1
|
Comertpay B, Gov E. Immune cell-specific and common molecular signatures in rheumatoid arthritis through molecular network approaches. Biosystems 2023; 234:105063. [PMID: 37852410 DOI: 10.1016/j.biosystems.2023.105063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder and common symptom of RA is chronic synovial inflammation. The pathogenesis of RA is not fully understood. Therefore, we aimed to identify underlying common and distinct molecular signatures and pathways among ten types of tissue and cells obtained from patients with RA. In this study, transcriptomic data including synovial tissues, macrophages, blood, T cells, CD4+T cells, CD8+T cells, natural killer T (NKT), cells natural killer (NK) cells, neutrophils, and monocyte cells were analyzed with an integrative and comparative network biology perspective. Each dataset yielded a list of differentially expressed genes as well as a reconstruction of the tissue-specific protein-protein interaction (PPI) network. Molecular signatures were identified by a statistical test using the hypergeometric probability density function by employing the interactions of transcriptional regulators and PPI. Reporter metabolites of each dataset were determined by using genome-scale metabolic networks. It was defined as the common hub proteins, novel molecular signatures, and metabolites in two or more tissue types while immune cell-specific molecular signatures were identified, too. Importantly, miR-155-5p is found as a common miRNA in all tissues. Moreover, NCOA3, PRKDC and miR-3160 might be novel molecular signatures for RA. Our results establish a novel approach for identifying immune cell-specific molecular signatures of RA and provide insights into the role of common tissue-specific genes, miRNAs, TFs, receptors, and reporter metabolites. Experimental research should be used to validate the corresponding genes, miRNAs, and metabolites.
Collapse
Affiliation(s)
- Betul Comertpay
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye
| | - Esra Gov
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye.
| |
Collapse
|
2
|
Hu H, Dou X, Hu X, Wang L, Ma Y, Liu J, Zhou X, Cao H, Liu X, Deng X, Li N. Identification of a novel cuproptosis-related gene signature for rheumatoid arthritis-A prospective study. J Gene Med 2023; 25:e3535. [PMID: 37338187 DOI: 10.1002/jgm.3535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a multifactorial systemic autoimmune disease characterized by ongoing synovial inflammation, leading to the degradation of cartilage. Cuproptosis, as a newly characterized form of cell death, may influence RA progression by regulating immune cells and chondrocytes. This study sets out to identify the hub cuproptosis-related gene (CRG) associated with the pathogenesis of RA. METHODS A series of bioinformatic analyses were performed to evaluate the expression score of CRGs and the immune infiltration landscape between RA and normal samples. The hub gene was screened through the correlation analysis of CRGs, and the interaction network between the hub gene and transcription factors (TFs) was constructed. Finally, the hub gene was validated through quantitative real-time polymerase chain reaction (qRT-PCR) of patient samples and cell experiments. RESULTS Drolipoamide S-acetyltransferase (DLAT) was screened as the hub gene. Correlation analysis between the hub gene and immune microenvironment demonstrated that DLAT had the highest correlation with T follicular helper cells. Eight pairs of DLAT-TF interaction networks were constructed. Single-cell sequencing showed that CRGs were highly expressed in RA chondrocytes, and chondrocytes could be classified into three different subsets. qRT-PCR was used to validate the above results. Dlat knockdown in immortalized human chondrocytes led to significantly improved mitochondrial membrane potentials and reduced levels of intracellular reactive oxygen species (ROS), mitochondrial ROS and apoptosis. CONCLUSIONS This study rudimentarily demonstrates the correlation between CRGs and immune cell infiltration in RA. The biomarker DLAT may provide comprehensive insights into the pathogenesis and drug targets of RA.
Collapse
Affiliation(s)
- Han Hu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xinyu Dou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Xiangjia Hu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Linbang Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Yunlong Ma
- Pain Medicine Center, Peking University Third Hospital, Beijing, China
| | - Jingkun Liu
- Data Centre Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xuchang Zhou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Hong Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Xiaoming Deng
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Nan Li
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Lei S, Jin J, Zhao X, Zhou L, Qi G, Yang J. The role of IL-33/ST2 signaling in the tumor microenvironment and Treg immunotherapy. Exp Biol Med (Maywood) 2022; 247:1810-1818. [PMID: 35733343 PMCID: PMC9679353 DOI: 10.1177/15353702221102094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Interleukin (IL)-33 is a tissue-derived nuclear cytokine belonging to the IL-1 family. Stimulation-2 (ST2) is the only known IL-33 receptor. ST2 signals mostly on immune cells found within tissues, such as regulatory T cells (Treg cells), CD8+ T cells, and natural killer (NK) cells. Therefore, the IL-33/ST2 signaling pathway is important in the immune system. IL-33 deficiency impairs Treg cell function. ST2 signaling is also increased in active Treg cells, providing a new approach for Treg-related immunotherapy. The IL-33/ST2 signaling pathway regulates multiple immune-related cells by activating various intracellular kinases and factors in the tumor microenvironment (TME). Here, we review the latest studies on the role of the IL-33/ST2 signaling pathway in TME and Treg immunotherapy.
Collapse
Affiliation(s)
- Shangbo Lei
- Department of Immunology, Guilin Medical University, Guilin 541199, Guangxi, China,Department of Pathophysiology, Guilin Medical University, Guilin 541199, Guangxi, China,Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Jiamin Jin
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Xiangfeng Zhao
- Department of Immunology, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Lihua Zhou
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Guangying Qi
- Department of Pathophysiology, Guilin Medical University, Guilin 541199, Guangxi, China,Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Jinfeng Yang
- Department of Immunology, Guilin Medical University, Guilin 541199, Guangxi, China,Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, Guangxi, China,Jinfeng Yang.
| |
Collapse
|
4
|
Dolzani P, Manferdini C, Meliconi R, Lisignoli G, Pulsatelli L. Preliminary study on immune cells in the synovium of end-stage osteoarthritis and rheumatoid arthritis patients: neutrophils and IgG4-secreting plasma cells as differential diagnosis candidates. Acta Histochem 2022; 124:151909. [PMID: 35679805 DOI: 10.1016/j.acthis.2022.151909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/26/2022] [Accepted: 05/22/2022] [Indexed: 11/01/2022]
Abstract
OBJECTIVE Immune cell evaluation could be useful for clarifying etiopathogenesis, providing a support for formulating the diagnoses of clinically similar joint pathologies or guiding indications for possible therapeutic targets. To contribute to differential diagnosis in joint pathologies we performed an immunophenotypical profile analyzing different immune cells in synovial tissues from patients with rheumatoid arthritis (RA) and osteoarthritis (OA). METHODS The Krenn and immunologic synovitis (IMSYC) scores, which include the evaluation of T lymphocytes (CD3 positive), B lymphocytes (CD20), endothelial cells (CD31), macrophages (CD68) and proliferating cells (Ki-67 positive) were used to analyze the synovial tissue samples. Moreover, to corroborate immune activation, neutrophils (CD15 positive), NK cells (CD56 positive), plasma cells (CD138 positive), IgG4 and IgG4 secreting-CD138 cells were analyzed using immunohistochemical techniques. RESULTS We confirmed that all the samples had a high synovitis score according to both the Krenn and IMSYC scores. In both the RA and OA groups, we found similar scores for CD3 (T lymphocytes), CD20 (B lymphocytes), CD31 (endothelial cells), CD56 (NK cells), CD68 (macrophages) CD138 (plasma cells) and IgG4. In contrast, CD15 (neutrophils) was significantly higher in RA compared to OA. Interestingly, IgG4 secreting-CD138 cells were significantly higher in RA than OA, even if CD138 had the same score in both the RA and OA samples. CONCLUSIONS This study found that the scores for different immune cells were similar in both RA and OA synovial tissue with a high synovitis score. CD15 and IgG4 secreting-CD138 were the only immune cells with a higher score in RA compared to OA, suggesting a potential use for discriminating among pathologies with a high synovitis score.
Collapse
Affiliation(s)
- Paolo Dolzani
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy.
| | - Cristina Manferdini
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy.
| | - Riccardo Meliconi
- SSD Medicina e Reumatologia, IRCCS Istituto Ortopedico Rizzoli, via Pupilli 1, Bologna 40136, Italy; Dipartimento di Scienze Biomediche e Neuromotorie, Università degli Studi di Bologna, Bologna, Italy.
| | - Gina Lisignoli
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy.
| | - Lia Pulsatelli
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy.
| |
Collapse
|
5
|
Khalaf WS, Mahmoud MR, Elkhatib WF, Hashem HR, Soliman WE. Phenotypic characterization of NKT-like cells and evaluation of specifically related cytokines for the prediction of unexplained recurrent miscarriage. Heliyon 2021; 7:e08409. [PMID: 34849421 PMCID: PMC8608857 DOI: 10.1016/j.heliyon.2021.e08409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 01/13/2023] Open
Abstract
Problem Immune system dysregulation is a major cause of unexplained recurrent miscarriage (URM). Women with URM need screening for their pregnancy microenvironment and immune regulators, to prevent spontaneous abortion. Method of study In this study we evaluated NKT-like cell subsets in peripheral venous blood of women with URM using flow cytometry. The expression levels of specifically related Th1 cytokines (IFN-γ and IL-2), Th2 cytokine (IL-4), and Th17 cytokines (IL-17), were measured using enzyme-linked immunosorbent assay. Results The percentage of CD16+CD56+NKT-like (Double Positive NKT-like; DPNKT-like) cell subset, and the levels of IL-2 and IFN-γ were significantly elevated in blood of non-pregnant and pregnant patients with URM compared with the healthy control groups, and these parameters were significantly increased after pregnancy in the same patients with URM. Based on the prevalence of the candidate immunological factors in patients with URM, the prognostic significance of the NKT-like cell subsets, IFN-γ and IL-2 profiles were evaluated as potential predictors of URM. A cut-off point of 2.55% for DPNKT-like cell subset in the blood and cut-off values of 39.5 and 20.5 pg/ml for the levels of IFN-γ and IL-2, respectively could be used for the prediction of the risk of spontaneous abortion. To the best of our knowledge, this is the first study that described the prognostic significance of the aforementioned immunological parameters before and after pregnancy, and highlighted the correlation of NKT-like cells and the candidate Th1 cytokines with pregnancy loss in women with URM. Conclusions DPNKT-like cells, IFN-γ and IL-2 patient profiles could be used as markers to predict the risk of miscarriage in patients with URM. Disturbance in the immune system's regulators is an essential factor for recurrent miscarriage. There is an urgent need for women who have suffered pregnancy loss to identify specific immune regulators that underline recurrent miscarriage, to prevent and control miscarriage. CD16+CD56+NKT-like cells, Interferon-γ and Interleukin-2 patient profile could be utilized as biomarkers to predict risk of miscarriage in women who have suffered spontaneous miscarriage.
Collapse
Affiliation(s)
- Wafaa S. Khalaf
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11751, Egypt
- Corresponding author.
| | - Mohammad R.A. Mahmoud
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Al-Azhar University, Nasr city, Cairo 11751, Egypt
| | - Walid F. Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia, Cairo 11566, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala city, Suez, Egypt
- Corresponding author.
| | - Hany R. Hashem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Al- Fayoum 63514, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr city, Cairo 11829, Egypt
| | - Wafaa E. Soliman
- Microbiology and Immunology Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Mansoura, Egypt
- Biomedical Sciences Department, College of Clinical Pharmacy, King Faisal University, Al-Hofuf 36362, Al-Ahsa, Saudi Arabia
| |
Collapse
|
6
|
Wang H, Fang K, Yan W, Chang X. T-Cell Immune Imbalance in Rheumatoid Arthritis Is Associated with Alterations in NK Cells and NK-Like T Cells Expressing CD38. J Innate Immun 2021; 14:148-166. [PMID: 34428762 DOI: 10.1159/000516642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/18/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND CD38+ NK (CD3- CD16+ CD38+ CD56+) cells were increased in rheumatoid arthritis (RA), which suppressed Treg cell differentiation. This study explored how CD38+ NK cells regulated CD4+ T-cell differentiation into Treg cells in RA. METHODS Proportions of CD38+ NK cells and their counterpart CD38+ NK-like T (CD3+ CD16+ CD38+ CD56+) cells were measured in RA and rats with collagen-induced arthritis (CIA). CD38+ NK cells and CD38+ NK-like T cells were cocultured with CD4+ T cells, respectively. RESULTS A significantly increased proportion of CD38+ NK cells and a decreased proportion of CD38+ NK-like T cells were detected in RA and CIA blood and synovial fluids. When CD4+ T cells were cocultured with CD38+ NK cells, mammalian target of rapamycin (mTOR) signaling was activated, and Th1/Th2 and Th17/Treg ratios were increased. When CD38+ NK cells were pretreated with anti-CD38 antibody, Treg cell proportion was increased, and Th1/Th2 and Th17/Treg ratios were decreased. CD38+ NK-like T cells showed the opposite results. CD38+ NK cells and CD38+ NK-like-T cells activated differential gene expressions and pathways in CD4+ T cells and initiated Th1 and Th2 cell differentiation by differential gene nodes. CONCLUSIONS This study suggest that the high CD38+ NK cell proportion and low CD38+ NK-like T cell proportion in RA suppress Treg cell differentiation by stimulating mTOR signaling in CD4+ T cells, which consequentially disturbs the immune tolerance.
Collapse
Affiliation(s)
- Hongxing Wang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Qingdao, China.,Clinical Laboratory of Qilu Hospital, Shandong University, Jinan, China
| | - Kehua Fang
- Clinical Laboratory of The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weining Yan
- Joint Surgery Department of The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaotian Chang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Qingdao, China.,Qingdao Engineering Technology Center for Major Disease Marker, Qingdao, China
| |
Collapse
|
7
|
The pathophysiology of immunoporosis: innovative therapeutic targets. Inflamm Res 2021; 70:859-875. [PMID: 34272579 DOI: 10.1007/s00011-021-01484-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/14/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The physiological balance between bone resorption and bone formation is now known to be mediated by a cascade of events parallel to the classic osteoblast-osteoclast interaction. Thus, osteoimmunology now encompasses the role played by other cell types, such as cytokines, lymphocytes and chemokines, in immunological responses and how they help modulate bone metabolism. All these factors have an impact on the RANK/RANKL/OPG pathway, which is the major pathway for the maturation and resorption activity of osteoclast precursor cells, responsible for osteoporosis development. Recently, immunoporosis has emerged as a new research area in osteoimmunology dedicated to the immune system's role in osteoporosis. METHODS The first part of this review presents theoretical concepts on the factors involved in the skeletal system and osteoimmunology. Secondly, existing treatments and novel therapeutic approaches to treat osteoporosis are summarized. These were selected from to the most recent studies published on PubMed containing the term osteoporosis. All data relate to the results of in vitro and in vivo studies on the osteoimmunological system of humans, mice and rats. FINDINGS Treatments for osteoporosis can be classified into two categories. They either target osteoclastogenesis inhibition (denosumab, bisphosphonates), or they aim to restore the number and function of osteoblasts (romozumab, abaloparatide). Even novel therapies, such as resolvins, gene therapy, and mesenchymal stem cell transplantation, fall within this classification system. CONCLUSION This review presents alternative pathways in the pathophysiology of osteoporosis, along with some recent therapeutic breakthroughs to restore bone homeostasis.
Collapse
|
8
|
Gender Differences in Rheumatoid Arthritis: Interleukin-4 Plays an Important Role. J Immunol Res 2020; 2020:4121524. [PMID: 33426089 PMCID: PMC7781692 DOI: 10.1155/2020/4121524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/30/2020] [Accepted: 11/28/2020] [Indexed: 02/08/2023] Open
Abstract
Introduction Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by symmetrical peripheral polyarthritis. A large number of studies have shown that RA is characterized by gender differences in clinical manifestations. The purpose of this study is to identify the key molecules of gender differences in patients with RA and to provide new molecular targets for personalized therapy. Material and Methods. The data from GSE55457 were downloaded from the comprehensive gene expression comprehensive database, and two groups (RA vs. No-RA groups, Male-RA vs. Female-RA groups) of differentially expressed genes (EDGs) were obtained by GEO2R. The GO function and KEGG pathway analyses of DEGs were carried out through the plug-in ClueGO in Cytoscape. Based on the STRING online, a protein-protein interaction (PPI) network was constructed. Hub genes were selected from CytoHubba. Through the intersection of the top 10 hub genes in two sets of EDGs, the key genes and related KEGG pathways were found. Quantitative Real-Time PCR and Western blotting analysis were performed for verification. Results 1230 DEGs were screened between RA and No-RA groups, and 306 DEGs were screened between male and female RA groups. The common key gene of the two groups is IL-4. Between RA group and No-RA group, interleukin-4 (IL-4) participates in cytokine-cytokine receptor interaction, Th1 and Th2 cell differentiation, Th17 cell differentiation, T cell receptor signaling pathway, etc. Conclusion This study contributes to the molecular biological mechanism of gender differences in RA. IL-4 may have played an important role.
Collapse
|
9
|
Immunotherapy for the rheumatoid arthritis-associated coronary artery disease: promise and future. Chin Med J (Engl) 2020; 132:2972-2983. [PMID: 31855971 PMCID: PMC6964948 DOI: 10.1097/cm9.0000000000000530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Objective: To review the latest progress on the pathogenic mechanism and management of rheumatoid arthritis (RA)-associated coronary artery disease (CAD), and propose advice on future management optimization as well as prospects for research and development of new therapeutic regimen. Data sources: This study was based on data obtained from PubMed up to May 2019 using various search terms and their combinations, including coronary artery disease, myocardial ischemia, cardiovascular diseases, RA, rheumatic diseases, treatment, therapy, strategies, immunotherapy, inflammation, and anti-inflammation. Study selection: All retrieved literature was scrutinized, most relevant articles about the pathogenic mechanism and clinical management, especially anti-inflammatory therapy of RA-associated CAD were reviewed. Results: RA is an immune-mediated chronic inflammatory disease which has a great social disease burden. In addition to typical arthritic manifestations, RA also affects extra-articular tissues and organs, within which the involvement of the cardiovascular system, especially incorporating CAD, is the leading cause of death for patients with RA. Recently, numerous basic and clinical studies have been carried out on the mechanism of CAD development and progression under the inflammatory cascade of RA. The effect of traditional RA drugs on CAD risk management has been gradually clarified, and more emerging biologic agents are being explored and studied, which have also achieved satisfactory outcomes. Furthermore, with the success of the CANTOS clinical trial, novel anti-inflammatory therapy for the prevention of cardiovascular disease is believed to have a broad prospect. Conclusions: RA is an independent risk factor for CAD, which mainly results from the underlying inflammatory cascade; therefore, anti-inflammatory therapy, especially the emerging novel biologic drugs, is important for CAD management in patients with RA and may also be a promising approach among the general population.
Collapse
|
10
|
Lee S, Koh J, Chang Y, Kim HY, Chung DH. Invariant NKT Cells Functionally Link Microbiota-Induced Butyrate Production and Joint Inflammation. THE JOURNAL OF IMMUNOLOGY 2019; 203:3199-3208. [PMID: 31732526 DOI: 10.4049/jimmunol.1801314] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 09/20/2019] [Indexed: 01/05/2023]
Abstract
Emerging evidence indicates that the gut microbiota contributes to the regulation of joint inflammation by modulating the function of immune cells. However, the mechanism by which the microbiota regulates joint inflammation is unclear. To address this, we investigated the effect of the gut microbiota on Ab-induced arthritis (AIA). Feeding mice a high-fiber diet attenuated AIA in a microbiota-dependent manner. Among the short-chain fatty acids produced by the microbiota, butyrate suppressed cytokine production by invariant NKT (iNKT) cells by inhibiting class I histone deacetylases. Furthermore, butyrate alleviated AIA in wild-type, but not iNKT cell-deficient Jα18 knockout (KO), mice. Adoptive transfer of butyrate-pretreated iNKT cells had no effect on AIA in Jα18 KO mice, whereas transfer of untreated iNKT cells into Jα18 KO mice restored AIA. In conclusion, our data indicate that gut microbiota-induced butyrate production attenuates AIA by inhibiting cytokine production by iNKT cells. Thus, the microbiota/butyrate/iNKT cell axis may be a therapeutic target for joint inflammation.
Collapse
Affiliation(s)
- Sangsin Lee
- Laboratory of Immune Regulation, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Korea
| | - Jaemoon Koh
- Department of Pathology, College of Medicine, Seoul National University, Seoul 110-799, Korea; and
| | - Yuna Chang
- Laboratory of Mucosal Immunity, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunity, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Korea
| | - Doo Hyun Chung
- Laboratory of Immune Regulation, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Korea; .,Department of Pathology, College of Medicine, Seoul National University, Seoul 110-799, Korea; and
| |
Collapse
|
11
|
Li P, Wang X, Guo X, Wen Y, Liu L, Liang X, Du Y, Wu C, Wang S, Zhang F. Integrative analysis of genome-wide association study and expression quantitative trait loci datasets identified various immune cell-related pathways for rheumatoid arthritis. Ann Hum Genet 2019; 84:72-79. [PMID: 31486066 DOI: 10.1111/ahg.12351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/23/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune chronic disorder manifesting as warm, swollen, and painful joints. Multiple immune cells are implicated in the development of RA. Previous studies demonstrated that integrating the genetic information of genome-wide association studies (GWAS) and expression quantitative trait loci (eQTLs) is capable of identifying new disease-risk loci and providing novel insights into the etiology of complex human disease. In this study, we conducted an integrative pathway association analysis of RA by using GWAS summary data and five immune cell types related to eQTL datasets of RA. After combining the cell-specific eQTLs and GWAS summary of RA and performing a pathway-enrichment analysis, we detected a group of RA-associated pathways with common or cell-specific enriched in the five immune cell types. 41 pathways for B cells, 33 pathways for CD4+ T cells, 27 pathways for CD8+ T cells, 39 pathways for monocyte, and 25 pathways for natural killer cells are significant in RA, among which 48% are common pathways and 32% are cell-specific pathways. We detected a group of RA-associated eQTL pathways related to five different immune cell types. Our findings may provide novel insights into the pathogenesis of RA.
Collapse
Affiliation(s)
- Ping Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Xi Wang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Xiong Guo
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yan Wen
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Li Liu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Xiao Liang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yanan Du
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Cuiyan Wu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Sen Wang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Feng Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| |
Collapse
|
12
|
Tilkeridis K, Kiziridis G, Ververidis A, Papoutselis M, Kotsianidis I, Kitsikidou G, Tousiaki NE, Drosos G, Kapetanou A, Rechova KV, Kazakos K, Spanoudakis E. Immunoporosis: A New Role for Invariant Natural Killer T (NKT) Cells Through Overexpression of Nuclear Factor-κB Ligand (RANKL). Med Sci Monit 2019; 25:2151-2158. [PMID: 30903656 PMCID: PMC6441308 DOI: 10.12659/msm.912119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Osteoporosis affects millions of postmenopausal women worldwide. Invariant natural killer T cells (iNKT) are important cells for bone homeostasis. The sim of this study was to investigate the contribution of invariant natural killer T cells (iNKT) in the increased receptor activator of the nuclear factor-κB ligand (RANKL) pool and bone resorption, a characteristic of patients with osteoporosis. Material/Methods Whole blood was collected from 79 female patients. The dual energy x-absorptiometry scan was performed in all patients, and the T-score was calculated in order to classify our patients according to the World Human Organization (WHO) criteria for diagnosis and classification of osteoporosis. Eleven patients had a T-score <−1.0 and were encompassed in our normal donors (ND) group, 46 patients had a T-score between −1 and −2.5 and were included in the osteopenia group, while 22 patients had a T-score > −2.5 and were included in the osteoporosis group. We performed a-galactosylceramide activation of iNKT cells in vitro. Surface RANKL expression was detected by multicolor flow cytometry in naive and activated lymphocytes. Beta-Crosslaps (β-CTx) levels were measured in whole blood plasma by ELISA (enzyme-linked immunosorbent assay). Results Although iNKT cells were not clonally expanded in patients with osteoporosis, iNKT cells from osteoporotic patients overexpressed RANKL compared to ND and osteopenic patients. This is a distinctive feature of iNKT cells and is not seen in conventional T-lymphocytes. RANKL expression in iNKT cells was not related to β-CTx levels in the blood. Finally, iNKT cell activation by the prototypal glycolipid ligand α-galactosylceramide increased by 8 times their RANKL expression. Conclusions In patients with osteoporosis, iNKT cells specifically overexpress RANKL, a cytokine that regulates osteoclast activity. It seems that iNKT cells have a long-standing effect of on the bone physiology, which plays an important role in the bone loss of patients with osteoporosis.
Collapse
Affiliation(s)
- Konstantinos Tilkeridis
- Department of Orthopaedics, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | - Georgios Kiziridis
- Department of Orthopaedics, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | - Athanasios Ververidis
- Department of Orthopaedics, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | - Menelaos Papoutselis
- Department of Haematology, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | - Ioannis Kotsianidis
- Department of Haematology, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | - Gesthimani Kitsikidou
- Department of Orthopaedics, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | | | - Georgios Drosos
- Department of Orthopaedics, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | - Artemis Kapetanou
- Department of Orthopaedics, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | | | - Konstantinos Kazakos
- Department of Orthopaedics, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | - Emmanouil Spanoudakis
- Department of Haematology, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| |
Collapse
|
13
|
Li S, Yang D, Peng T, Wu Y, Tian Z, Ni B. Innate lymphoid cell-derived cytokines in autoimmune diseases. J Autoimmun 2017; 83:62-72. [PMID: 28479212 DOI: 10.1016/j.jaut.2017.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/31/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023]
Abstract
The most recently recognized types of immune cells, the innate lymphoid cells (ILCs), have been sub-divided according to respective distinct expression profiles of regulatory factors or/and cytokines. ILCs have also been shown to participate in a variety of beneficial immune responses, including participation in attack against pathogens and mediation of the pre-inflammatory and inflammatory responses through their production of pro-inflammatory cytokines. As such, while the ILCs exert protective effects they may also become detrimental upon dysregulation. Indeed, recent studies of the ILCs have revealed a strong association with the advent and pathogenesis of several common autoimmune diseases, including psoriasis, inflammatory bowel disease (IBD) and multiple sclerosis (MS). Though the ILCs belong to lineage negative cells that are distinctive from the Th cells, the profiles of secreted cytokines from the ILCs overlap with those of the corresponding Th subsets. Nevertheless, considering that the ILCs belong to the innate immune system and the Th cells belong to the adaptive immune system, it is expected that the ILCs should function at the early stage of diseases and the Th cells should exert predominant effects at the late stage of diseases. Therefore, it is intriguing to consider targeting of ILCs for therapy by targeting the corresponding cytokines at the early stage of diseases, with the late stage cytokine targeting mainly influencing the Th cells' function. Here, we review the knowledge to date on the roles of ILCs in various autoimmune diseases and discuss their potential as new therapeutic targets.
Collapse
Affiliation(s)
- Sirui Li
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing 400038, PR China; Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China; Battalion 3 of Cadet Brigade, Third Military Medical University, Chongqing 400038, PR China
| | - Di Yang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China
| | - Tingwei Peng
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing 400038, PR China; Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China; Battalion 3 of Cadet Brigade, Third Military Medical University, Chongqing 400038, PR China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China.
| | - Zhiqiang Tian
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China.
| | - Bing Ni
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing 400038, PR China; Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
14
|
Li H, Wang L, Pang Y, Jiang Z, Liu Z, Xiao H, Chen H, Ge X, Lan H, Xiao Y. In patients with chronic aplastic anemia, bone marrow-derived MSCs regulate the Treg/Th17 balance by influencing the Notch/RBP-J/FOXP3/RORγt pathway. Sci Rep 2017; 7:42488. [PMID: 28195151 PMCID: PMC5307358 DOI: 10.1038/srep42488] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/11/2017] [Indexed: 01/25/2023] Open
Abstract
The standard treatment for aplastic anemia (AA) in young patients is a matched sibling hematopoietic stem cell transplant. Transfusion of a chronic AA patient with allogeneic bone marrow–derived mesenchymal stromal cells (BMMSCs) is currently being developed as a cell-based therapy, and the safety and efficacy of such transfusions are being continuously improved. Nevertheless, the mechanisms by which BMMSCs exert their therapeutic effects remain to be elucidated. In this study, mesenchymal stromal cells (MSCs) obtained from bone marrow donors were concentrated and intravenously injected into 15 chronic AA patients who had been refractory to prior immunosuppressive therapy. We showed that BMMSCs modulate the levels of Th1, Th2, Th17 and Treg cells, as well as their related cytokines in chronic AA patients. Furthermore, the percentages of Th1 and Th17 cells among the H-MSCs decreased significantly, while the percentage Treg cells increased. The Notch/RBP-J/FOXP3/RORγt pathway was involved in modulating the Treg/Th17 balance after MSCs were transfused in vitro. Additionally, the role played by transfused MSCs in regulating the Treg/Th17 balance via the Notch/RBP-J/FOXP3/RORγt pathway was further confirmed in an AA mouse model. In summary, in humans with chronic AA, BMMSCs regulate the Treg/Th17 balance by affecting the Notch/RBP-J/FOXP3/RORγt pathway.
Collapse
Affiliation(s)
- Hongbo Li
- Department of Hematology, General Hospital of Guangzhou Military Command of Chinese PLA; Guangzhou, Guangdong 510010, P.R. China
| | - Lin Wang
- Department of Emergency, The First Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou, Guangdong 510405, P.R. China
| | - Yan Pang
- Department of Hematology, General Hospital of Guangzhou Military Command of Chinese PLA; Guangzhou, Guangdong 510010, P.R. China
| | - Zujun Jiang
- Department of Hematology, General Hospital of Guangzhou Military Command of Chinese PLA; Guangzhou, Guangdong 510010, P.R. China
| | - Zenghui Liu
- Department of Hematology, General Hospital of Guangzhou Military Command of Chinese PLA; Guangzhou, Guangdong 510010, P.R. China
| | - Haowen Xiao
- Department of Hematology, General Hospital of Guangzhou Military Command of Chinese PLA; Guangzhou, Guangdong 510010, P.R. China
| | - Haijia Chen
- Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong, 510000, P.R. China
| | - Xiaohu Ge
- Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong, 510000, P.R. China
| | - Hai Lan
- Department of Hematology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405 P.R. China
| | - Yang Xiao
- Department of Hematology, General Hospital of Guangzhou Military Command of Chinese PLA; Guangzhou, Guangdong 510010, P.R. China.,Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong, 510000, P.R. China
| |
Collapse
|
15
|
De Biasi S, Simone AM, Nasi M, Bianchini E, Ferraro D, Vitetta F, Gibellini L, Pinti M, Del Giovane C, Sola P, Cossarizza A. iNKT Cells in Secondary Progressive Multiple Sclerosis Patients Display Pro-inflammatory Profiles. Front Immunol 2016; 7:555. [PMID: 27965675 PMCID: PMC5127814 DOI: 10.3389/fimmu.2016.00555] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS), an autoimmune disease with neurodegeneration and inflammation is characterized by several alterations of different T cell subsets. However, few data exist on the role of iNKT lymphocytes. OBJECTIVE To identify possible changes in the phenotype of iNKT cells in patients with different clinical forms of MS and find alterations in their polyfunctionality [i.e., ability to produce simultaneously up to four cytokines such as IL-17, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and IL-4]. METHODS We studied a total of 165 patients, 91 with a relapsing-remitting form [RR; 31 were treated with interferon (IFN)1a-β, 25 with natalizumab (NAT), 29 with glatiramer acetate; 17 were newly diagnosed RR without treatment, 19 not-active RR without treatment]. Forty-four patients had a progressive MS: 20 primary progressive (PP) and 24 secondary progressive (SP). A total of 55 age- and sex-matched subjects represented healthy controls (CTR). Among fresh peripheral blood mononuclear cells, iNKT cells were identified by flow cytometry. Moreover, the capability of iNKT cells to produce different cytokines (IL-17, TNF-α, IFN-γ, and IL-4) after in vitro stimulation were evaluated in 18 RR (11 treated with NAT and 7 with IFN), 4 PP, 6 SP, and 16 CTR. RESULTS No main differences were found in iNKT cell phenotype among MS patients with different MS forms or during different treatments. However, the polyfunctional response of iNKT cells showed Th1 and Th17 profiles. This was well evident in patients with SP form, who are characterized by high levels of inflammation and neurodegeneration, and exhibited a sustained increase in the production of Th17 cytokines. Patients treated with NAT displayed lower levels of iNKT cells producing IL-17, TNF-α, and IFN-γ. CONCLUSION Our data suggest that the progressive phase of the disease is characterized by permanent iNKT activation and a skewing towards an inflammatory phenotype. Compared to other treatments, NAT was able to modulate iNKT cell function.
Collapse
Affiliation(s)
- Sara De Biasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia , Modena , Italy
| | - Anna Maria Simone
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, University of Modena and Reggio Emilia , Modena , Italy
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia , Modena , Italy
| | - Elena Bianchini
- Department of Life Sciences, University of Modena and Reggio Emilia , Modena , Italy
| | - Diana Ferraro
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, University of Modena and Reggio Emilia , Modena , Italy
| | - Francesca Vitetta
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, University of Modena and Reggio Emilia , Modena , Italy
| | - Lara Gibellini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia , Modena , Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia , Modena , Italy
| | - Cinzia Del Giovane
- Department of Diagnostic and Clinical Medicine and Public Health, University of Modena and Reggio Emilia , Modena , Italy
| | - Patrizia Sola
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, University of Modena and Reggio Emilia , Modena , Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia , Modena , Italy
| |
Collapse
|