
Kakani E, Elyamny M, Ayach T, El‐Husseini A. Pathogenesis and management of vascular calcification in CKD and dialysis patients. Semin Dial 2019; 32:553-561. [DOI: 10.1111/sdi.12840] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Elijah Kakani
- Division of Hospital Medicine University of Kentucky Lexington KY USA
| | - Mohamed Elyamny
- Division of Nephrology, Bone and Mineral Metabolism University of Kentucky Lexington KY USA
| | - Taha Ayach
- Division of Nephrology, Bone and Mineral Metabolism University of Kentucky Lexington KY USA
| | - Amr El‐Husseini
- Division of Nephrology, Bone and Mineral Metabolism University of Kentucky Lexington KY USA
| |
Collapse
|
32
|
Voelkl J, Lang F, Eckardt KU, Amann K, Kuro-O M, Pasch A, Pieske B, Alesutan I. Signaling pathways involved in vascular smooth muscle cell calcification during hyperphosphatemia. Cell Mol Life Sci 2019; 76:2077-2091. [PMID: 30887097 PMCID: PMC6502780 DOI: 10.1007/s00018-019-03054-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
Medial vascular calcification has emerged as a putative key factor contributing to the excessive cardiovascular mortality of patients with chronic kidney disease (CKD). Hyperphosphatemia is considered a decisive determinant of vascular calcification in CKD. A critical role in initiation and progression of vascular calcification during elevated phosphate conditions is attributed to vascular smooth muscle cells (VSMCs), which are able to change their phenotype into osteo-/chondroblasts-like cells. These transdifferentiated VSMCs actively promote calcification in the medial layer of the arteries by producing a local pro-calcifying environment as well as nidus sites for precipitation of calcium and phosphate and growth of calcium phosphate crystals. Elevated extracellular phosphate induces osteo-/chondrogenic transdifferentiation of VSMCs through complex intracellular signaling pathways, which are still incompletely understood. The present review addresses critical intracellular pathways controlling osteo-/chondrogenic transdifferentiation of VSMCs and, thus, vascular calcification during hyperphosphatemia. Elucidating these pathways holds a significant promise to open novel therapeutic opportunities counteracting the progression of vascular calcification in CKD.
Collapse
MESH Headings
- Animals
- Calcium Phosphates/chemistry
- Calcium Phosphates/metabolism
- Cell Transdifferentiation
- Chondrocytes/metabolism
- Chondrocytes/pathology
- Gene Expression Regulation
- Humans
- Hyperphosphatemia/complications
- Hyperphosphatemia/genetics
- Hyperphosphatemia/metabolism
- Hyperphosphatemia/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Osteoblasts/metabolism
- Osteoblasts/pathology
- RANK Ligand/genetics
- RANK Ligand/metabolism
- Receptor Activator of Nuclear Factor-kappa B/genetics
- Receptor Activator of Nuclear Factor-kappa B/metabolism
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Signal Transduction
- Vascular Calcification/complications
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria.
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany.
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353, Berlin, Germany.
| | - Florian Lang
- Department of Physiology I, Eberhard-Karls University, Wilhelmstr. 56, 72076, Tübingen, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353, Berlin, Germany
| | - Kerstin Amann
- Department of Nephropathology, Universität Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054, Erlangen, Germany
| | - Makoto Kuro-O
- Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Andreas Pasch
- Calciscon AG, Aarbergstrasse 5, 2560, Nidau-Biel, Switzerland
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch Str. 2, 10178, Berlin, Germany
- Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch Str. 2, 10178, Berlin, Germany
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Patients with chronic kidney disease have a high risk of fractures and no established treatments that have been shown to prevent the bone disease. The physiology of renal osteodystrophy is complex and recently more factors have been found that complicate the mineral metabolism. The recognition that vascular calcifications are related to bone disease has made treatment even more challenging. RECENT FINDINGS The most exciting new findings relate to the signaling pathways that are seen in kidney disease and how they cause abnormalities in bone physiology. In particular, wnt and activin signaling pathways are seen early in the course of renal disease. The bones react by increasing FGF-23, which targets both renal phosphate secretion and a variety of other systemic effects. Secreted klotho is another newly described hormone with effects on several systems.Clinical studies have focused on treatments for hyperparathyroidism and phosphate, and frustrating limitations of the treatments used for ordinary osteoporosis. SUMMARY Treatment of bone disease in patients with chronic kidney disease is challenging, and understanding the physiological pathways could lead to novel therapies.
Collapse
|
34
|
Hou YC, Lu CL, Zheng CM, Chen RM, Lin YF, Liu WC, Yen TH, Chen R, Lu KC. Emerging Role of Vitamins D and K in Modulating Uremic Vascular Calcification: The Aspect of Passive Calcification. Nutrients 2019; 11:E152. [PMID: 30642029 PMCID: PMC6356797 DOI: 10.3390/nu11010152] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/19/2018] [Accepted: 01/08/2019] [Indexed: 01/06/2023] Open
Abstract
Vascular calcification is a critical complication in patients with chronic kidney disease (CKD) because it is predictive of cardiovascular events and mortality. In addition to the traditional mechanisms associated with endothelial dysfunction and the osteoblastic transformation of vascular smooth muscle cells (VSMCs), the regulation of calcification inhibitors, such as calciprotein particles (CPPs) and matrix vesicles plays a vital role in uremic vascular calcification in CKD patients because of the high prevalence of vitamin K deficiency. Vitamin K governs the gamma-carboxylation of matrix Gla protein (MGP) for inhibiting vascular calcification, and the vitamin D binding protein receptor is related to vitamin K gene expression. For patients with chronic kidney disease, adequate use of vitamin D supplements may play a role in vascular calcification through modulation of the calciprotein particles and matrix vesicles (MVs).
Collapse
Affiliation(s)
- Yi-Chou Hou
- Department of Internal Medicine, Cardinal Tien Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 23148, Taiwan.
- College of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Chien-Lin Lu
- College of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Cai-Mei Zheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.
| | - Ruei-Ming Chen
- Graduate Institute of Medical Sciences, College of Medicine, Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- Brain Disease Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, Taipei 11490, Taiwan.
| | - Wen-Chih Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung City 435, Taiwan.
| | - Tzung-Hai Yen
- Department of Nephrology, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan City 33305, Taiwan.
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan.
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan.
| | - Remy Chen
- Kidney Dialysis Center, Kamifukuoka General Hospital, Saitama 356, Japan.
| | - Kuo-Cheng Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| |
Collapse
|
35
|
Furusawa K, Takeshita K, Suzuki S, Tatami Y, Morimoto R, Okumura T, Yasuda Y, Murohara T. Assessment of abdominal aortic calcification by computed tomography for prediction of latent left ventricular stiffness and future cardiovascular risk in pre-dialysis patients with chronic kidney disease: A single center cross-sectional study. Int J Med Sci 2019; 16:939-948. [PMID: 31341407 PMCID: PMC6643121 DOI: 10.7150/ijms.32629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/11/2019] [Indexed: 02/06/2023] Open
Abstract
Introduction: There is general interest in finding clinical markers for left ventricular diastolic dysfunction (LVDD), a major cause of cardiorenal syndrome leading to heart failure in chronic kidney disease (CKD) patients. The aim was to assess the utility of computed tomography (CT)-based abdominal aortic calcification (AAC) for the prediction of LVDD and prognosis of asymptomatic pre-dialysis CKD patients. Materials and methods: We prospectively evaluated 218 pre-dialysis CKD patients [median estimated glomerular filtration rate (eGFR); 40.9 mL/min/1.73m²]. Non-contrast CT scan and echocardiography were performed to determine the aortic calcification index (ACI) as a semi-quantitative measure of AAC. Results: The median ACI was 11.4. AAC and LVDD were diagnosed in 193 patients (89%) and 75 patients (34%), respectively. Using receiver operating characteristic curve analysis for the estimation of LVDD, ACI of 20 showed optimal sensitivity (52.0%) and specificity (62.8 %) (AUC = 0.664, p < .001). High ACI group included more patients with LVDD-related factors, such as old age, hypertension, diabetes, and more severe CKD. LVDD was significantly more common in patients with high ACI group [39 (50%) and 36 (26%), respectively, p<0.001]. Multivariate analysis showed that ACI correlated significantly with E/A (β=-0.993, p=0.003), E/e' (β=0.077, p<0.001), and cardio-ankle vascular index (β=0.209, p=0.001). Correspondingly, E/e' correlated with logBNP and log(ACI+1), and increased proportionately and significantly with the quartiles of ACI values. Cox proportional hazard models showed that ACI was an independent predictor of CV outcome (hazard ratio 1.03, 95% confidence interval 1.00-1.06, p=0.029). Conclusion: The results would suggest the usefulness of AAC assessment by CT to predict latent LVDD and future CV risk in asymptomatic pre-dialysis CKD patients.
Collapse
Affiliation(s)
- Kenji Furusawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Clinical Laboratory, Nagoya University Hospital, Nagoya, Japan
| | - Kyosuke Takeshita
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Clinical Laboratory, Nagoya University Hospital, Nagoya, Japan.,Department of Clinical Laboratory, Saitama Medical Centre, Saitama Medical University, Kawagoe, Japan
| | - Susumu Suzuki
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yosuke Tatami
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryota Morimoto
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiro Okumura
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinari Yasuda
- Department of CKD Initiatives Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|