1
|
Tarekegn BG, Tientcheu LD, Decker J, Bell AJ, Mukamolova GV, Kampmann B, Messele G, Abeje T, Aseffa A, Dockrell HM, Haldar P, Barer MR, Garton NJ. Host and pathogen factors that influence variability of Mycobacterium tuberculosis lipid body content in sputum from patients with tuberculosis: an observational study. THE LANCET. MICROBE 2024; 5:100885. [PMID: 38906163 DOI: 10.1016/s2666-5247(24)00108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND High proportions of Mycobacterium tuberculosis cells in sputum containing triacylglycerol-rich lipid bodies have been shown to be associated with treatment failure or relapse following antituberculous chemotherapy. Although lipid body determination is a potential biomarker for supporting clinical trial and treatment decisions, factors influencing variability in sputum frequencies of lipid body-positive (%LB+) M tuberculosis in patients are unknown. We aimed to test our hypothesis that exposure to host-generated NO and M tuberculosis strains are factors associated with differences in sputum %LB+. METHODS In this observational study, we determined %LB+ frequencies before treatment by microscopy in patients with smear-positive tuberculosis from two separate prospective observational study settings (Gondar, Ethiopia, recruited between May 1, 2010, and April 30, 2011, and Fajara, The Gambia, who provided sputum samples before treatment between May 5, 2010, and Dec 22, 2011). In Ethiopia, fractional exhaled nitric oxide (FeNO) was measured as a biomarker of host NO, and M tuberculosis strain differences were determined by spoligotyping. Treatment response was assessed by percentage weight change after 7 months. In The Gambia, treatment responses were assessed as change in BMI and radiographic burden of disease after 6 months. Sputum M tuberculosis isolates were studied in vitro for their %LB+ and triacylglycerol synthase 1 (tgs1) mRNA responses to NO exposure. Propidium iodide staining was used as a measure of NO strain toxicity. Correlation between in vitro %LB+ frequencies following NO exposure and those of the same strain in sputum was examined with linear regression and Dunnett's multiple comparison test. FINDINGS In Ethiopia, 73 patients who were smear positive for pulmonary tuberculosis were recruited (43 [59%] were male and 30 [41%] were female). Of these, the %LB+ in the sputum of 59 patients showed linear correlation with log10 FeNO (r2=0·28; p<0·0001) and an association with strain spoligotype was suggested. Seven M tuberculosis strains from The Gambia showed different dose-responses to NO in vitro, demonstrated by changing lipid body content, tgs1 transcription, and bacterial toxicity. In sputum %LB+ frequencies correlated with in vitro %LB+ responses to NO of the corresponding isolate. In a subset of 34 patients across both cohorts, higher sputum %LB+ frequencies before treatment were associated with weaker responses to treatment than lower sputum %LB+ frequencies. INTERPRETATION M tuberculosis strain and exposure to host-generated NO are associated with sputum %LB+. Our results support the use of M tuberculosis strain-dependent sputum %LB+ as a predictive biomarker of treatment response. FUNDING The Medical Research Council, the University of Leicester, and the University of Gondar.
Collapse
Affiliation(s)
- Baye G Tarekegn
- Department of Respiratory Sciences, University of Leicester, Leicester, UK; Department of Medical Microbiology, University of Gondar, Gondar, Ethiopia
| | - Leopold D Tientcheu
- Medical Research Council Unit, The Gambia at London School of Hygiene & Tropical Medicine, Vaccines and Immunity Theme, Fajara, The Gambia; Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Jonathan Decker
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Andrew J Bell
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Galina V Mukamolova
- Department of Respiratory Sciences, University of Leicester, Leicester, UK; Leicester Tuberculosis Research Group, University of Leicester, Leicester, UK; National Institute for Health and Care Research Leicester Biomedical Research Centre, Leicester, UK
| | - Beate Kampmann
- Medical Research Council Unit, The Gambia at London School of Hygiene & Tropical Medicine, Vaccines and Immunity Theme, Fajara, The Gambia; Institut für Internationale Gesundheit and Centre for Global Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gashaw Messele
- Department of Surgery, University of Gondar, Gondar, Ethiopia
| | - Tadeye Abeje
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Hazel M Dockrell
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Pranabashis Haldar
- Department of Respiratory Sciences, University of Leicester, Leicester, UK; Leicester Tuberculosis Research Group, University of Leicester, Leicester, UK; National Institute for Health and Care Research Leicester Biomedical Research Centre, Leicester, UK
| | - Michael R Barer
- Department of Respiratory Sciences, University of Leicester, Leicester, UK; Leicester Tuberculosis Research Group, University of Leicester, Leicester, UK; National Institute for Health and Care Research Leicester Biomedical Research Centre, Leicester, UK; Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Natalie J Garton
- Department of Respiratory Sciences, University of Leicester, Leicester, UK; Leicester Tuberculosis Research Group, University of Leicester, Leicester, UK; National Institute for Health and Care Research Leicester Biomedical Research Centre, Leicester, UK.
| |
Collapse
|
2
|
Berni Canani R, Caminati M, Carucci L, Eguiluz-Gracia I. Skin, gut, and lung barrier: Physiological interface and target of intervention for preventing and treating allergic diseases. Allergy 2024; 79:1485-1500. [PMID: 38439599 DOI: 10.1111/all.16092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
The epithelial barriers of the skin, gut, and respiratory tract are critical interfaces between the environment and the host, and they orchestrate both homeostatic and pathogenic immune responses. The mechanisms underlying epithelial barrier dysfunction in allergic and inflammatory conditions, such as atopic dermatitis, food allergy, eosinophilic oesophagitis, allergic rhinitis, chronic rhinosinusitis, and asthma, are complex and influenced by the exposome, microbiome, individual genetics, and epigenetics. Here, we review the role of the epithelial barriers of the skin, digestive tract, and airways in maintaining homeostasis, how they influence the occurrence and progression of allergic and inflammatory conditions, how current treatments target the epithelium to improve symptoms of these disorders, and what the unmet needs are in the identification and treatment of epithelial disorders.
Collapse
Affiliation(s)
- Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Marco Caminati
- Allergy Unit and Asthma Centre, Verona Integrated University Hospital and Department of Medicine, University of Verona, Verona, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Ibon Eguiluz-Gracia
- Allergy Unit, Hospital Regional Universitario de Malága, Malaga, Spain
- Allergy Group, Biomedical Research Institute of Malaga (IBIMA)-BIONAND Platform, RICORS Inflammatory Diseases, Malaga, Spain
| |
Collapse
|
3
|
Selvakumar B, Eladham MW, Hafezi S, Ramakrishnan R, Hachim IY, Bayram OS, Sharif-Askari NS, Sharif-Askari FS, Ibrahim SM, Halwani R. Allergic Airway Inflammation Emerges from Gut Inflammation and Leakage in Mouse Model of Asthma. Adv Biol (Weinh) 2024; 8:e2300350. [PMID: 37752729 DOI: 10.1002/adbi.202300350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/16/2023] [Indexed: 09/28/2023]
Abstract
Asthma is an allergic airway inflammatory disease characterized by type 2 immune responses. Growing evidence suggests an association between allergic airways and intestinal diseases. However, the primary site of disease origin and initial mechanisms involved in the development of allergic airway inflammation (AAI) is not yet understood. Therefore, the initial contributing organs and mechanisms involved in the development of AAI are investigated using a mouse model of asthma. This study, without a local allergen challenge into the lungs, demonstrates a significant increase in intestinal inflammation with signature type-2 mediators including IL-4, IL-13, STAT6, eosinophils, and Th2 cells. In addition, gut leakage and mRNA expressions of gut leakage markers significantly increase in the intestine. Moreover, reduced mRNA expressions of tight junction proteins are observed in gut and interestingly, in lung tissues. Furthermore, in lung tissues, an increased pulmonary barrier permeability and IL-4 and IL-13 levels associated with significant increase of lipopolysaccharide-binding protein (LBP-gut leakage marker) and eosinophils are observed. However, with local allergen challenges into the lungs, these mechanisms are further enhanced in both gut and lungs. In conclusion, the primary gut originated inflammatory responses translocates into the lungs to orchestrate AAI in a mouse model of asthma.
Collapse
Affiliation(s)
- Balachandar Selvakumar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Mariam Wed Eladham
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Shirin Hafezi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Rakhee Ramakrishnan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Ibrahim Yaseen Hachim
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE
| | - Ola Salam Bayram
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE
| | - Narjes Saheb Sharif-Askari
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE
| | - Fatemeh Saheb Sharif-Askari
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
- Department of Pharmacy Practice and Pharmaceutics, College of Pharmacy, University of Sharjah, Sharjah, 27272, UAE
| | - Saleh Mohamed Ibrahim
- Institute of Experimental Dermatology, University of Lübeck, 23562, Lübeck, Germany
- Deapartment of Biotechnology, Khalifa University, Abu Dhabi, 127788, UAE
| | - Rabih Halwani
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE
- Prince Abdullah Ben Khaled Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| |
Collapse
|
4
|
Ban G, Yang E, Ye Y, Park H. Association of eosinophil-derived neurotoxin levels with asthma control status in patients with aspirin-exacerbated respiratory disease. Clin Transl Allergy 2023; 13:e12229. [PMID: 36973950 PMCID: PMC9987030 DOI: 10.1002/clt2.12229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/04/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND The long-term goals of asthma treatment are to achieve well control of symptoms and to minimize the future risk of asthma exacerbation. Identifying biomarkers for uncontrolled asthma is important for improving the asthma outcome. This study aimed to investigate the association of the levels of eosinophil-derived neurotoxin (EDN) with asthma control status in specific asthma phenotype, aspirin-exacerbated respiratory disease (AERD), and aspirin-tolerant asthma (ATA). METHODS A total of 136 adult asthmatics, including 47 asthmatics with AERD and 89 asthmatics with ATA, were enrolled. Plasma, sputum, and urine were collected at enrollment and the levels of EDN were measured by the K-EDN ELISA kit. Urinary leukotriene E4 (LTE4 ) level was measured using liquid chromatography-mass spectrometry (LC-MS)/MS methods. Asthma control status was evaluated according to the GINA guideline, asthma control test and asthma control questionnaire scores. RESULTS In the total study subjects, sputum levels of EDN as well as of urine and plasma EDN showed significantly higher levels in patients with uncontrolled asthma than in those with well-controlled or partly-controlled asthma (ANOVA, p < 0.001); in patients with AERD, the sputum EDN levels showed significant correlations with ACT, ACQ, and AQLQ scores (p = 0.010, r = -0.536, p = 0.001, r = 0.665, and p < 0.001, r = -0.691, respectively), while no differences were noted in patients with ATA. Sputum EDN level was the only significant factor for ACT, ACQ, and AQLQ scores in patients with AERD (p = 0.001, p < 0.001, and p < 0.001, respectively) in the multivariate analysis adjusting for age, sex, peripheral eosinophil count, and urine LTE4 . The ROC curve analysis demonstrated that sputum EDN can predict uncontrolled asthma with 80% sensitivity and 88.2% specificity for ACT ≤ 19 (area under the ROC curve [AUC] = 0.824, p = 0.019); 71.4% sensitivity and 86.7% specificity for ACQ ≥ 1.5 (AUC = 0.752, p = 0.049) only in AERD patients. CONCLUSION The level of sputum EDN may be a potential biomarker for identifying the asthma control status in patients with AERD.
Collapse
Affiliation(s)
- Ga‐Young Ban
- Department of Pulmonary, Allergy, and Critical Care MedicineKangdong Sacred Heart HospitalHallym University College of MedicineSeoulKorea
- Department of Allergy and Clinical Immunology, Allergy and Clinical Immunology Research CenterHallym University College of MedicineSeoulKorea
| | - Eun‐Mi Yang
- Department of Allergy and Clinical ImmunologyAjou University School of MedicineSuwonKorea
| | - Young‐Min Ye
- Department of Allergy and Clinical ImmunologyAjou University School of MedicineSuwonKorea
| | - Hae‐Sim Park
- Department of Allergy and Clinical ImmunologyAjou University School of MedicineSuwonKorea
| |
Collapse
|
5
|
Singh S, Dutta J, Ray A, Karmakar A, Mabalirajan U. Airway Epithelium: A Neglected but Crucial Cell Type in Asthma Pathobiology. Diagnostics (Basel) 2023; 13:diagnostics13040808. [PMID: 36832296 PMCID: PMC9955099 DOI: 10.3390/diagnostics13040808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
The features of allergic asthma are believed to be mediated mostly through the Th2 immune response. In this Th2-dominant concept, the airway epithelium is presented as the helpless victim of Th2 cytokines. However, this Th2-dominant concept is inadequate to fill some of the vital knowledge gaps in asthma pathogenesis, like the poor correlation between airway inflammation and airway remodeling and severe asthma endotypes, including Th2-low asthma, therapy resistance, etc. Since the discovery of type 2 innate lymphoid cells in 2010, asthma researchers started believing in that the airway epithelium played a crucial role, as alarmins, which are the inducers of ILC2, are almost exclusively secreted by the airway epithelium. This underscores the eminence of airway epithelium in asthma pathogenesis. However, the airway epithelium has a bipartite functionality in sustaining healthy lung homeostasis and asthmatic lungs. On the one hand, the airway epithelium maintains lung homeostasis against environmental irritants/pollutants with the aid of its various armamentaria, including its chemosensory apparatus and detoxification system. Alternatively, it induces an ILC2-mediated type 2 immune response through alarmins to amplify the inflammatory response. However, the available evidence indicates that restoring epithelial health may attenuate asthmatic features. Thus, we conjecture that an epithelium-driven concept in asthma pathogenesis could fill most of the gaps in current asthma knowledge, and the incorporation of epithelial-protective agents to enhance the robustness of the epithelial barrier and the combative capacity of the airway epithelium against exogenous irritants/allergens may mitigate asthma incidence and severity, resulting in better asthma control.
Collapse
Affiliation(s)
- Sabita Singh
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Joytri Dutta
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Archita Ray
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Atmaja Karmakar
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
- Correspondence:
| |
Collapse
|
6
|
Zeng Q, Xi L, Zeng Y, Liu W, Zhou L. Osteopontin mediated eosinophils activation by group II innate lymphoid cells. World Allergy Organ J 2022; 15:100659. [PMID: 36017066 PMCID: PMC9389302 DOI: 10.1016/j.waojou.2022.100659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/14/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Background Osteopontin (OPN) can regulate Th2 inflammation in allergic rhinitis (AR). A recent study suggested that group II innate lymphoid cells (ILC2s) were very important for airway inflammation. But the role of OPN in ILC2s regulation is not explored. Methods Purified ILC2s were stimulated by human recombinant OPN. The expression of GATA3 and RORα was assayed using real-time polymerase chain reaction (PCR) and enzyme linked immunosorbent assay. MiR-181a was transfected into eosinophils to test the OPN production. The protein concentrations of interleukin (IL)-5 and IL-13 were examined using ELISA. Purified eosinophils and ILC2s were cocultured and stimulated by OPN and the activation of eosinophils was detected by ELISA. Results After OPN stimulation, the ILC2s proliferation, the mRNA levels of GATA3 and RORα, the protein of GATA3, RORα, IL-5 and IL-13 expression were up-regulated significantly in a dose dependent manner. Eosinophils cultured alone transfected with miR-181a mimics produced less OPN protein compared with eosinophils transfected with miR-control, whereas OPN production was significantly promoted when miR-181a inhibitor was transfected. In the eosinophils and ILC2s coculture system, eosinophil cationic protein (ECP) production induced by OPN or IL-33 were significantly higher than ECP production in eosinophils culture system. OPN presented similar potency with IL-33 in the activation of eosinophils. When anti-IL-5 antibody was added, the production of ECP was significantly inhibited. Conclusions Our data for the first time provided new evidence that OPN played important roles in innate immunity of AR by regulation of ILC2s and the interaction between ILC2s and eosinophils.
Collapse
Affiliation(s)
| | | | | | - Wenlong Liu
- Corresponding author. Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9, Jinsui Road, Guangzhou, 510623, China
| | - Lifeng Zhou
- Corresponding author. Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9, Jinsui Road, Guangzhou, 510623, China
| |
Collapse
|
7
|
Zhu D, Wang Z, Zhang G, Ma C, Qiu X, Wang Y, Liu M, Guo X, Chen H, Deng Q, Kang X. Periostin promotes nucleus pulposus cells apoptosis by activating the Wnt/β-catenin signaling pathway. FASEB J 2022; 36:e22369. [PMID: 35747912 DOI: 10.1096/fj.202200123r] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/20/2022] [Accepted: 05/10/2022] [Indexed: 12/11/2022]
Abstract
Intervertebral disc (IVD) degeneration (IVDD) is closely linked to degenerative spinal disease, resulting in disability, poor quality of life, and financial burden. Apoptosis of nucleus pulposus (NP) cells (NPCs) is a key pathological basis of IVDD. Periostin (POSTN), an extracellular matrix protein, is expressed in many tissues, whereas its abnormal expression is associated with IVDD. The conventional Wnt/β-catenin pathway is also involved in IVDD and contributes to NPCs apoptosis. However, research on the mechanisms of POSTN in IVDD is lacking. This study investigated the relationship between POSTN and β-catenin expression in degenerated IVDs. We detected the expression of POSTN, β-catenin, and cleaved-caspase-3 (C-caspase3) in degenerated and non-degenerated IVD tissues of different grades (n = 8) using RT-qPCR, immunohistochemical staining, and western blotting analysis. Next, we explored the effects of recombinant periostin (rPOSTN) and isoquercitrin (Iso), an inhibitor of the Wnt/β-catenin pathway, on NPCs apoptosis. Finally, we inhibited the expression of POSTN in degenerated NPCs in vivo and investigated the anti-apoptotic effect. The expression of β-catenin, POSTN, and C-caspase3 in severe degenerative IVDs was significantly higher than that in mild degenerative IVDs. These findings were confirmed in rat and cell-based degenerative models. When treated with rPOSTN, the Wnt/β-catenin pathway activity and cell apoptosis were time- and dose-dependent. However, rPOSTN-induced NPCs apoptosis decreased after iso-induced inhibition of the Wnt/β-catenin pathway. POSTN inhibition reduced apoptosis but was restored by rPOSTN re-addition. Lastly, POSTN inhibition ameliorated puncture-induced IVDD in vivo. Overall, our study demonstrated that POSTN promotes NPCs apoptosis and aggravates degeneration by activating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Daxue Zhu
- Lanzhou University Second Hospital, Lanzhou, PR China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Zhaoheng Wang
- Lanzhou University Second Hospital, Lanzhou, PR China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Guangzhi Zhang
- Lanzhou University Second Hospital, Lanzhou, PR China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Congwen Ma
- Lanzhou University Second Hospital, Lanzhou, PR China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Xiaoming Qiu
- Lanzhou University Second Hospital, Lanzhou, PR China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Yidian Wang
- Lanzhou University Second Hospital, Lanzhou, PR China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Mingqiang Liu
- Lanzhou University Second Hospital, Lanzhou, PR China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Xudong Guo
- Lanzhou University Second Hospital, Lanzhou, PR China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Haiwei Chen
- Lanzhou University Second Hospital, Lanzhou, PR China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Qiang Deng
- Gansu Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xuewen Kang
- Lanzhou University Second Hospital, Lanzhou, PR China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| |
Collapse
|
8
|
Shaghayegh G, Cooksley C, Ramezanpour M, Wormald PJ, Psaltis AJ, Vreugde S. Chronic Rhinosinusitis, S. aureus Biofilm and Secreted Products, Inflammatory Responses, and Disease Severity. Biomedicines 2022; 10:1362. [PMID: 35740385 PMCID: PMC9220248 DOI: 10.3390/biomedicines10061362] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a persistent inflammation of the nasal cavity and paranasal sinuses associated with tissue remodelling, dysfunction of the sinuses' natural defence mechanisms, and induction of different inflammatory clusters. The etiopathogenesis of CRS remains elusive, and both environmental factors, such as bacterial biofilms and the host's general condition, are thought to play a role. Bacterial biofilms have significant clinical relevance due to their potential to cause resistance to antimicrobial therapy and host defenses. Despite substantial medical advances, some CRS patients suffer from recalcitrant disease that is unresponsive to medical and surgical treatments. Those patients often have nasal polyps with tissue eosinophilia, S. aureus-dominant mucosal biofilm, comorbid asthma, and a severely compromised quality of life. This review aims to summarise the contemporary knowledge of inflammatory cells/pathways in CRS, the role of bacterial biofilm, and their impact on the severity of the disease. Here, an emphasis is placed on S. aureus biofilm and its secreted products. A better understanding of these factors might offer important diagnostic and therapeutic perceptions for recalcitrant disease.
Collapse
Affiliation(s)
- Gohar Shaghayegh
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Clare Cooksley
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Mahnaz Ramezanpour
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Peter-John Wormald
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Alkis James Psaltis
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Sarah Vreugde
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| |
Collapse
|
9
|
Jahan P, Tahseen R, Parvez M, Kumar GS. A correlational study on neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in bronchial asthma. ADVANCES IN HUMAN BIOLOGY 2022. [DOI: 10.4103/aihb.aihb_44_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
10
|
Altered diversity and composition of gut microbiota in patients with allergic rhinitis. Microb Pathog 2021; 161:105272. [PMID: 34740809 DOI: 10.1016/j.micpath.2021.105272] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recently, multiple studies have suggested an association between gut dysbiosis and allergic rhinitis (AR) development. However, the role of gut microbiota in AR development remains obscure. METHODS The goal of this study was to compare the gut microbiota composition and short-chain fatty acid (SCFAs) differences associated with AR (N = 18) and HCs (healthy controls, N = 17). Gut microbiota 16SrRNA gene sequences were analyzed based on next-generation sequencing. SCFAs in stool samples were analyzed by gas chromatography-mass spectrometry (GC-MS). RESULTS Compared with HCs, the gut microbiota composition of AR was significantly different in diversity and richness. At the phylum level, the abundance of Firmicutes in the AR group were significantly lower than those in the HCs group. At the genus level, the abundance of Blautia, Eubacterium_hallii_group, Romboutsia, Collinsella, Dorea, Subdoligranulum and Fusicatenibacter in the AR group were significantly lower than that in the HCs group. The concentrations of SCFAs were significantly lower in the AR group compared with the HCs group. Correlation analysis showed that the Eubacterium-hallii-group and Blautia correlated positively with SCFAs. CONCLUSION Our results demonstrate compositional and functional alterations of the gut microbiome in AR.
Collapse
|
11
|
Li A, Chan HP, Gan PX, Liew MF, Wong WF, Lim HF. Eosinophilic endotype of chronic obstructive pulmonary disease: similarities and differences from asthma. Korean J Intern Med 2021; 36:1305-1319. [PMID: 34634855 PMCID: PMC8588979 DOI: 10.3904/kjim.2021.180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/01/2021] [Indexed: 11/27/2022] Open
Abstract
Approximately 25% to 40% of patients with chronic obstructive pulmonary disease (COPD) have the eosinophilic endotype. It is important to identify this group accurately because they are more symptomatic and are at increased risk for exacerbations and accelerated decline in forced expiratory volume in the 1st second. Importantly, this endotype is a marker of treat ment responsiveness to inhaled corticosteroid (ICS), resulting in decreased mortality risk. In this review, we highlight differences in the biology of eosinophils in COPD compared to asthma and the different definitions of the COPD eosinophilic endotype based on sputum and blood eosinophil count (BEC) with the corresponding limitations. Although BEC is useful as a biomarker for eosinophilic COPD endotype, optimal BEC cut-offs can be combined with clinical characteristics to improve its sensitivity and specificity. A targeted approach comprising airway eosinophilia and appropriate clinical and physiological features may improve identification of subgroups of patients who would benefit from biologic therapy or early use of ICS for disease modification.
Collapse
Affiliation(s)
- Andrew Li
- Division of Respiratory and Critical Care Medicine, Department of Medicine, National University Hospital, National University Health System,
Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore,
Singapore
| | - Hiang Ping Chan
- Division of Respiratory and Critical Care Medicine, Department of Medicine, National University Hospital, National University Health System,
Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore,
Singapore
| | - Phyllis X.L. Gan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System,
Singapore
- Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore,
Singapore
| | - Mei Fong Liew
- Division of Respiratory and Critical Care Medicine, Department of Medicine, National University Hospital, National University Health System,
Singapore
- FAST and Chronic Programmes, Alexandra Hospital, National University Health System,
Singapore
| | - W.S. Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System,
Singapore
- Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore,
Singapore
| | - Hui-Fang Lim
- Division of Respiratory and Critical Care Medicine, Department of Medicine, National University Hospital, National University Health System,
Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore,
Singapore
| |
Collapse
|
12
|
Luu Quoc Q, Cao Thi Bich T, Kim SH, Park HS, Shin YS. Administration of vitamin E attenuates airway inflammation through restoration of Nrf2 in a mouse model of asthma. J Cell Mol Med 2021; 25:6721-6732. [PMID: 34089243 PMCID: PMC8278095 DOI: 10.1111/jcmm.16675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence reveals that ROS is one of the key mediators that contribute to the development of asthma. Studies on antioxidants have shown to have beneficial effects on asthma management. However, we still do not know the precise mechanism, and the effects depend on age. This study was conducted to assess the levels of ROS and the effect of antioxidants in younger and older mice using an eosinophilic asthma model. We analyzed airway hyperresponsiveness (AHR), cytokines in bronchoalveolar lavage fluid (BALF), inflammatory cell counts, and the expression levels of NFκB, Nrf2, EPx, and EDN in the lung tissue, as well as the level of ROS in the lung tissue and BALF. The degree of eosinophilia and the levels of IL-5, ROS, and NFκB were significantly increased, whereas the endogenous levels of vitamin E and Nrf2 were decreased in the lung and BALF in the older mice compared to younger mice. The administration of vitamin E attenuated AHR, airway inflammation, and the level of IL-13 and ROS and enhanced the Nrf2 level in the older mice compared to the younger mice. Taken together, vitamin E treatment may have the therapeutic potential through restoration of the Nrf2 level, especially in elderly asthma.
Collapse
Affiliation(s)
- Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Tra Cao Thi Bich
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Seo-Hee Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
13
|
Lahjaouj M, Laachoubi M, Bouhmadi KEL, Oukessou Y, Rouadi S, Abada R, Roubal M, Mahtar M. Impact of asthma on endoscopic sinus surgery outcomes for chronic rhinosinusitis with polyposis - A cohort study. Ann Med Surg (Lond) 2021; 66:102386. [PMID: 34123375 PMCID: PMC8175276 DOI: 10.1016/j.amsu.2021.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/01/2021] [Accepted: 05/09/2021] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Chronic rhinosinusitis with polyposis (CRSwNP) is a multifactorial naso-sinusal inflammatory disease that affects 2-4% of the adult population. It highly affects the patient quality of life (QoL) in many levels making it a public health issue. The management of CRSwNP is based on a detailed clinical history, a complete endoscopic examination and a precise computed tomographic (CT) analysis. The aim of this study is to evaluate the prevalence and severity of the various CRS clinical manifestations as well as to highlight the potential relationship between symptom scores, asthma and ESS outcomes. PATIENTS AND METHODS A retrospective cohort study was performed in the 20 August hospital, between January 2017 and December 2018, on patients diagnosed with CRS according to guidelines recommendations, and were beforehand refractory to initial medical therapy and elected to FESS. The patients were divided into two groups, the first group (G1) of patients with asthma and the second (G2) without asthma in order to expose an eventual significant difference in the improvement of symptoms after surgery. The Sino Nasal Outcome Test-22 (SNOT-22) was used to evaluate QOL. RESULTS A total of 100 patients participated in the study with an average age of 44.53 years. The sex ratio was 1.04 (51% men). Asthma was present in 48% of patients while 20% of patients were intolerant to aspirin with a significant difference between the asthmatic and non-asthmatic group (p < 0.05). It appears that asthma was not objectively correlated with a higher Lund Mackay radiological score (p > 0.05). A higher significant improvement was observed between preoperative and postoperative SNOT-22 scores in group with asthma [42.7 ± 16.3 versus 11.8 ± 9.1] and in group without asthma [38.3 ± 15.1 versus 10.5 ± 14.2]. CONCLUSION Asthma in CRS is an additional symptom in these patients, mainly reflected in the subset of nasal symptoms in SNOT-22. However, it did not significantly affect the quality of life of the CRSwNP population.
Collapse
Affiliation(s)
- Meryem Lahjaouj
- ENT Department, Face and Neck Surgery, Hospital August, 20’1953, University Hospital Center IBN ROCHD, Casablanca, Morocco
| | - Mohammed Laachoubi
- ENT Department, Face and Neck Surgery, Hospital August, 20’1953, University Hospital Center IBN ROCHD, Casablanca, Morocco
| | - Khadija EL. Bouhmadi
- ENT Department, Face and Neck Surgery, Hospital August, 20’1953, University Hospital Center IBN ROCHD, Casablanca, Morocco
| | - Youssef Oukessou
- ENT Department, Face and Neck Surgery, Hospital August, 20’1953, University Hospital Center IBN ROCHD, Casablanca, Morocco
- Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, B.P 5696, Casablanca, Morocco
| | - Sami Rouadi
- ENT Department, Face and Neck Surgery, Hospital August, 20’1953, University Hospital Center IBN ROCHD, Casablanca, Morocco
- Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, B.P 5696, Casablanca, Morocco
| | - Reda Abada
- ENT Department, Face and Neck Surgery, Hospital August, 20’1953, University Hospital Center IBN ROCHD, Casablanca, Morocco
- Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, B.P 5696, Casablanca, Morocco
| | - Mohammed Roubal
- ENT Department, Face and Neck Surgery, Hospital August, 20’1953, University Hospital Center IBN ROCHD, Casablanca, Morocco
- Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, B.P 5696, Casablanca, Morocco
| | - Mohammed Mahtar
- ENT Department, Face and Neck Surgery, Hospital August, 20’1953, University Hospital Center IBN ROCHD, Casablanca, Morocco
- Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, B.P 5696, Casablanca, Morocco
| |
Collapse
|
14
|
Infection-Associated Mechanisms of Neuro-Inflammation and Neuro-Immune Crosstalk in Chronic Respiratory Diseases. Int J Mol Sci 2021; 22:ijms22115699. [PMID: 34071807 PMCID: PMC8197882 DOI: 10.3390/ijms22115699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive airway diseases are characterized by airflow obstruction and airflow limitation as well as chronic airway inflammation. Especially bronchial asthma and chronic obstructive pulmonary disease (COPD) cause considerable morbidity and mortality worldwide, can be difficult to treat, and ultimately lack cures. While there are substantial knowledge gaps with respect to disease pathophysiology, our awareness of the role of neurological and neuro-immunological processes in the development of symptoms, the progression, and the outcome of these chronic obstructive respiratory diseases, is growing. Likewise, the role of pathogenic and colonizing microorganisms of the respiratory tract in the development and manifestation of asthma and COPD is increasingly appreciated. However, their role remains poorly understood with respect to the underlying mechanisms. Common bacteria and viruses causing respiratory infections and exacerbations of chronic obstructive respiratory diseases have also been implicated to affect the local neuro-immune crosstalk. In this review, we provide an overview of previously described neuro-immune interactions in asthma, COPD, and respiratory infections that support the hypothesis of a neuro-immunological component in the interplay between chronic obstructive respiratory diseases, respiratory infections, and respiratory microbial colonization.
Collapse
|
15
|
Wang J, Yin J, Peng H, Liu A. MicroRNA-29 mediates anti-inflammatory effects and alleviation of allergic responses and symptoms in mice with allergic rhinitis. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2021; 17:24. [PMID: 33676551 PMCID: PMC7936503 DOI: 10.1186/s13223-021-00527-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/11/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND To investigate the role of microRNA-29 (miR-29) in mice with allergic rhinitis (AR) and its underlying mechanism. METHODS AR model was established in BALB/c mice by intraperitoneal sensitization and intranasal challenge with ovalbumin (OVA). miRNA expression was examined in the nasal mucosa tissues of mice and patients with AR, and miRNA-29 was found to be downregulated. To unveil the role of miRNA-29 in AR, it was overexpressed in the nasal mucosa of AR mice by intranasal administration of miRNA-29 agomir. The symptoms of nasal rubbing and sneezing were recorded and evaluated. miR-29 expression, OVA-specific immunoglobulin E (IgE) concentration, pro-inflammatory cytokines levels, eosinophils number, and cleaved caspase-3 and CD276 expression were examined in nasal mucosa tissues and nasal lavage fluid (NALF) by qRT-PCR, ELISA, hematoxylin and eosin staining, western blotting, or immunohistochemistry, respectively. TUNEL assay was used to analyze nasal mucosa cells apoptosis. RESULTS Decreased expression of miR-29 was observed in AR, the symptoms of which were alleviated by overexpressing miR-29. In addition, overexpression of miR-29 markedly reduced the concentration of OVA-specific IgE, the levels of IL-4, IL-6, IL-10, and IFN-γ, the pathological alterations and eosinophils infiltration in the nasal mucosa. Furthermore, restoration of miR-29 expression reduced nasal mucosa cell apoptosis. Moreover, overexpression of miR-29 significantly attenuated CD276 mRNA and protein levels in nasal mucosa cells. CONCLUSION MiR-29 mediated antiallergic effects in OVA-induced AR mice by decreasing inflammatory response, probably through targeting CD276. MiRNA-29 may serve as a potential novel therapeutic target for the treatment of AR.
Collapse
Affiliation(s)
- Jia Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Shijitan Hospital, Capital Medical University, No. 10 Yangfangdian Railway Hospital Road, Haidian District, Beijing, 100038, China
| | - Jinshu Yin
- Department of Otolaryngology Head and Neck Surgery, Beijing Shijitan Hospital, Capital Medical University, No. 10 Yangfangdian Railway Hospital Road, Haidian District, Beijing, 100038, China.
| | - Hong Peng
- Department of Otolaryngology Head and Neck Surgery, Beijing Shijitan Hospital, Capital Medical University, No. 10 Yangfangdian Railway Hospital Road, Haidian District, Beijing, 100038, China
| | - Aizhu Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Shijitan Hospital, Capital Medical University, No. 10 Yangfangdian Railway Hospital Road, Haidian District, Beijing, 100038, China
| |
Collapse
|
16
|
Shaw OM, Hurst RD, Cooney J, Sawyer GM, Dinnan H, Martell S. Boysenberry and apple juice concentrate reduced acute lung inflammation and increased M2 macrophage-associated cytokines in an acute mouse model of allergic airways disease. Food Sci Nutr 2021; 9:1491-1503. [PMID: 33747463 PMCID: PMC7958577 DOI: 10.1002/fsn3.2119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
Bioactive compounds including anthocyanins and other polyphenols are associated with reduced lung inflammation and improved lung function in asthma and other lung diseases. This study investigated the effects of a Boysenberry and apple juice concentrate, high in cyanidin glycosides, ellagitannins, and chlorogenic acid, on a mouse model of allergic airways inflammation. Male C57BL/6J mice were orally gavaged with 2.5 mg/kg of total anthocyanins (TAC) from BerriQi® Boysenberry and apple juice concentrate (0.2 mg/kg human equivalent dose) or water control 1 hr before an acute intranasal ovalbumin (OVA) challenge and were gavaged again 2 days after the intranasal challenge. Consumption of BerriQi® Boysenberry and apple juice concentrate significantly decreased OVA-induced infiltrating eosinophils, neutrophils, and T cells in the lung, and mucous production. Quantification of gene expression for arginase (Arg1), chitinase 3-like 3 (Ym-1), found in inflammatory zone (Fizz1), which have been associated with an anti-inflammatory macrophage phenotype (M2), found significantly increased Arg1 expression in the lung in the Boysenberry and apple juice concentrate treatment group. There was also increased production of M2-associated cytokines C-X-C motif chemokine ligand (CXCL) 10 and C-C motif chemokine ligand (CCL) 4. These results suggest that consumption of BerriQi® Boysenberry and apple juice concentrate promoted a shift toward an anti-inflammatory environment within the lung leading to reduced immune cell infiltration and tissue damage.
Collapse
Affiliation(s)
- Odette M. Shaw
- Nutrition & Health GroupFood Innovation PortfolioThe New Zealand Institute for Plant and Food Research LimitedPalmerston NorthNew Zealand
| | - Roger D. Hurst
- Food Innovation PortfolioThe New Zealand Institute for Plant and Food Research LimitedPalmerston NorthNew Zealand
| | - Janine Cooney
- Biological Chemistry & Bioactives GroupFood Innovation PortfolioThe New Zealand Institute for Plant and Food Research LimitedHamiltonNew Zealand
| | - Gregory M. Sawyer
- Nutrition & Health GroupFood Innovation PortfolioThe New Zealand Institute for Plant and Food Research LimitedPalmerston NorthNew Zealand
| | - Hannah Dinnan
- Nutrition & Health GroupFood Innovation PortfolioThe New Zealand Institute for Plant and Food Research LimitedPalmerston NorthNew Zealand
| | - Sheridan Martell
- Nutrition & Health GroupFood Innovation PortfolioThe New Zealand Institute for Plant and Food Research LimitedPalmerston NorthNew Zealand
| |
Collapse
|
17
|
Thapaliya M, Chompunud Na Ayudhya C, Amponnawarat A, Roy S, Ali H. Mast Cell-Specific MRGPRX2: a Key Modulator of Neuro-Immune Interaction in Allergic Diseases. Curr Allergy Asthma Rep 2021; 21:3. [PMID: 33398613 DOI: 10.1007/s11882-020-00979-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Atopic dermatitis (AD) and allergic asthma are complex disorders with significant public health burden. This review provides an overview of the recent developments on Mas-related G protein-coupled receptor-X2 (MRGPRX2; mouse counterpart MrgprB2) as a potential candidate to target neuro-immune interaction in AD and allergic asthma. RECENT FINDINGS Domestic allergens directly activate sensory neurons to release substance P (SP), which induces mast cell degranulation via MrgprB2 and drives type 2 skin inflammation in AD. MRGPRX2 expression is upregulated in human lung mast cells and serum of asthmatic patients. Both SP and hemokinin-1 (HK-1 generated from macrophages, bronchial cells, and mast cells) cause degranulation of human mast cells via MRGPRX2. MrgprB2 contributes to mast cell-nerve interaction in the pathogenesis of AD. Furthermore, asthma severity is associated with increased MRGPRX2 expression in mast cells. Thus, MRGPRX2 could serve as a novel target for modulating AD and asthma.
Collapse
Affiliation(s)
- Monica Thapaliya
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Chalatip Chompunud Na Ayudhya
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Aetas Amponnawarat
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Saptarshi Roy
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Hydar Ali
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
18
|
Cervantes-García D, Jiménez M, Rivas-Santiago CE, Gallegos-Alcalá P, Hernández-Mercado A, Santoyo-Payán LS, Loera-Arias MDJ, Saucedo-Cardenas O, Montes de Oca-Luna R, Salinas E. Lactococcus lactis NZ9000 Prevents Asthmatic Airway Inflammation and Remodelling in Rats through the Improvement of Intestinal Barrier Function and Systemic TGF-β Production. Int Arch Allergy Immunol 2020; 182:277-291. [PMID: 33147596 DOI: 10.1159/000511146] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/25/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The use of probiotics has been broadly popularized due to positive effects in the attenuation of aberrant immune responses such as asthma. Allergic asthma is a chronic respiratory disease characterized by airway inflammation and remodelling. OBJECTIVE This study was aimed to evaluate the effect of oral administration of Lactococcus lactis NZ9000 on asthmatic airway inflammation and lung tissue remodelling in rats and its relation to the maintenance of an adequate intestinal barrier. METHODS Wistar rats were ovalbumin (OVA) sensitized and challenged and orally treated with L. lactis. Lung inflammatory infiltrates and cytokines were measured, and remodelling was evaluated. Serum OVA-specific immunoglobulin (Ig) E levels were assessed. We also evaluated changes on intestinal environment and on systemic immune response. RESULTS L. lactis diminished the infiltration of proinflammatory leucocytes, mainly eosinophils, in the bronchoalveolar compartment, decreased lung IL-4 and IL-5 expression, and reduced the level of serum allergen-specific IgE. Furthermore, L. lactis prevented eosinophil influx, collagen deposition, and goblet cell hyperplasia in lung tissue. In the intestine, L. lactis-treated asthmatic rats increased Peyer's patch and goblet cell quantity and mRNA expression of IgA, MUC-2, and claudin. Additionally, intestinal morphological alterations were normalized by L. lactis administration. Splenocyte proliferative response to OVA was abolished, and serum levels of transforming growth factor (TGF)-β were increased by L. lactis treatment. CONCLUSIONS These findings suggest that L. lactis is a potential candidate for asthma prevention, and the effect is mediated by the improvement of intestinal barrier function and systemic TGF-β production.
Collapse
Affiliation(s)
- Daniel Cervantes-García
- National Council of Science and Technology, Mexico City, Mexico.,Department of Microbiology, Center of Basic Sciences, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - Mariela Jiménez
- Department of Microbiology, Center of Basic Sciences, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - César E Rivas-Santiago
- National Council of Science and Technology, Mexico City, Mexico.,Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas, Mexico
| | - Pamela Gallegos-Alcalá
- Department of Microbiology, Center of Basic Sciences, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - Alicia Hernández-Mercado
- Department of Microbiology, Center of Basic Sciences, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - Leslie S Santoyo-Payán
- Department of Microbiology, Center of Basic Sciences, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | | | - Odila Saucedo-Cardenas
- Department of Histology, Faculty of Medicine, Autonomous University of Nuevo Leon, Nuevo Leon, Mexico
| | | | - Eva Salinas
- Department of Microbiology, Center of Basic Sciences, Autonomous University of Aguascalientes, Aguascalientes, Mexico,
| |
Collapse
|
19
|
Liu J, Hu Y, Li L, Wang C, Wang J, Li Y, Chen D, Ding X, Shen C, Xu F. Biomass-Derived Multilayer-Structured Microparticles for Accelerated Hemostasis and Bone Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002243. [PMID: 33240772 PMCID: PMC7675182 DOI: 10.1002/advs.202002243] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/23/2020] [Indexed: 05/28/2023]
Abstract
It is very desirable to develop advanced sustainable biomedical materials with superior biosafety and bioactivity for clinical applications. Herein, biomass-derived multilayer-structured absorbable microparticles (MQ x T y ) composed of starches and plant polyphenols are readily constructed for the safe and effective treatment of bone defects with intractable bleeding by coating multiple layers of quaternized starch (Q+) and tannic acid onto microporous starch microparticles via facile layer-by-layer assembly. MQ x T y microparticles exhibit efficient degradability, low cytotoxicity, and good blood compatibility. Among various MQ x T y microparticles with distinct Q+/T- double layers, MQ2T2 with outmost polyphenol layer possess the unique properties of platelet adhesion/activation and red blood cell aggregation, resulting in the best hemostatic performance. In a mouse cancellous-bone-defect model, MQ2T2 exhibits the favorable hemostatic effect, low inflammation/immune responses, high biodegradability, and promoted bone repair. A proof-of-concept study of beagles further confirms the good performance of MQ2T2 in controlling intractable bleeding of bone defects. The present work demonstrates that such biomass-based multilayer-structured microparticles are very promising biomedical materials for clinical use.
Collapse
Affiliation(s)
- Jia‐Ying Liu
- State Key Laboratory of Chemical Resource EngineeringKey Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education)Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029China
| | - Yang Hu
- State Key Laboratory of Chemical Resource EngineeringKey Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education)Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029China
| | - Long Li
- State Key Laboratory of Chemical Resource EngineeringKey Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education)Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029China
| | - Chao Wang
- State Key Laboratory of Chemical Resource EngineeringKey Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education)Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029China
| | - Jia Wang
- State Key Laboratory of Chemical Resource EngineeringKey Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education)Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029China
| | - Yang Li
- State Key Laboratory of Chemical Resource EngineeringKey Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education)Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029China
| | - Dafu Chen
- Laboratory of Bone Tissue EngineeringBeijing Laboratory of Biomedical MaterialsBeijing Research Institute of Traumatology and OrthopaedicsBeijing Jishuitan HospitalBeijing100035China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource EngineeringKey Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education)Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029China
| | - Chuanan Shen
- Department of Burn & Plastic SurgeryThe First Affiliated Hospital of General Hospital of PLABeijing100048China
| | - Fu‐Jian Xu
- State Key Laboratory of Chemical Resource EngineeringKey Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education)Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
20
|
Chen J, Chan WM, Leung HY, Leong PK, Yan CTM, Ko KM. Anti-Inflammatory Effects of a Cordyceps sinensis Mycelium Culture Extract (Cs-4) on Rodent Models of Allergic Rhinitis and Asthma. Molecules 2020; 25:molecules25184051. [PMID: 32899766 PMCID: PMC7570676 DOI: 10.3390/molecules25184051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
Allergic rhinitis and asthma are common chronic allergic diseases of the respiratory tract, which are accompanied by immunoglobulin E (IgE)-mediated inflammation and the involvement of type 2 T helper cells, mast cells, and eosinophils. Cordyceps sinensis (Berk.) Sacc is a fungal parasite on the larva of Lepidoptera. It has been considered to be a health-promoting food and, also, one of the best-known herbal remedies for the treatment of airway diseases, such as asthma and lung inflammation. In the present study, we demonstrated the antiallergic rhinitis effect of Cs-4, a water extract prepared from the mycelium culture of Cordyceps sinensis (Berk) Sacc, on ovalbumin (OVA)-induced allergic rhinitis in mice and the anti-asthmatic effect of Cs-4 in a rat model of asthma. Treatment with Cs-4 suppressed the nasal symptoms induced in OVA-sensitized and challenged mice. The inhibition was associated with a reduction in IgE/OVA-IgE and interleukin (IL)-4/IL-13 levels in the nasal fluid. Cs-4 treatment also decreased airway responsiveness and ameliorated the scratching behavior in capsaicin-challenged rats. It also reduced plasma IgE levels, as well as IgE and eosinophil peroxidase levels, in the bronchoalveolar fluid. Cs-4 treatment completely suppressed the increases in IL-4, IL-5, and IL-13 levels in rat lung tissue. In conclusion, our results suggest that Cs-4 has the potential to alleviate immune hypersensitivity reactions in allergic rhinitis and asthma.
Collapse
Affiliation(s)
- Jihang Chen
- School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen 518172, China;
| | - Wing Man Chan
- Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong SAR 999077, China; (W.M.C.); (H.Y.L.); (P.K.L.)
| | - Hoi Yan Leung
- Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong SAR 999077, China; (W.M.C.); (H.Y.L.); (P.K.L.)
| | - Pou Kuan Leong
- Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong SAR 999077, China; (W.M.C.); (H.Y.L.); (P.K.L.)
| | - Choly Tat Ming Yan
- Royal Medic Group Holding Limited, 313 Castle Peak Road, Hong Kong SAR 999077, China;
| | - Kam Ming Ko
- Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong SAR 999077, China; (W.M.C.); (H.Y.L.); (P.K.L.)
- Correspondence: ; Tel.: +85-223-587-298
| |
Collapse
|
21
|
Akdis CA, Arkwright PD, Brüggen MC, Busse W, Gadina M, Guttman‐Yassky E, Kabashima K, Mitamura Y, Vian L, Wu J, Palomares O. Type 2 immunity in the skin and lungs. Allergy 2020; 75:1582-1605. [PMID: 32319104 DOI: 10.1111/all.14318] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
Abstract
There has been extensive progress in understanding the cellular and molecular mechanisms of inflammation and immune regulation in allergic diseases of the skin and lungs during the last few years. Asthma and atopic dermatitis (AD) are typical diseases of type 2 immune responses. interleukin (IL)-25, IL-33, and thymic stromal lymphopoietin are essential cytokines of epithelial cells that are activated by allergens, pollutants, viruses, bacteria, and toxins that derive type 2 responses. Th2 cells and innate lymphoid cells (ILC) produce and secrete type 2 cytokines such as IL-4, IL-5, IL-9, and IL-13. IL-4 and IL-13 activate B cells to class-switch to IgE and also play a role in T-cell and eosinophil migration to allergic inflammatory tissues. IL-13 contributes to maturation, activation, nitric oxide production and differentiation of epithelia, production of mucus as well as smooth muscle contraction, and extracellular matrix generation. IL-4 and IL-13 open tight junction barrier and cause barrier leakiness in the skin and lungs. IL-5 acts on activation, recruitment, and survival of eosinophils. IL-9 contributes to general allergic phenotype by enhancing all of the aspects, such as IgE and eosinophilia. Type 2 ILC contribute to inflammation in AD and asthma by enhancing the activity of Th2 cells, eosinophils, and their cytokines. Currently, five biologics are licensed to suppress type 2 inflammation via IgE, IL-5 and its receptor, and IL-4 receptor alpha. Some patients with severe atopic disease have little evidence of type 2 hyperactivity and do not respond to biologics which target this pathway. Studies in responder and nonresponder patients demonstrate the complexity of these diseases. In addition, primary immune deficiency diseases related to T-cell maturation, regulatory T-cell development, and T-cell signaling, such as Omenn syndrome, severe combined immune deficiencies, immunodysregulation, polyendocrinopathy, enteropathy, X-linked syndrome, and DOCK8, STAT3, and CARD11 deficiencies, help in our understanding of the importance and redundancy of various type 2 immune components. The present review aims to highlight recent advances in type 2 immunity and discuss the cellular sources, targets, and roles of type 2 mechanisms in asthma and AD.
Collapse
Affiliation(s)
- Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
| | - Peter D. Arkwright
- Lydia Becker Institute of Immunology and Inflammation University of Manchester Manchester UK
| | - Marie-Charlotte Brüggen
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
- Department of Dermatology University Hospital Zurich Zurich Switzerland
- Faculty of Medicine University Zurich Zurich Switzerland
| | - William Busse
- Department of Medicine School of Medicine and Public Health University of Wisconsin Madison WI USA
| | - Massimo Gadina
- Translational Immunology Section Office of Science and Technology National Institute of Arthritis Musculoskeletal and Skin Disease NIH Bethesda MD USA
| | - Emma Guttman‐Yassky
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases Icahn School of Medicine at Mount Sinai New York NY USA
- Laboratory for Investigative Dermatology The Rockefeller University New York NY USA
| | - Kenji Kabashima
- Department of Dermatology Kyoto University Graduate School of Medicine Kyoto Japan
- Agency for Science, Technology and Research (A*STAR) Singapore Immunology Network (SIgN) and Skin Research Institute of Singapore (SRIS) Singapore Singapore
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Laura Vian
- Translational Immunology Section Office of Science and Technology National Institute of Arthritis Musculoskeletal and Skin Disease NIH Bethesda MD USA
| | - Jianni Wu
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases Icahn School of Medicine at Mount Sinai New York NY USA
- Laboratory for Investigative Dermatology The Rockefeller University New York NY USA
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University of Madrid Madrid Spain
| |
Collapse
|
22
|
Shi HY, Pan C, Ma TT, Chen YL, Yan WJ, Liu JG, Cao MD, Huang HD, Wang DY, Wang XY, Wei JF. Clinical Efficacy Evaluation of 1-Year Subcutaneous Immunotherapy for Artemisia sieversiana Pollen Allergic Rhinitis by Serum Metabolomics. Front Pharmacol 2020; 11:305. [PMID: 32256368 PMCID: PMC7093654 DOI: 10.3389/fphar.2020.00305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/28/2020] [Indexed: 12/19/2022] Open
Abstract
Subcutaneous immunotherapy is the only treatment that improves the natural progression of allergic rhinitis and maintains long-term outcomes after discontinuation of the drug. Metabolomics is increasingly applied in the study of allergic diseases, including allergic rhinitis. However, little is known about the discovery of metabolites that can evaluate clinical efficacy and possible mechanisms of Artemisia sieversiana pollen subcutaneous immunotherapy. Thirty-three patients with Artemisia sieversiana pollen allergic rhinitis significantly improved after 1-year subcutaneous immunotherapy treatment, while ten patients were ineffective. Pre- and post-treatment serum samples from these patients were analyzed by metabolomics based on the combined detection of liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry. As a result, L-Tyrosine can be a potential biomarker because of its opposite trend in effective patients and ineffective patients. And mechanism of immunotherapy may be closely related to NO and nitric oxide synthase. The discovery of potential biomarkers and metabolic pathways has contributed to the in-depth study of mechanisms of subcutaneous immunotherapy treatment of Artemisia sieversiana pollen allergic rhinitis.
Collapse
Affiliation(s)
- Hai-Yun Shi
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chen Pan
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ting-Ting Ma
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yan-Lei Chen
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wei-Jun Yan
- Duolun People’s Hospital, Inner Mongolia, China
| | | | - Meng-Da Cao
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Dong Huang
- Department of Nephrology, Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, Beijing, China
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xue-Yan Wang
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Ji-Fu Wei
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Kim HI, Kim JK, Kim JY, Han MJ, Kim DH. Fermented red ginseng and ginsenoside Rd alleviate ovalbumin-induced allergic rhinitis in mice by suppressing IgE, interleukin-4, and interleukin-5 expression. J Ginseng Res 2019; 43:635-644. [PMID: 31695569 PMCID: PMC6823749 DOI: 10.1016/j.jgr.2019.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background To increase the pharmacological effects of red ginseng (RG, the steamed root of Panax ginseng Meyer), RG products modified by heat process or fermentation have been developed. However, the antiallergic effects of RG and modified/fermented RG have not been simultaneously examined. Therefore, we examined the allergic rhinitis (AR)-inhibitory effects of water-extracted RG (wRG), 50% ethanol-extracted RG (eRG), and bifidobacteria-fermented eRG (fRG) in vivo. Methods RBL-2H3 cells were stimulated with phorbol 12-myristate-13-acetate/A23187. Mice with AR were prepared by treatment with ovalbumin. Allergic markers IgE, tumor necrosis factor-α, interleukin (IL)-4, and IL-5 were assayed in the blood, bronchoalveolar lavage fluid, nasal mucosa, and colon using enzyme-linked immunosorbent assay. Mast cells, eosinophils, and Th2 cell populations were assayed using a flow cytometer. Results RG products potently inhibited IL-4 expression in phorbol 12-myristate-13-acetate/A23187-stimulated RBL-2H3 cells. Of tested RG products, fRG most potently inhibited IL-4 expression. RG products also alleviated ovalbumin-induced AR in mice. Of these, fRG most potently reduced nasal allergy symptoms and blood IgE levels. fRG treatment also reduced IL-4 and IL-5 levels in bronchoalveolar lavage fluid, nasal mucosa, and reduced mast cells, eosinophils, and Th2 cell populations. Furthermore, treatment with fRG reduced IL-4, IL-5, and IL-13 levels in the colon and restored ovalbumin-suppressed Bacteroidetes and Actinobacteria populations and ovalbumin-induced Firmicutes population in gut microbiota. Treatment with ginsenoside Rd significantly alleviated ovalbumin-induced AR in mice. Conclusion fRG and ginsenoside Rd may alleviate AR by suppressing IgE, IL-4, IL-5, and IL-13 expression and restoring the composition of gut microbiota.
Collapse
Affiliation(s)
- Hye In Kim
- Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.,Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Jeon-Kyung Kim
- Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Young Kim
- Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Myung Joo Han
- Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Ho J, Alvarado R, Rimmer J, Sewell WA, Harvey RJ. Atopy in chronic rhinosinusitis: impact on quality of life outcomes. Int Forum Allergy Rhinol 2019; 9:501-507. [PMID: 30604578 DOI: 10.1002/alr.22272] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/08/2018] [Accepted: 11/29/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS), in particular with nasal polyps (CRSwNP), has been linked with skewed T-helper 2 and immunoglobulin E (IgE)-mediated allergic responses. The role of atopy in CRS, however, remains unclear. Correlations between immunological allergic markers and patient-reported outcomes measures (PROMs) were investigated. METHODS A cross-sectional study of adult patients with CRS undergoing endoscopic sinus surgery was conducted. Immunological allergic markers included automated immunoassay testing for serum-specific IgE to common allergens (house dust mite, grass, mold, animal epithelia) and total IgE. PROMs were assessed using the 22-item Sino-Nasal Outcome Test (SNOT-22). Patients were defined as atopic based on either a positive specific IgE or elevated total IgE (>160 kU/L). RESULTS A total of 446 patients (45.7% female, age 49.05 ± 14.96 years) were recruited, of which 42.8% had asthma, 51.6% had CRSwNP, and 63.0% had eosinophilic CRS. Positive allergen sensitization was detected in 52.9% patients. Total IgE levels were elevated in 28.0% with mean IgE level of 161 ± 269 kU/L. Atopy was associated with younger age at the time of surgery, CRSwNP, asthma, and eosinophilic CRS (eCRS). Atopy was also associated with increased severity in nasal symptom score (13.1 ± 6.4 vs 11.9 ± 6.0, p = 0.04), as well as worse scores in the loss of smell/taste (χ2 (1) = 5.97, p = 0.02) and need to blow nose (χ2 (1) = 4.26, p = 0.04) questions in the CRS population. In the CRSwNP population, there was no significant association between atopy and PROMs. CONCLUSION Comorbid atopy in CRS is associated with additional symptom burden, reflected mainly within the nasal symptom quality of life markers. Atopy assessment in CRS is important to ensure appropriate and successful treatment of the disease.
Collapse
Affiliation(s)
- Jacqueline Ho
- Rhinology and Skull Base Research Group, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Raquel Alvarado
- Rhinology and Skull Base Research Group, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia
| | - Janet Rimmer
- Rhinology and Skull Base Research Group, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia.,Woolcock Institute, University of Sydney, Sydney, Australia.,Faculty of Medicine, Notre Dame University, Sydney, Australia
| | - William A Sewell
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Immunology Division, Garvan Institute of Medical Research, Sydney, Australia
| | - Richard J Harvey
- Rhinology and Skull Base Research Group, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia.,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
25
|
Kim WG, Kang GD, Kim HI, Han MJ, Kim DH. Bifidobacterium longum IM55 and Lactobacillus plantarum IM76 alleviate allergic rhinitis in mice by restoring Th2/Treg imbalance and gut microbiota disturbance. Benef Microbes 2018; 10:55-67. [PMID: 30465441 DOI: 10.3920/bm2017.0146] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study aimed to examine whether probiotics, which suppressed the differentiation of splenic T cells into type 2 helper T (Th2) cells and induced into regulatory T cells in vitro, alleviate allergic rhinitis (AR) and gut microbiota disturbance. We isolated Bifidobacterium longum IM55 and Lactobacillus plantarum IM76 from human faecal microbiota and kimchi, respectively, and examined their effects on ovalbumin (OVA)-induced AR and gut microbiota disturbance in mice. Treatment with IM55, IM76, or their probiotic mixture (PM) significantly reduced OVA-induced allergic nasal symptoms and blood immunoglobulin E (IgE) levels in mice. These also reduced OVA-induced interleukin (IL)-4 and IL-5 levels in nasal tissues and bronchoalveolar lavage fluid (BALF) but increased OVA-suppressed IL-10 levels. Treatment with IM55, IM76, or PM reduced OVA-induced increase in the populations of mast cells, eosinophils, and Th2 cells and increased OVA-suppressed population of regulatory T cells in the BALF. Treatment with IM55, IM76, or PM also inhibited OVA-induced expression of IL-5 in lung and colon tissues and restored OVA-disturbed composition of gut microbiota Proteobacteria, Bacteroidetes, and Actinobacteria. These results suggest that IM55 and IM67 can alleviate AR by restoring Th2/Treg imbalance and gut microbiota disturbance.
Collapse
Affiliation(s)
- W-G Kim
- 1 Department of Food and Nutrition, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - G-D Kang
- 2 Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - H I Kim
- 1 Department of Food and Nutrition, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - M J Han
- 1 Department of Food and Nutrition, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - D-H Kim
- 2 Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.,3 Neurobiota Research Center, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
26
|
Bi J, Hu Y, Peng Z, Liu H, Fu Y. Changes and correlations of serum interleukins, adhesion molecules and soluble E-selectin in children with allergic rhinitis and asthma. Pak J Med Sci 2018; 34:1288-1292. [PMID: 30344593 PMCID: PMC6191801 DOI: 10.12669/pjms.345.15334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/25/2018] [Accepted: 08/25/2018] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To observe the changes and correlations of serum interleukins (ILs), adhesion molecules and soluble E-selectin (sE-selectin) in children with allergic rhinitis, asthma and both diseases. METHODS A total of 45 children with allergic rhinitis, 40 with asthma and 45 with allergic rhinitis complicated with asthma treated from September 2016 to January 2018 were selected. Meanwhile, 30 healthy subjects who received physical examinations were included as a control group. The levels of serum IL-4, IL-5, IL-10, soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular adhesion molecule-1 (sVCAM-1), and sE-selectin were detected by double-antibody sandwich ELISA, and their correlations were subjected to Spearman's correlation analysis. RESULTS The serum IL levels of allergic rhinitis, asthma and complication groups were significantly higher than those of control group (P<0.01), and the levels of complication group significantly exceeded those of asthma group (P<0.05). The serum levels of IL-5 and IL-10 in complication group significantly exceeded those of allergic rhinitis group (P<0.05). Compared with control group, serum sICAM-1, sVCAM-1, and sE-selectin levels significantly increased in other three groups (P<0.01). Such levels of complication group were significantly higher than those of allergic rhinitis and asthma groups (P<0.05). Serum IL-10 level was positively correlated with that of IL-4 (r=0.965, P<0.05), and sE-selectin level was positively correlated with those of sICAM-1 and sVCAM-1 (r=0.915, P<0.01; r=0.892, P<0.01). CONCLUSION Serum IL-4, IL-5, IL-10, adhesion molecules and sE-selectin are all involved in the pathogenesis of allergic rhinitis and asthma, which can be used to evaluate the degrees of respiratory allergic diseases.
Collapse
Affiliation(s)
- Jing Bi
- Jing Bi, Department of Otolaryngology Head and Neck Surgery, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Yaoqin Hu
- Yaoqin Hu, Department of Anesthesiology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Zhaoyang Peng
- Zhaoyang Peng, Medical Testing Center, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - He Liu
- He Liu, Department of Otorhinolaryngology, Beijing Aerospace General Hospital, Beijing 100076, China. The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Yong Fu
- Yong Fu, Department of Otolaryngology Head and Neck Surgery, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| |
Collapse
|
27
|
Caminati M, Pham DL, Bagnasco D, Canonica GW. Type 2 immunity in asthma. World Allergy Organ J 2018; 11:13. [PMID: 29988331 PMCID: PMC6020328 DOI: 10.1186/s40413-018-0192-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022] Open
Abstract
Type 2-immunity represents the typical adaptive response to allergen exposure in atopic individuals. It mainly involves Th2 cells and immunoglobulin E, as the main orchestrators of type 2-inflammation. Recently, it has been highlighted that allergens may be responsible for a Th2 response beside specific IgE activation and that a number of other environmental stimuli, such as viruses and pollutants, can trigger the same pattern of inflammation beyond atopy. Emerging data sustain a substantial role of the so-called epithelial dysfunction in asthma pathogenesis, both from anatomic and functional point of view. Furthermore an increasing amount of evidence demonstrates the relevance of innate immunity in polarizing a Th2 impaired response in asthmatic patients. Under this perspective, the complex cross-talking between airway epithelium, innate and adaptive immunity is emerging as a major determinant of type 2-inflammation beyond allergens. This review will include an update on the relevance of dysregulation of innate and adaptive type 2-immunity in asthma pathogenesis, particularly severe asthma, and on the role of the allergens that are associated with severe asthma. Type 2-immunity also will be reviewed in the light of the current and upcoming targeted treatments for severe asthma.
Collapse
Affiliation(s)
- Marco Caminati
- 1Asthma Center and Allergy Unit, Verona University Hospital, Piazzale Scuro10, 37134 Verona, Italy
| | - Duy Le Pham
- 2Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Diego Bagnasco
- University of Genoa Allergy and Respiratory Diseases, IRCCS San Martino Hospital, IST, University of Genoa, Genoa, Italy
| | - Giorgio Walter Canonica
- 4Personalized Medicine Clinic, Asthma & Allergy, Humanitas Clinical and Research Center, Humanitas University, Rozzano, Milan, Italy
| |
Collapse
|
28
|
Coleman SL, Shaw OM. Progress in the understanding of the pathology of allergic asthma and the potential of fruit proanthocyanidins as modulators of airway inflammation. Food Funct 2018; 8:4315-4324. [PMID: 29140397 DOI: 10.1039/c7fo00789b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Allergic asthma is a chronic inflammatory lung disease characterized by sensitization of the airways, and the development of immunoglobulin E antibodies, to benign antigens. The established pathophysiology of asthma includes recurrent lung epithelial inflammation, excessive mucus production, bronchial smooth muscle hyperreactivity, and chronic lung tissue remodeling, resulting in reversible airflow restriction. Immune cells, including eosinophils and the recently characterized type 2 innate lymphoid cells, infiltrate into the lung tissue as part of the inflammatory response in allergic asthma. It is well established that a diet high in fruits and vegetables results in a reduction of the risk of developing inflammatory diseases. Secondary plant metabolites, such as proanthocyanidins which are found in apples, blackcurrants, boysenberries, cranberries, and grapes, have shown promising results in reducing or preventing allergic asthma airway inflammation. Recent evidence has also highlighted the importance of microbiome-mediated metabolism of plant polyphenols in modulating the immune system. In this review, we will discuss advances in our understanding of the pathophysiology of allergic asthma, including the role of the microbiome in lung immune function, and how proanthocyanidins modulate the airway inflammation. We will highlight the potential of dietary proanthocyanidins to impact on allergic asthma and the immune system.
Collapse
Affiliation(s)
- Sara L Coleman
- Food and Wellness Group, The New Zealand Institute for Plant & Food Research Ltd, Palmerston North 4442, New Zealand.
| | | |
Collapse
|
29
|
Lu H, Xie RD, Lin R, Zhang C, Xiao XJ, Li LJ, Liu ZQ, Yang LT, Feng BS, Liu ZJ, Yang PC. Vitamin D-deficiency induces eosinophil spontaneous activation. Cell Immunol 2017; 322:56-63. [PMID: 29050663 DOI: 10.1016/j.cellimm.2017.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/25/2022]
Abstract
Eosinophils (Eo) play a critical role in immunity and immune inflammation. The maintenance of Eo homeostasis is not fully understood yet. Vitamin D (VitD) is involved in the regulation of a large number of biochemical reactions. This study tests a hypothesis that VitD receptor (VDR) contributes to the homeostasis of Eos. In this study, EoL-1 cells (an Eo cell line) were cultured in the presence or absence of calcitriol. The Eo-mediators, including major basic protein (MBP), Eo peroxidase (EPX), Eo cationic protein (ECP) and Eo-derived neurotoxin (EDN), were assessed in the culture supernatant and in EoL-1 cells. We observed that, in a VitD deficient environment, EoL-1 cells produced high levels of the Eo-mediators, including MBP, EPX, ECP and EDN, which could be suppressed by the addition of calcitriol to the culture. EoL-1 cells expressed VitD receptor (VDR), which was up regulated by exposure to calcitriol. VDR formed complexes with the transcription factors of the Eo-mediators, which prevented the transcription factors to bind to the promoters of the Eo-mediators, and therefore prevented the Eo-mediated gene transcription. The Eo spontaneous activation was also found in the intestinal mucosa of VDR-deficient mice, in which the intestinal epithelial barrier dysfunction was observed. In conclusion, VDR contributes to the maintenance of the homeostasis of Eos by regulating the gene transcription of the Eo mediators. The VDR-deficiency is one of the causative factors inducing Eo spontaneous activation. This phenomenon may be taken into account in the management of the Eo-related diseases.
Collapse
Affiliation(s)
- Huiying Lu
- Department of Gastroenterology, The Shanghai Tenth Hospital, Tongji University, Shanghai 200072, China
| | - Rui-Di Xie
- The Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Ritian Lin
- Department of Gastroenterology, The Shanghai Tenth Hospital, Tongji University, Shanghai 200072, China
| | - Cuicui Zhang
- Department of Gastroenterology, The Shanghai Tenth Hospital, Tongji University, Shanghai 200072, China
| | - Xiao-Jun Xiao
- The Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Lin-Jing Li
- Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou 450000, China; The Brain Body Institute, McMaster University, Hamilton, ON L8N 4A6, Canada
| | - Zhi-Qiang Liu
- The Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Li-Tao Yang
- The Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China; The Brain Body Institute, McMaster University, Hamilton, ON L8N 4A6, Canada
| | - Bai-Sui Feng
- Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou 450000, China
| | - Zhan-Ju Liu
- Department of Gastroenterology, The Shanghai Tenth Hospital, Tongji University, Shanghai 200072, China.
| | - Ping-Chang Yang
- The Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China.
| |
Collapse
|
30
|
Abstract
In the clinical setting, the role of systemic inflammation in patients with asthma has attracted increased attention, and some authors showed that increased IL-6 and high-sensitivity C-reactive protein characterized a group of asthmatic patients. In the realm of forensic pathology, a postmortem diagnosis of asthmatic death can be extremely challenging. The aim of this study was to determine the postmortem serum levels of C-reactive protein, IL-6, and tumor necrosis factor α in a series of severe acute bronchial asthma deaths that underwent medicolegal investigations. A total of 35 autopsy cases were retrospectively selected and included deaths in asthmatic subjects (related and unrelated to severe acute bronchial asthma, in situations characterized or not by systemic inflammation) as well as deaths in nonasthmatic individuals (in situations characterized or not by systemic inflammation). Our findings suggest that IL-6 is selectively increased in the systemic circulation of individuals with asthma, irrespective of whether the cause of death depends on a fatal asthma attack, compared with other biomarkers. Accordingly, postmortem serum IL-6 values in cases of death during severe acute bronchial asthma can be measured and considered of diagnostic relevance to estimate the magnitude of the systemic inflammation responses characterizing the disease.
Collapse
|
31
|
Jacobsen EA, Ochkur SI, Doyle AD, LeSuer WE, Li W, Protheroe CA, Colbert D, Zellner KR, Shen HH, Irvin CG, Lee JJ, Lee NA. Lung Pathologies in a Chronic Inflammation Mouse Model Are Independent of Eosinophil Degranulation. Am J Respir Crit Care Med 2017; 195:1321-1332. [PMID: 27922744 DOI: 10.1164/rccm.201606-1129oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RATIONALE The release of eosinophil granule proteins in the lungs of patients with asthma has been dogmatically linked with lung remodeling and airway hyperresponsiveness. However, the demonstrated inability of established mouse models to display the eosinophil degranulation occurring in human subjects has prevented a definitive in vivo test of this hypothesis. OBJECTIVES To demonstrate in vivo causative links between induced pulmonary histopathologies/lung dysfunction and eosinophil degranulation. METHODS A transgenic mouse model of chronic T-helper cell type 2-driven inflammation overexpressing IL-5 from T cells and human eotaxin 2 in the lung (I5/hE2) was used to test the hypothesis that chronic histopathologies and the development of airway hyperresponsiveness occur as a consequence of extensive eosinophil degranulation in the lung parenchyma. MEASUREMENT AND MAIN RESULTS Studies targeting specific inflammatory pathways in I5/hE2 mice surprisingly showed that eosinophil-dependent immunoregulative events and not the release of individual secondary granule proteins are the central contributors to T-helper cell type 2-induced pulmonary remodeling and lung dysfunction. Specifically, our studies highlighted a significant role for eosinophil-dependent IL-13 expression. In contrast, extensive degranulation leading to the release of major basic protein-1 or eosinophil peroxidase was not causatively linked to many of the induced pulmonary histopathologies. However, these studies did define a previously unappreciated link between the release of eosinophil peroxidase (but not major basic protein-1) and observed levels of induced airway mucin. CONCLUSIONS These data suggest that improvements observed in patients with asthma responding to therapeutic strategies ablating eosinophils may occur as a consequence of targeting immunoregulatory mechanisms and not by simply eliminating the destructive activities of these purportedly end-stage effector cells.
Collapse
Affiliation(s)
| | | | | | | | - Wen Li
- 2 Department of Medicine, Guizhou Provincial People's Hospital, Guizhou, China; and
| | - Cheryl A Protheroe
- 3 Division of Hematology/Oncology, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Dana Colbert
- 3 Division of Hematology/Oncology, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona
| | | | - HuaHao H Shen
- 2 Department of Medicine, Guizhou Provincial People's Hospital, Guizhou, China; and
| | - Charles G Irvin
- 4 Vermont Lung Center, Department of Medicine, University of Vermont, Burlington, Vermont
| | | | - Nancy A Lee
- 3 Division of Hematology/Oncology, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona
| |
Collapse
|
32
|
Human eosinophils constitutively express a unique serine protease, PRSS33. Allergol Int 2017; 66:463-471. [PMID: 28216055 DOI: 10.1016/j.alit.2017.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Eosinophils play important roles in asthma, especially airway remodeling, by producing various granule proteins, chemical mediators, cytokines, chemokines and proteases. However, protease production by eosinophils is not fully understood. In the present study, we investigated the production of eosinophil-specific proteases/proteinases by transcriptome analysis. METHODS Human eosinophils and other cells were purified from peripheral blood by density gradient sedimentation and negative/positive selections using immunomagnetic beads. Protease/proteinase expression in eosinophils and release into the supernatant were evaluated by microarray analysis, qPCR, ELISA, flow cytometry and immunofluorescence staining before and after stimulation with eosinophil-activating cytokines and secretagogues. mRNAs for extracellular matrix proteins in human normal fibroblasts were measured by qPCR after exposure to recombinant protease serine 33 (PRSS33) protein (rPRSS33), created with a baculovirus system. RESULTS Human eosinophils expressed relatively high levels of mRNA for metalloproteinase 25 (MMP25), a disintegrin and metalloprotease 8 (ADAM8), ADAM10, ADAM19 and PRSS33. Expression of PRSS33 was the highest and eosinophil-specific. PRSS33 mRNA expression was not affected by eosinophil-activating cytokines. Immunofluorescence staining showed that PRSS33 was co-localized with an eosinophil granule protein. PRSS33 was not detected in the culture supernatant of eosinophils even after stimulation with secretagogues, but its cell surface expression was increased. rPRSS33 stimulation of human fibroblasts increased expression of collagen and fibronectin mRNAs, at least in part via protease-activated receptor-2 activation. CONCLUSIONS Activated eosinophils may induce fibroblast extracellular matrix protein synthesis via cell surface expression of PRSS33, which would at least partly explain eosinophils' role(s) in airway remodeling.
Collapse
|
33
|
Ochkur SI, Doyle AD, Jacobsen EA, LeSuer WE, Li W, Protheroe CA, Zellner KR, Colbert D, Shen HH, Irvin CG, Lee JJ, Lee NA. Frontline Science: Eosinophil-deficient MBP-1 and EPX double-knockout mice link pulmonary remodeling and airway dysfunction with type 2 inflammation. J Leukoc Biol 2017; 102:589-599. [PMID: 28515227 DOI: 10.1189/jlb.3hi1116-488rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/21/2017] [Accepted: 03/01/2017] [Indexed: 12/21/2022] Open
Abstract
Eosinophils and the release of cationic granule proteins have long been implicated in the development of the type 2-induced pathologies linked with respiratory inflammation. Paradoxically, the ablation of the two genes encoding the most abundant of these granule proteins, major basic protein-1 (MBP-1) and eosinophil peroxidase (EPX), results in a near collapse of eosinophilopoiesis. The specificity of this lineage ablation and the magnitude of the induced eosinopenia provide a unique opportunity to clarify the importance of eosinophils in acute and chronic inflammatory settings, as well as to identify potential mechanism(s) of action linked with pulmonary eosinophils in those settings. Specifically, we examined these issues by assessing the induced immune responses and pathologies occurring in MBP-1-/-/EPX-/- mice after 1) ovalbumin sensitization/provocation in an acute allergen-challenge protocol, and 2) crossing MBP-1-/-/EPX-/- mice with a double-transgenic model of chronic type 2 inflammation (i.e., I5/hE2). Acute allergen challenge and constitutive cytokine/chemokine expression each induced the accumulation of pulmonary eosinophils in wild-type controls that was abolished in the absence of MBP-1 and EPX (i.e., MBP-1-/-/EPX-/- mice). The expression of MBP-1 and EPX was also required for induced lung expression of IL-4/IL-13 in each setting and, in turn, the induced pulmonary remodeling events and lung dysfunction. In summary, MBP-1-/-/EPX-/- mice provide yet another definitive example of the immunoregulatory role of pulmonary eosinophils. These results highlight the utility of this unique strain of eosinophil-deficient mice as part of in vivo model studies investigating the roles of eosinophils in health and disease settings.
Collapse
Affiliation(s)
- Sergei I Ochkur
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA.,Division of Hematology/Oncology, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Alfred D Doyle
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Elizabeth A Jacobsen
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - William E LeSuer
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA.,Division of Hematology/Oncology, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Wen Li
- Department of Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China; and
| | - Cheryl A Protheroe
- Division of Hematology/Oncology, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Katie R Zellner
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Dana Colbert
- Division of Hematology/Oncology, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - HuaHao H Shen
- Department of Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China; and
| | - Charlie G Irvin
- Vermont Lung Center, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - James J Lee
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Nancy A Lee
- Division of Hematology/Oncology, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA;
| |
Collapse
|
34
|
Zhou A, Zhou Z, Zhao Y, Chen P. The recent advances of phenotypes in acute exacerbations of COPD. Int J Chron Obstruct Pulmon Dis 2017; 12:1009-1018. [PMID: 28392685 PMCID: PMC5375638 DOI: 10.2147/copd.s128604] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Exacerbations of COPD are clinically relevant events with therapeutic and prognostic implications. Yet, significant heterogeneity of clinical presentation and disease progression exists within acute exacerbations of COPD (AECOPD). Currently, different phenotypes have been widely used to describe the characteristics among patients with AECOPD. This has proved to be significant in the treatment and prediction of the outcomes of the disease. In this review of published literature, the phenotypes of AECOPD were classified according to etiology, inflammatory biomarkers, clinical manifestation, comorbidity, the frequency of exacerbations, and so on. This review concentrates on advancements in the use of phenotypes of AECOPD.
Collapse
Affiliation(s)
- Aiyuan Zhou
- Department of Respiratory Medicine, The Second Xiangya Hospital; Research Unit of Respiratory Disease; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, People's Republic of China
| | - Zijing Zhou
- Department of Respiratory Medicine, The Second Xiangya Hospital; Research Unit of Respiratory Disease; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, People's Republic of China
| | - Yiyang Zhao
- Department of Respiratory Medicine, The Second Xiangya Hospital; Research Unit of Respiratory Disease; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, People's Republic of China
| | - Ping Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital; Research Unit of Respiratory Disease; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
35
|
Kinaret P, Ilves M, Fortino V, Rydman E, Karisola P, Lähde A, Koivisto J, Jokiniemi J, Wolff H, Savolainen K, Greco D, Alenius H. Inhalation and Oropharyngeal Aspiration Exposure to Rod-Like Carbon Nanotubes Induce Similar Airway Inflammation and Biological Responses in Mouse Lungs. ACS NANO 2017; 11:291-303. [PMID: 28045493 DOI: 10.1021/acsnano.6b05652] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Carbon nanotubes (CNTs) have the potential to impact technological and industrial progress, but their production and use may, in some cases, cause serious health problems. Certain rod-shaped multiwalled CNTs (rCNTs) can, in fact, induce severe asbestos-like pathogenicity in mice, including granuloma formation, fibrosis, and even cancer. Evaluating the comparability between alternative hazard assessment methods is needed to ensure fast and reliable evaluation of the potentially adverse effects of these materials. To compare two alternative airway exposure methods, C57BL/6 mice were exposed to rCNTs by a state-of-the-art but laborious and expensive inhalation method (6.2-8.2 mg/m3, 4 h/day for 4 days) or by oropharyngeal aspiration (10 or 40 μg/day for 4 days), which is cheaper and easier to perform. In addition to histological and cytological studies, transcriptome analysis was also carried out on the lung tissue samples. Both inhalation and low-dose (10 μg/day) aspiration exposure to rCNTs promoted strong accumulation of eosinophils in the lungs and recruited also a few neutrophils and lymphocytes. In contrast, the aspiration of a high-dose (40 μg/day) rCNT caused only a mild pulmonary eosinophilia but enhanced accumulation of neutrophils in the airways. Inhalation and low-dose aspiration exposure promoted comparable giant cell formation, mucus production, and IL-13 expression in the lungs. Both exposure methods also exacerbated similar expression alterations with 154 (56.4%) differentially expressed, overlapping genes in microarray analyses. Of all differentially expressed genes, up to 80% of the activated biological functions were shared according to pathway enrichment analyses. Inhalation and low-dose aspiration elicited very similar pulmonary inflammation providing evidence that oropharyngeal aspiration is a valid approach and a convenient alternative to the inhalation exposure for the hazard assessment of nanomaterials.
Collapse
Affiliation(s)
| | | | | | - Elina Rydman
- Finnish Institute of Occupational Health , Helsinki 00251, Finland
| | | | - Anna Lähde
- Fine Particle and Aerosol Technology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland , Kuopio 80100, Finland
| | - Joonas Koivisto
- National Research Centre for the Working Environment , Copenhagen DK-2100, Denmark
| | - Jorma Jokiniemi
- Fine Particle and Aerosol Technology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland , Kuopio 80100, Finland
| | - Henrik Wolff
- Finnish Institute of Occupational Health , Helsinki 00251, Finland
| | - Kai Savolainen
- Finnish Institute of Occupational Health , Helsinki 00251, Finland
| | | | - Harri Alenius
- Institute of Environmental Medicine (IMM), Karolinska Institutet , Stockholm 171 77, Sweden
| |
Collapse
|