1
|
Simpson LL, Stembridge M, Siebenmann C, Moore JP, Lawley JS. Mechanisms underpinning sympathoexcitation in hypoxia. J Physiol 2024; 602:5485-5503. [PMID: 38533641 DOI: 10.1113/jp284579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Sympathoexcitation is a hallmark of hypoxic exposure, occurring acutely, as well as persisting in acclimatised lowland populations and with generational exposure in highland native populations of the Andean and Tibetan plateaus. The mechanisms mediating altitude sympathoexcitation are multifactorial, involving alterations in both peripheral autonomic reflexes and central neural pathways, and are dependent on the duration of exposure. Initially, hypoxia-induced sympathoexcitation appears to be an adaptive response, primarily mediated by regulatory reflex mechanisms concerned with preserving systemic and cerebral tissue O2 delivery and maintaining arterial blood pressure. However, as exposure continues, sympathoexcitation is further augmented above that observed with acute exposure, despite acclimatisation processes that restore arterial oxygen content (C a O 2 ${C_{{\mathrm{a}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ). Under these conditions, sympathoexcitation may become maladaptive, giving rise to reduced vascular reactivity and mildly elevated blood pressure. Importantly, current evidence indicates the peripheral chemoreflex does not play a significant role in the augmentation of sympathoexcitation during altitude acclimatisation, although methodological limitations may underestimate its true contribution. Instead, processes that provide no obvious survival benefit in hypoxia appear to contribute, including elevated pulmonary arterial pressure. Nocturnal periodic breathing is also a potential mechanism contributing to altitude sympathoexcitation, although experimental studies are required. Despite recent advancements within the field, several areas remain unexplored, including the mechanisms responsible for the apparent normalisation of muscle sympathetic nerve activity during intermediate hypoxic exposures, the mechanisms accounting for persistent sympathoexcitation following descent from altitude and consideration of whether there are sex-based differences in sympathetic regulation at altitude.
Collapse
Affiliation(s)
- Lydia L Simpson
- Department of Sport Science, Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | | | - Jonathan P Moore
- School of Psychology and Sport Science, Institute of Applied Human Physiology, Bangor University, Bangor, UK
| | - Justin S Lawley
- Department of Sport Science, Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
- Institute of Mountain Emergency Medicine, EURAC Research, Bolzano, Italy
| |
Collapse
|
2
|
Hilty MP, Siebenmann C, Rasmussen P, Keiser S, Müller A, Lundby C, Maggiorini M. Beta-adrenergic blockade increases pulmonary vascular resistance and causes exaggerated hypoxic pulmonary vasoconstriction at high altitude: a physiological study. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2024; 10:316-328. [PMID: 38216517 DOI: 10.1093/ehjcvp/pvae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/13/2023] [Accepted: 01/11/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND An increasing number of hypertensive persons travel to high altitude (HA) while using antihypertensive medications such as beta-blockers. Nevertheless, while hypoxic exposure initiates an increase in pulmonary artery pressure (Ppa) and pulmonary vascular resistance (PVR), the contribution of the autonomic nervous system is unclear. In animals, beta-adrenergic blockade has induced pulmonary vasoconstriction in normoxia and exaggerated hypoxic pulmonary vasoconstriction (HPV) and both effects were abolished by muscarinic blockade. We thus hypothesized that in humans, propranolol (PROP) increases Ppa and PVR in normoxia and exaggerates HPV, and that these effects of PROP are abolished by glycopyrrolate (GLYC). METHODS In seven healthy male lowlanders, Ppa was invasively measured without medication, with PROP and PROP + GLYC, both at sea level (SL, 488 m) and after a 3-week sojourn at 3454 m altitude (HA). Bilateral thigh-cuff release manoeuvres were performed to derive pulmonary pressure-flow relationships and pulmonary vessel distensibility. RESULTS At SL, PROP increased Ppa and PVR from (mean ± SEM) 14 ± 1 to 17 ± 1 mmHg and from 69 ± 8 to 108 ± 11 dyn s cm-5 (21% and 57% increase, P = 0.01 and P < 0.0001). The PVR response to PROP was amplified at HA to 76% (P < 0.0001, P[interaction] = 0.05). At both altitudes, PROP + GLYC abolished the effect of PROP on Ppa and PVR. Pulmonary vessel distensibility decreased from 2.9 ± 0.5 to 1.7 ± 0.2 at HA (P < 0.0001) and to 1.2 ± 0.2 with PROP, and further decreased to 0.9 ± 0.2% mmHg-1 with PROP + GLYC (P = 0.01). CONCLUSIONS Our data show that beta-adrenergic blockade increases, and muscarinic blockade decreases PVR, whereas both increase pulmonary artery elastance. Future studies may confirm potential implications from the finding that beta-adrenergic blockade exaggerates HPV for the management of mountaineers using beta-blockers for prevention or treatment of cardiovascular conditions.
Collapse
Affiliation(s)
- Matthias Peter Hilty
- Institute of Intensive Care Medicine, University Hospital of Zurich, ZH 8091, Switzerland
| | - Christoph Siebenmann
- Center for Integrative Human Physiology (ZIHP), Institute of Physiology, University of Zurich, ZH 8091, Switzerland
- Institute of Mountain Emergency Medicine, EURAC Research, Bolzano, TA 39100, Italy
| | - Peter Rasmussen
- Center for Integrative Human Physiology (ZIHP), Institute of Physiology, University of Zurich, ZH 8091, Switzerland
| | - Stefanie Keiser
- Center for Integrative Human Physiology (ZIHP), Institute of Physiology, University of Zurich, ZH 8091, Switzerland
| | - Andrea Müller
- Institute of Intensive Care Medicine, University Hospital of Zurich, ZH 8091, Switzerland
| | - Carsten Lundby
- Center for Integrative Human Physiology (ZIHP), Institute of Physiology, University of Zurich, ZH 8091, Switzerland
- Department of Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, OP 2624, Norway
| | - Marco Maggiorini
- Institute of Intensive Care Medicine, University Hospital of Zurich, ZH 8091, Switzerland
| |
Collapse
|
3
|
Moya EA, Yu JJ, Brown S, Gu W, Lawrence ES, Carlson R, Brandes A, Wegeng W, Amann K, McIntosh SE, Powell FL, Simonson TS. Tibetans exhibit lower hemoglobin concentration and decreased heart response to hypoxia during poikilocapnia at intermediate altitude relative to Han Chinese. Front Physiol 2024; 15:1334874. [PMID: 38784113 PMCID: PMC11112024 DOI: 10.3389/fphys.2024.1334874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/09/2024] [Indexed: 05/25/2024] Open
Abstract
Background High-altitude populations exhibit distinct cellular, respiratory, and cardiovascular phenotypes, some of which provide adaptive advantages to hypoxic conditions compared to populations with sea-level ancestry. Studies performed in populations with a history of high-altitude residence, such as Tibetans, support the idea that many of these phenotypes may be shaped by genomic features that have been positively selected for throughout generations. We hypothesize that such traits observed in Tibetans at high altitude also occur in Tibetans living at intermediate altitude, even in the absence of severe sustained hypoxia. Methodology We studied individuals of high-altitude ancestry (Tibetans, n = 17 females; n = 12 males) and sea-level ancestry (Han Chinese, n = 6 females; n = 10 males), both who had been living at ∼1300 m (∼4327 ft) for at least 18 months. We measured hemoglobin concentration ([Hb]), hypoxic ventilatory response (HVR), and hypoxic heart rate response (HHRR) with end-tidal CO2 (PetCO2) held constant (isocapnia) or allowed to decrease with hypoxic hyperventilation (poikilocapnia). We also quantified the contribution of CO2 on ventilation and heart rate by calculating the differences of isocapnic versus poikilocapnic hypoxic conditions (Δ V ˙ I /ΔPetCO2 and ΔHR/ΔPetCO2, respectively). Results Male Tibetans had lower [Hb] compared to Han Chinese males (p < 0.05), consistent with reports for individuals from these populations living at high altitude and sea level. Measurements of ventilation (resting ventilation, HVR, and PetCO2) were similar for both groups. Heart rate responses to hypoxia were similar in both groups during isocapnia; however, HHRR in poikilocapnia was reduced in the Tibetan group (p < 0.03), and the heart rate response to CO2 in hypoxia was lower in Tibetans relative to Han Chinese (p < 0.01). Conclusion These results suggest that Tibetans living at intermediate altitude have blunted cardiac responses in the context of hypoxia. Hence, only some of the phenotypes observed in Tibetans living at high altitude are observed in Tibetans living at intermediate altitude. Whereas blunted cardiac responses to hypoxia is revealed at intermediate altitudes, manifestation of other physiological adaptations to high altitude may require exposure to more severe levels of hypoxia.
Collapse
Affiliation(s)
- E. A. Moya
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - J. J. Yu
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - S. Brown
- Department of Anesthesiology, Loyola University Medical Center, Maywood, IL, United States
| | - W. Gu
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - E. S. Lawrence
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - R. Carlson
- School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - A. Brandes
- School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - W. Wegeng
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - K. Amann
- Department of Emergency Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - S. E. McIntosh
- Department of Emergency Medicine, University of Utah Health, Salt Lake City, UT, United States
| | - F. L. Powell
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - T. S. Simonson
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
4
|
Ortiz-Saavedra B, Montes-Madariaga ES, Moreno-Loaiza O, Toro-Huamanchumo CJ. Hypertension subtypes at high altitude in Peru: Analysis of the Demographic and Family Health Survey 2016-2019. PLoS One 2024; 19:e0300457. [PMID: 38608222 PMCID: PMC11014732 DOI: 10.1371/journal.pone.0300457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/27/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The prevalence of hypertension in Peru has increased over the years. Approximately one third of the Peruvian population lives at high altitudes. This population presents particular physiological, genetic and environmental characteristics that could be related to the prevalence of hypertension and its subtypes. OBJECTIVE To assess the association between altitude and hypertension in the Peruvian population through an analysis of a nationally representative survey. METHODS We conducted a cross-sectional analysis of the Demographic and Family Health Survey for the period 2016-2019. We included 122,336 individuals aged 18 years and older. Hypertension was defined according to the JNC-7 guidelines. High-altitude location was defined as a residential cluster located above 2,500 meters above sea level. We utilized generalized linear models from the Poisson family with a log-link function to assess the magnitude of the association between high altitude and hypertension. Additionally, we employed multinomial regression models to analyze the association between high altitude and subtypes of hypertension, including isolated systolic hypertension (ISH), isolated diastolic hypertension (IDH), and systolic-diastolic hypertension (SDH). RESULTS In the adjusted Poisson regression model, we found that the prevalence of hypertension among participants living at high altitudes was lower compared to those living at low altitudes (aPR: 0.89; 95% CI: 0.86-0.93). In the adjusted multinomial regression model, we observed a lower prevalence rate of ISH among participants residing at high altitudes (aRPR: 0.68; 95% CI: 0.61-0.73) and a higher prevalence rate of IDH among participants residing at high altitudes (aRPR: 1.60; 95% CI: 1.32-1.94). CONCLUSIONS Residents at high altitudes in Peru have a lower prevalence rate of ISH and a higher prevalence rate of IDH compared to those living at low altitudes. Further studies are needed to determine the influence of other biological, environmental, and healthcare access factors on this relationship.
Collapse
Affiliation(s)
| | | | - Oscar Moreno-Loaiza
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brasil
| | - Carlos J. Toro-Huamanchumo
- Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima, Peru
- OBEMET Center for Obesity and Metabolic Health, Lima, Peru
| |
Collapse
|
5
|
Steele AR, Howe CA, Gibbons TD, Foster K, Williams AM, Caldwell HG, Brewster LM, Duffy J, Monteleone JA, Subedi P, Anholm JD, Stembridge M, Ainslie PN, Tremblay JC. Hemorheological, cardiorespiratory, and cerebrovascular effects of pentoxifylline following acclimatization to 3,800 m. Am J Physiol Heart Circ Physiol 2024; 326:H705-H714. [PMID: 38241007 PMCID: PMC11221811 DOI: 10.1152/ajpheart.00783.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
Pentoxifylline is a nonselective phosphodiesterase inhibitor used for the treatment of peripheral artery disease. Pentoxifylline acts through cyclic adenosine monophosphate, thereby enhancing red blood cell deformability, causing vasodilation and decreasing inflammation, and potentially stimulating ventilation. We conducted a double-blind, placebo-controlled, crossover, counter-balanced study to test the hypothesis that pentoxifylline could lower blood viscosity, enhance cerebral blood flow, and decrease pulmonary artery pressure in lowlanders following 11-14 days at 3,800 m. Participants (6 males/10 females; age, 27 ± 4 yr old) received either a placebo or 400 mg of pentoxifylline orally the night before and again 2 h before testing. We assessed arterial blood gases, venous hemorheology (blood viscosity, red blood cell deformability, and aggregation), and inflammation (TNF-α) in room air (end-tidal oxygen partial pressure, ∼52 mmHg). Global cerebral blood flow (gCBF), ventilation, and pulmonary artery systolic pressure (PASP) were measured in room air and again after 8-10 min of isocapnic hypoxia (end-tidal oxygen partial pressure, 40 mmHg). Pentoxifylline did not alter arterial blood gases, TNF-α, or hemorheology compared with placebo. Pentoxifylline did not affect gCBF or ventilation during room air or isocapnic hypoxia compared with placebo. However, in females, PASP was reduced with pentoxifylline during room air (placebo, 19 ± 3; pentoxifylline, 16 ± 3 mmHg; P = 0.021) and isocapnic hypoxia (placebo, 22 ± 5; pentoxifylline, 20 ± 4 mmHg; P = 0.029), but not in males. Acute pentoxifylline administration in lowlanders at 3,800 m had no impact on arterial blood gases, hemorheology, inflammation, gCBF, or ventilation. Unexpectedly, however, pentoxifylline reduced PASP in female participants, indicating a potential effect of sex on the pulmonary vascular responses to pentoxifylline.NEW & NOTEWORTHY We conducted a double-blind, placebo-controlled study on the rheological, cardiorespiratory and cerebrovascular effects of acute pentoxifylline in healthy lowlanders after 11-14 days at 3,800 m. Although red blood cell deformability was reduced and blood viscosity increased compared with low altitude, acute pentoxifylline administration had no impact on arterial blood gases, hemorheology, inflammation, cerebral blood flow, or ventilation. Pentoxifylline decreased pulmonary artery systolic pressure in female, but not male, participants.
Collapse
Affiliation(s)
- Andrew R Steele
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Connor A Howe
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Travis D Gibbons
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States
| | - Katharine Foster
- Pulmonary and Critical Care, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California, United States
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States
| | - Alexandra M Williams
- Department of Cellular & Physiological Sciences, Faculty of Medicine, University of British Columbia, Kelowna, British Columbia, Canada
| | - Hannah G Caldwell
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - L Madden Brewster
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Jennifer Duffy
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Justin A Monteleone
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Prajan Subedi
- Pulmonary and Critical Care, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California, United States
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States
| | - James D Anholm
- Pulmonary and Critical Care, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California, United States
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Philip N Ainslie
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Joshua C Tremblay
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| |
Collapse
|
6
|
Tymko MM, Young D, Vergel D, Matenchuk BA, Maier LE, Sivak A, Davenport MH, Steinback CD. The effect of hypoxemia on muscle sympathetic nerve activity and cardiovascular function: a systematic review and meta-analysis. Am J Physiol Regul Integr Comp Physiol 2023; 325:R474-R489. [PMID: 37642283 DOI: 10.1152/ajpregu.00021.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
We conducted a systematic review and meta-analysis to determine the effect of acute poikilocapnic, high-altitude, and acute isocapnia hypoxemia on muscle sympathetic nerve activity (MSNA) and cardiovascular function. A comprehensive search across electronic databases was performed until June 2021. All observational designs were included: population (healthy individuals); exposures (MSNA during hypoxemia); comparators (hypoxemia severity and duration); outcomes (MSNA; heart rate, HR; and mean arterial pressure, MAP). Sixty-one studies were included in the meta-analysis. MSNA burst frequency increased by a greater extent during high-altitude hypoxemia [P < 0.001; mean difference (MD), +22.5 bursts/min; confidence interval (CI) = -19.20 to 25.84] compared with acute poikilocapnic hypoxemia (P < 0.001; MD, +5.63 bursts/min; CI = -4.09 to 7.17) and isocapnic hypoxemia (P < 0.001; MD, +4.72 bursts/min; CI = -3.37 to 6.07). MSNA burst amplitude was only elevated during acute isocapnic hypoxemia (P = 0.03; standard MD, +0.46 au; CI = -0.03 to 0.90), and MSNA burst incidence was only elevated during high-altitude hypoxemia [P < 0.001; MD, 33.05 bursts/100 heartbeats; CI = -28.59 to 37.51]. Meta-regression analysis indicated a strong relationship between MSNA burst frequency and hypoxemia severity for acute isocapnic studies (P < 0.001) but not acute poikilocapnia (P = 0.098). HR increased by the same extent across each type of hypoxemia [P < 0.001; MD +13.81 heartbeats/min; 95% CI = 12.59-15.03]. MAP increased during high-altitude hypoxemia (P < 0.001; MD, +5.06 mmHg; CI = 3.14-6.99), and acute isocapnic hypoxemia (P < 0.001; MD, +1.91 mmHg; CI = 0.84-2.97), but not during acute poikilocapnic hypoxemia (P = 0.95). Both hypoxemia type and severity influenced sympathetic nerve and cardiovascular function. These data are important for the better understanding of healthy human adaptation to hypoxemia.
Collapse
Affiliation(s)
- Michael M Tymko
- Integrative Cerebrovascular and Environmental Physiology SB Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Desmond Young
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel Vergel
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Brittany A Matenchuk
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
- Program for Pregnancy and Postpartum Health, Faculty of Kinesiology, Sports and Recreation, Women and Children's Health Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Lauren E Maier
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Allison Sivak
- H.T. Coutts Education and Physical Education Library, University of Alberta, Edmonton, Alberta, Canada
| | - Margie H Davenport
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
- Program for Pregnancy and Postpartum Health, Faculty of Kinesiology, Sports and Recreation, Women and Children's Health Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Craig D Steinback
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Wan HY, Bunsawat K, Amann M. Autonomic cardiovascular control during exercise. Am J Physiol Heart Circ Physiol 2023; 325:H675-H686. [PMID: 37505474 PMCID: PMC10659323 DOI: 10.1152/ajpheart.00303.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/11/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
The cardiovascular response to exercise is largely determined by neurocirculatory control mechanisms that help to raise blood pressure and modulate vascular resistance which, in concert with regional vasodilatory mechanisms, promote blood flow to active muscle and organs. These neurocirculatory control mechanisms include a feedforward mechanism, known as central command, and three feedback mechanisms, namely, 1) the baroreflex, 2) the exercise pressor reflex, and 3) the arterial chemoreflex. The hemodynamic consequences of these control mechanisms result from their influence on the autonomic nervous system and subsequent alterations in cardiac output and vascular resistance. Although stimulation of the baroreflex inhibits sympathetic outflow and facilitates parasympathetic activity, central command, the exercise pressor reflex, and the arterial chemoreflex facilitate sympathetic activation and inhibit parasympathetic drive. Despite considerable understanding of the cardiovascular consequences of each of these mechanisms in isolation, the circulatory impact of their interaction, which occurs when various control systems are simultaneously activated (e.g., during exercise at altitude), has only recently been recognized. Although aging and cardiovascular disease (e.g., heart failure, hypertension) have both been recognized to alter the hemodynamic consequences of these regulatory systems, this review is limited to provide a brief overview on the action and interaction of neurocirculatory control mechanisms in health.
Collapse
Affiliation(s)
- Hsuan-Yu Wan
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah, United States
| | - Kanokwan Bunsawat
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Markus Amann
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
8
|
Simpson LL, Hansen AB, Moralez G, Amin SB, Hofstaetter F, Gasho C, Stembridge M, Dawkins TG, Tymko MM, Ainslie PN, Lawley JS, Hearon CM. Adrenergic control of skeletal muscle blood flow during chronic hypoxia in healthy males. Am J Physiol Regul Integr Comp Physiol 2023; 324:R457-R469. [PMID: 36717165 PMCID: PMC10026988 DOI: 10.1152/ajpregu.00230.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
Sympathetic transduction is reduced following chronic high-altitude (HA) exposure; however, vascular α-adrenergic signaling, the primary mechanism mediating sympathetic vasoconstriction at sea level (SL), has not been examined at HA. In nine male lowlanders, we measured forearm blood flow (Doppler ultrasound) and calculated changes in vascular conductance (ΔFVC) during 1) incremental intra-arterial infusion of phenylephrine to assess α1-adrenergic receptor responsiveness and 2) combined intra-arterial infusion of β-adrenergic and α-adrenergic antagonists propranolol and phentolamine (α-β-blockade) to assess adrenergic vascular restraint at rest and during exercise-induced sympathoexcitation (cycling; 60% peak power). Experiments were performed near SL (344 m) and after 3 wk at HA (4,383 m). HA abolished the vasoconstrictor response to low-dose phenylephrine (ΔFVC: SL: -34 ± 15%, vs. HA; +3 ± 18%; P < 0.0001) and markedly attenuated the response to medium (ΔFVC: SL: -45 ± 18% vs. HA: -28 ± 11%; P = 0.009) and high (ΔFVC: SL: -47 ± 20%, vs. HA: -35 ± 20%; P = 0.041) doses. Blockade of β-adrenergic receptors alone had no effect on resting FVC (P = 0.500) and combined α-β-blockade induced a similar vasodilatory response at SL and HA (P = 0.580). Forearm vasoconstriction during cycling was not different at SL and HA (P = 0.999). Interestingly, cycling-induced forearm vasoconstriction was attenuated by α-β-blockade at SL (ΔFVC: Control: -27 ± 128 vs. α-β-blockade: +19 ± 23%; P = 0.0004), but unaffected at HA (ΔFVC: Control: -20 ± 22 vs. α-β-blockade: -23 ± 11%; P = 0.999). Our results indicate that in healthy males, altitude acclimatization attenuates α1-adrenergic receptor responsiveness; however, resting α-adrenergic restraint remains intact, due to concurrent resting sympathoexcitation. Furthermore, forearm vasoconstrictor responses to cycling are preserved, although the contribution of adrenergic receptors is diminished, indicating a reliance on alternative vasoconstrictor mechanisms.
Collapse
Affiliation(s)
- Lydia L Simpson
- Department of Sport Science, Division of Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
| | - Alexander B Hansen
- Department of Sport Science, Division of Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
| | - Gilbert Moralez
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Sachin B Amin
- Department of Sport Science, Division of Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
| | - Florian Hofstaetter
- Department of Sport Science, Division of Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
| | - Christopher Gasho
- Department of Medicine, Division of Pulmonary and Critical Care, Loma Linda University, Loma Linda, California, United States
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, Wales, United Kingdom
| | - Tony G Dawkins
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Michael M Tymko
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Philip N Ainslie
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Justin S Lawley
- Department of Sport Science, Division of Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Christopher M Hearon
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, United States
| |
Collapse
|
9
|
Ruggiero L, McNeil CJ. UBC-Nepal Expedition: Motor Unit Characteristics in Lowlanders Acclimatized to High Altitude and Sherpa. Med Sci Sports Exerc 2023; 55:430-439. [PMID: 36730980 DOI: 10.1249/mss.0000000000003070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION With acclimatization to high altitude (HA), adaptations occur throughout the nervous system and at the level of the muscle, which may affect motor unit (MU) characteristics. However, despite the importance of MUs as the final common pathway for the control of voluntary movement, little is known about their adaptations with acclimatization. METHODS Ten lowlanders and Sherpa participated in this study 7 to 14 d after arrival at HA (5050 m), with seven lowlanders repeating the experiment at sea level (SL), 6 months after the expedition. The maximal compound muscle action potential (M max ) was recorded from relaxed biceps brachii. During isometric elbow flexions at 10% of maximal torque, a needle electrode recorded the MU discharge rate (MUDR) and MU potential (MUP) characteristics of single biceps brachii MUs. RESULTS Compared with SL, acclimatized lowlanders had ~10% greater MUDR, ~11% longer MUP duration, as well as ~18% lower amplitude and ~6% greater duration of the first phase of the M max (all P < 0.05). No differences were noted between SL and HA for variables related to MUP shape (e.g., jitter, jiggle; P > 0.08). Apart from lower near-fiber MUP area for Sherpa than acclimatized lowlanders ( P < 0.05), no M max or MU data were different between groups ( P > 0.10). CONCLUSIONS Like other components of the body, MUs in lowlanders adapt with acclimatization to HA. The absence of differences between acclimatized lowlanders and Sherpa suggests that evolutionary adaptations to HA are smaller for MUs than components of the cardiovascular or respiratory systems.
Collapse
Affiliation(s)
| | - Chris J McNeil
- Integrated Neuromuscular Physiology Laboratory, Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, CANADA
| |
Collapse
|
10
|
Stacey BS, Hoiland RL, Caldwell HG, Howe CA, Vermeulen T, Tymko MM, Vizcardo‐Galindo GA, Bermudez D, Figueroa‐Mujíica RJ, Gasho C, Tuaillon E, Hirtz C, Lehmann S, Marchi N, Tsukamoto H, Villafuerte FC, Ainslie PN, Bailey DM. Lifelong exposure to high-altitude hypoxia in humans is associated with improved redox homeostasis and structural-functional adaptations of the neurovascular unit. J Physiol 2023; 601:1095-1120. [PMID: 36633375 PMCID: PMC10952731 DOI: 10.1113/jp283362] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
High-altitude (HA) hypoxia may alter the structural-functional integrity of the neurovascular unit (NVU). Herein, we compared male lowlanders (n = 9) at sea level (SL) and after 14 days acclimatization to 4300 m (chronic HA) in Cerro de Pasco (CdP), Péru (HA), against sex-, age- and body mass index-matched healthy highlanders (n = 9) native to CdP (lifelong HA). Venous blood was assayed for serum proteins reflecting NVU integrity, in addition to free radicals and nitric oxide (NO). Regional cerebral blood flow (CBF) was examined in conjunction with cerebral substrate delivery, dynamic cerebral autoregulation (dCA), cerebrovascular reactivity to carbon dioxide (CVRCO2 ) and neurovascular coupling (NVC). Psychomotor tests were employed to examine cognitive function. Compared to lowlanders at SL, highlanders exhibited elevated basal plasma and red blood cell NO bioavailability, improved anterior and posterior dCA, elevated anterior CVRCO2 and preserved cerebral substrate delivery, NVC and cognition. In highlanders, S100B, neurofilament light-chain (NF-L) and T-tau were consistently lower and cognition comparable to lowlanders following chronic-HA. These findings highlight novel integrated adaptations towards regulation of the NVU in highlanders that may represent a neuroprotective phenotype underpinning successful adaptation to the lifelong stress of HA hypoxia. KEY POINTS: High-altitude (HA) hypoxia has the potential to alter the structural-functional integrity of the neurovascular unit (NVU) in humans. For the first time, we examined to what extent chronic and lifelong hypoxia impacts multimodal biomarkers reflecting NVU structure and function in lowlanders and native Andean highlanders. Despite lowlanders presenting with a reduction in systemic oxidative-nitrosative stress and maintained cerebral bioenergetics and cerebrovascular function during chronic hypoxia, there was evidence for increased axonal injury and cognitive impairment. Compared to lowlanders at sea level, highlanders exhibited elevated vascular NO bioavailability, improved dynamic regulatory capacity and cerebrovascular reactivity, comparable cerebral substrate delivery and neurovascular coupling, and maintained cognition. Unlike lowlanders following chronic HA, highlanders presented with lower concentrations of S100B, neurofilament light chain and total tau. These findings highlight novel integrated adaptations towards the regulation of the NVU in highlanders that may represent a neuroprotective phenotype underpinning successful adaptation to the lifelong stress of HA hypoxia.
Collapse
Affiliation(s)
- Benjamin S. Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
| | - Ryan L. Hoiland
- Department of Anaesthesiology, Pharmacology and Therapeutics, Vancouver General HospitalUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Cellular and Physiological Sciences, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Hannah G. Caldwell
- Centre for Heart, Lung and Vascular HealthUniversity of British Columbia‐Okanagan CampusKelownaBritish ColumbiaCanada
| | - Connor A. Howe
- Centre for Heart, Lung and Vascular HealthUniversity of British Columbia‐Okanagan CampusKelownaBritish ColumbiaCanada
| | - Tyler Vermeulen
- Centre for Heart, Lung and Vascular HealthUniversity of British Columbia‐Okanagan CampusKelownaBritish ColumbiaCanada
| | - Michael M. Tymko
- Centre for Heart, Lung and Vascular HealthUniversity of British Columbia‐Okanagan CampusKelownaBritish ColumbiaCanada
- Faculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonAlbertaCanada
- Department of Medicine, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Gustavo A. Vizcardo‐Galindo
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y FilosofíaUniversidad Peruana Cayetano HerediaLima 31Peru
| | - Daniella Bermudez
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y FilosofíaUniversidad Peruana Cayetano HerediaLima 31Peru
| | - Rómulo J. Figueroa‐Mujíica
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y FilosofíaUniversidad Peruana Cayetano HerediaLima 31Peru
| | - Christopher Gasho
- Division of Pulmonary and Critical CareLoma Linda University School of MedicineLoma LindaCAUSA
| | - Edouard Tuaillon
- Department of Infectious DiseasesUniversity of MontpellierMontpellierFrance
| | - Christophe Hirtz
- LBPC‐PPCUniversité de Montpellier, IRMB CHU de Montpellier, INM INSERMMontpellierFrance
| | - Sylvain Lehmann
- LBPC‐PPCUniversité de Montpellier, IRMB CHU de Montpellier, INM INSERMMontpellierFrance
| | - Nicola Marchi
- Laboratory of Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional GenomicsUniversity of MontpellierMontpellierFrance
| | - Hayato Tsukamoto
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Francisco C. Villafuerte
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y FilosofíaUniversidad Peruana Cayetano HerediaLima 31Peru
| | - Philip N. Ainslie
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
- Centre for Heart, Lung and Vascular HealthUniversity of British Columbia‐Okanagan CampusKelownaBritish ColumbiaCanada
| | - Damian M. Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
| |
Collapse
|
11
|
Wearing OH, Scott GR. Evolved reductions in body temperature and the metabolic costs of thermoregulation in deer mice native to high altitude. Proc Biol Sci 2022; 289:20221553. [PMID: 36168757 PMCID: PMC9515628 DOI: 10.1098/rspb.2022.1553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022] Open
Abstract
The evolution of endothermy was instrumental to the diversification of birds and mammals, but the energetic demands of maintaining high body temperature could offset the advantages of endothermy in some environments. We hypothesized that reductions in body temperature help high-altitude natives overcome the metabolic challenges of cold and hypoxia in their native environment. Deer mice (Peromyscus maniculatus) from high-altitude and low-altitude populations were bred in captivity to the second generation and were acclimated as adults to warm normoxia or cold hypoxia. Subcutaneous temperature (Tsub, used as a proxy for body temperature) and cardiovascular function were then measured throughout the diel cycle using biotelemetry. Cold hypoxia increased metabolic demands, as reflected by increased food consumption and heart rate (associated with reduced vagal tone). These increased metabolic demands were offset by plastic reductions in Tsub (approx. 2°C) in response to cold hypoxia, and highlanders had lower Tsub (approx. 1°C) than lowlanders in both environmental treatments. Empirical and theoretical evidence suggested that these reductions could together reduce metabolic demands by approximately 10-30%. Therefore, plastic and evolved reductions in body temperature can help mammals overcome the metabolic challenges at high altitude and may be a valuable energy-saving strategy in some non-hibernating endotherms in extreme environments.
Collapse
Affiliation(s)
- Oliver H. Wearing
- Department of Biology, McMaster University, Life Sciences Building, 1280 Main Street W, Hamilton, ON, Canada L8S 4K1
| | - Graham R. Scott
- Department of Biology, McMaster University, Life Sciences Building, 1280 Main Street W, Hamilton, ON, Canada L8S 4K1
| |
Collapse
|
12
|
Hansen AB, Moralez G, Amin SB, Hofstätter F, Simpson LL, Gasho C, Tymko MM, Ainslie PN, Lawley JS, Hearon CM. Global REACH 2018: increased adrenergic restraint of blood flow preserves coupling of oxygen delivery and demand during exercise at high-altitude. J Physiol 2022; 600:3483-3495. [PMID: 35738560 PMCID: PMC9357095 DOI: 10.1113/jp282972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/16/2022] [Indexed: 01/05/2023] Open
Abstract
Chronic exposure to hypoxia (high-altitude, HA; >4000 m) attenuates the vasodilatory response to exercise and is associated with a persistent increase in basal sympathetic nerve activity (SNA). The mechanism(s) responsible for the reduced vasodilatation and exercise hyperaemia at HA remains unknown. We hypothesized that heightened adrenergic signalling restrains skeletal muscle blood flow during handgrip exercise in lowlanders acclimatizing to HA. We tested nine adult males (n = 9) at sea-level (SL; 344 m) and following 21-28 days at HA (∼4300 m). Forearm blood flow (FBF; duplex ultrasonography), mean arterial pressure (MAP; brachial artery catheter), forearm vascular conductance (FVC; FBF/MAP), and arterial and venous blood sampling (O2 delivery ( DO2${D}_{{{\rm{O}}}_{\rm{2}}}$ ) and uptake ( V̇O2${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ )) were measured at rest and during graded rhythmic handgrip exercise (5%, 15% and 25% of maximum voluntary isometric contraction; MVC) before and after local α- and β-adrenergic blockade (intra-arterial phentolamine and propranolol). HA reduced ΔFBF (25% MVC: SL: 138.3 ± 47.6 vs. HA: 113.4 ± 37.1 ml min-1 ; P = 0.022) and Δ V̇O2${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ (25% MVC: SL: 20.3 ± 7.5 vs. HA: 14.3 ± 6.2 ml min-1 ; P = 0.014) during exercise. Local adrenoreceptor blockade at HA restored FBF during exercise (25% MVC: SLα-β blockade : 164.1 ± 71.7 vs. HAα-β blockade : 185.4 ± 66.6 ml min-1 ; P = 0.947) but resulted in an exaggerated relationship between DO2${D}_{{{\rm{O}}}_{\rm{2}}}$ and V̇O2${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ ( DO2${D}_{{{\rm{O}}}_{\rm{2}}}$ / V̇O2${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ slope: SL: 1.32; HA: slope: 1.86; P = 0.037). These results indicate that tonic adrenergic signalling restrains exercise hyperaemia in lowlanders acclimatizing to HA. The increase in adrenergic restraint is necessary to match oxygen delivery to demand and prevent over perfusion of contracting muscle at HA. KEY POINTS: In exercising skeletal muscle, local vasodilatory signalling and sympathetic vasoconstriction integrate to match oxygen delivery to demand and maintain arterial blood pressure. Exposure to chronic hypoxia (altitude, >4000 m) causes a persistent increase in sympathetic nervous system activity that is associated with impaired functional capacity and diminished vasodilatation during exercise. In healthy male lowlanders exposed to chronic hypoxia (21-28 days; ∼4300 m), local adrenoreceptor blockade (combined α- and β-adrenergic blockade) restored skeletal muscle blood flow during handgrip exercise. However, removal of tonic adrenergic restraint at high altitude caused an excessive rise in blood flow and subsequently oxygen delivery for any given metabolic demand. This investigation is the first to identify greater adrenergic restraint of blood flow during acclimatization to high altitude and provides evidence of a functional role for this adaptive response in regulating oxygen delivery and demand.
Collapse
Affiliation(s)
| | - Gilbert Moralez
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, TX, USA
| | - Sachin B. Amin
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Florian Hofstätter
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Lydia L. Simpson
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Christopher Gasho
- Department of Medicine, Division of Pulmonary and Critical Care, University of Loma Linda, Loma Linda, California, USA
| | - Michael M. Tymko
- Physical Activity and Diabetes Laboratory, Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada.,Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia – Okanagan, Kelowna, British Columbia, Canada
| | - Philip N. Ainslie
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia – Okanagan, Kelowna, British Columbia, Canada
| | - Justin S. Lawley
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Christopher M. Hearon
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, TX, USA.,Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, TX, USA.,Correspondence: Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Suite 435, Dallas, TX, 75231, USA.
| |
Collapse
|
13
|
Prevalence of hypertension and its relationship with altitude in highland areas: a systematic review and meta-analysis. Hypertens Res 2022; 45:1225-1239. [PMID: 35705740 DOI: 10.1038/s41440-022-00955-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023]
Abstract
This systematic review and meta-analysis synthesized the pooled prevalence of hypertension at high altitudes and explored its correlation with altitude using studies published in Chinese and English from database inception to February 2021. A systematic literature search was conducted among bibliographic databases (PubMed, Embase, and Web of Science) and three Chinese databases (CNKI, VIP, and Wanfang data) to identify eligible studies. A random-effects model was used to calculate the overall pooled prevalence of hypertension. The I2 statistic was used to assess heterogeneity across studies. Random-effects meta-regression was conducted to investigate covariates that may have influenced between-study heterogeneity. The pooled prevalence of hypertension among the general population in high-altitude areas was 33.0% (95% CI: 29.0-38.0%), with high between-study heterogeneity (I2 = 99.4%, P < 0.01). Subgroup analyses showed the pooled prevalence of hypertension in Tibetan individuals was significantly higher than that in non-Tibetan individuals living in the Himalayas and Pamir Mountains (41% vs. 18%). A trend toward an increase in the prevalence of hypertension was found with every 100-m increase in elevation (coefficient: 0.012, 95% CI: -0.001 to 0.025, P = 0.069) only in Tibetan individuals. In addition, in these individuals, we found an increase in mean diastolic BP with each 100-m increase in altitude (coefficient: 0.763, 95% CI: 0.122-1.403, P = 0.025). Our meta-analysis suggests that the pooled prevalence of hypertension among the general population in high-altitude areas is 33.0%. Subjects of Tibetan ethnicity were more prone to developing hypertension at high altitudes. However, a very weak relationship between altitude and the prevalence of hypertension was found only in Tibetan individuals.
Collapse
|
14
|
Van Cutsem J, Pattyn N, Mairesse O, Delwiche B, Fernandez Tellez H, Van Puyvelde M, Lacroix E, McDonnell AC, Eiken O, Mekjavic IB. Adult Female Sleep During Hypoxic Bed Rest. Front Neurosci 2022; 16:852741. [PMID: 35620666 PMCID: PMC9127600 DOI: 10.3389/fnins.2022.852741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Hypobaric hypoxic habitats are currently being touted as a potential solution to minimise decompression procedures in preparation for extra vehicular activities during future space missions. Since astronauts will live in hypoxic environments for the duration of such missions, the present study sought to elucidate the separate and combined effects of inactivity [simulated with the experimental bed rest (BR) model] and hypoxia on sleep characteristics in women. Methods Twelve women (Age = 27 ± 3 year) took part in three 10-day interventions, in a repeated measures cross-over counterbalanced design: (1) normobaric normoxic BR (NBR), (2) normobaric hypoxic BR (HBR; simulated altitude of 4,000 m), and (3) normobaric hypoxic ambulatory (HAMB; 4,000 m) confinement, during which sleep was assessed on night 1 and night 10 with polysomnography. In addition, one baseline sleep assessment was performed. This baseline assessment, although lacking a confinement aspect, was included statistically as a fourth comparison (i.e., pseudo normobaric normoxic ambulatory; pNAMB) in the present study. Results Hypoxia decreased sleep efficiency (p = 0.019), increased N1% sleep (p = 0.030), decreased N3 sleep duration (p = 0.003), and increased apnea hypopnea index (p < 0.001). BR impaired sleep maintenance, efficiency, and architecture [e.g., N2% sleep increased (p = 0.033)]. Specifically, for N3% sleep, the effects of partial pressure of oxygen and activity interacted. Hypoxia decreased N3% sleep both when active (pNAMB vs HAMB; p < 0.001) and inactive (NBR vs HBR; p = 0.021), however, this decrease was attenuated in the inactive state (–3.8%) compared to the active state (–10.2%). Conclusion A 10-day exposure to hypoxia and BR negatively impacted sleep on multiple levels as in macrostructure, microstructure and respiratory functioning. Interestingly, hypoxia appeared to have less adverse effects on sleep macrostructure while the participants were inactive (bed ridden) compared to when ambulatory. Data were missing to some extent (i.e., 20.8%). Therefore, multiple imputation was used, and our results should be considered as exploratory.
Collapse
Affiliation(s)
- Jeroen Van Cutsem
- VIPER Research Unit, Royal Military Academy, Brussels, Belgium
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- *Correspondence: Jeroen Van Cutsem, , orcid.org/0000-0001-6122-7629
| | - Nathalie Pattyn
- VIPER Research Unit, Royal Military Academy, Brussels, Belgium
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Olivier Mairesse
- Sleep Laboratory and Unit for Chronobiology U78, Brugmann University Hospital, Vrije Universiteit Brussel, Brussels, Belgium
- Brain, Body and Cognition, Department of Psychology, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bérénice Delwiche
- VIPER Research Unit, Royal Military Academy, Brussels, Belgium
- Brain, Body and Cognition, Department of Psychology, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Martine Van Puyvelde
- VIPER Research Unit, Royal Military Academy, Brussels, Belgium
- Experimental and Applied Psychology, Department of Psychology and Educational Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Clinical & Lifespan Psychology, Department of Psychology and Educational Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Emilie Lacroix
- VIPER Research Unit, Royal Military Academy, Brussels, Belgium
| | - Adam C. McDonnell
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Ola Eiken
- Department of Environmental Physiology, Swedish Aerospace Physiology centre, Royal Institute of Technology, Stockholm, Sweden
| | - Igor B. Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
15
|
Hansen AB, Amin SB, Hofstätter F, Mugele H, Simpson LL, Gasho C, Dawkins TG, Tymko MM, Ainslie PN, Villafuerte FC, Hearon CM, Lawley JS, Moralez G. Global Reach 2018: sympathetic neural and hemodynamic responses to submaximal exercise in Andeans with and without chronic mountain sickness. Am J Physiol Heart Circ Physiol 2022; 322:H844-H856. [PMID: 35333117 PMCID: PMC9018046 DOI: 10.1152/ajpheart.00555.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022]
Abstract
Andeans with chronic mountain sickness (CMS) and polycythemia have similar maximal oxygen uptakes to healthy Andeans. Therefore, this study aimed to explore potential adaptations in convective oxygen transport, with a specific focus on sympathetically mediated vasoconstriction of nonactive skeletal muscle. In Andeans with (CMS+, n = 7) and without (CMS-, n = 9) CMS, we measured components of convective oxygen delivery, hemodynamic (arterial blood pressure via intra-arterial catheter), and autonomic responses [muscle sympathetic nerve activity (MSNA)] at rest and during steady-state submaximal cycling exercise [30% and 60% peak power output (PPO) for 5 min each]. Cycling caused similar increases in heart rate, cardiac output, and oxygen delivery at both workloads between both Andean groups. However, at 60% PPO, CMS+ had a blunted reduction in Δtotal peripheral resistance (CMS-, -10.7 ± 3.8 vs. CMS+, -4.9 ± 4.1 mmHg·L-1·min-1; P = 0.012; d = 1.5) that coincided with a greater Δforearm vasoconstriction (CMS-, -0.2 ± 0.6 vs. CMS+, 1.5 ± 1.3 mmHg·mL-1·min-1; P = 0.008; d = 1.7) and a rise in Δdiastolic blood pressure (CMS-, 14.2 ± 7.2 vs. CMS+, 21.6 ± 4.2 mmHg; P = 0.023; d = 1.2) compared with CMS-. Interestingly, although MSNA burst frequency did not change at 30% or 60% of PPO in either group, at 60% Δburst incidence was attenuated in CMS+ (P = 0.028; d = 1.4). These findings indicate that in Andeans with polycythemia, light intensity exercise elicited similar cardiovascular and autonomic responses compared with CMS-. Furthermore, convective oxygen delivery is maintained during moderate-intensity exercise despite higher peripheral resistance. In addition, the elevated peripheral resistance during exercise was not mediated by greater sympathetic neural outflow, thus other neural and/or nonneural factors are perhaps involved.NEW & NOTEWORTHY During submaximal exercise, convective oxygen transport is maintained in Andeans suffering from polycythemia. Light intensity exercise elicited similar cardiovascular and autonomic responses compared with healthy Andeans. However, during moderate-intensity exercise, we observed a blunted reduction in total peripheral resistance, which cannot be ascribed to an exaggerated increase in muscle sympathetic nerve activity, indicating possible contributions from other neural and/or nonneural mechanisms.
Collapse
Affiliation(s)
- Alexander B Hansen
- Division of Performance, Physiology and Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Sachin B Amin
- Division of Performance, Physiology and Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Florian Hofstätter
- Division of Performance, Physiology and Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Hendrik Mugele
- Division of Performance, Physiology and Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Lydia L Simpson
- Division of Performance, Physiology and Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Christopher Gasho
- Division of Pulmonary and Critical Care, Department of Medicine, University of Loma Linda, Loma Linda, California
| | - Tony G Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Michael M Tymko
- Physical Activity and Diabetes Laboratory, Faculty of Kinesiology and Recreation, University of Alberta, Edmonton, Alberta, Canada
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Philip N Ainslie
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Francisco C Villafuerte
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Christopher M Hearon
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas
| | - Justin S Lawley
- Division of Performance, Physiology and Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Gilbert Moralez
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
16
|
Ruggiero L, Harrison SWD, Rice CL, McNeil CJ. Neuromuscular fatigability at high altitude: Lowlanders with acute and chronic exposure, and native highlanders. Acta Physiol (Oxf) 2022; 234:e13788. [PMID: 35007386 PMCID: PMC9286620 DOI: 10.1111/apha.13788] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/18/2023]
Abstract
Ascent to high altitude is accompanied by a reduction in partial pressure of inspired oxygen, which leads to interconnected adjustments within the neuromuscular system. This review describes the unique challenge that such an environment poses to neuromuscular fatigability (peripheral, central and supraspinal) for individuals who normally reside near to sea level (SL) (<1000 m; ie, lowlanders) and for native highlanders, who represent the manifestation of high altitude-related heritable adaptations across millennia. Firstly, the effect of acute exposure to high altitude-related hypoxia on neuromuscular fatigability will be examined. Under these conditions, both supraspinal and peripheral fatigability are increased compared with SL. The specific mechanisms contributing to impaired performance are dependent on the exercise paradigm and amount of muscle mass involved. Next, the effect of chronic exposure to high altitude (ie, acclimatization of ~7-28 days) will be considered. With acclimatization, supraspinal fatigability is restored to SL values, regardless of the amount of muscle mass involved, whereas peripheral fatigability remains greater than SL except when exercise involves a small amount of muscle mass (eg, knee extensors). Indeed, when whole-body exercise is involved, peripheral fatigability is not different to acute high-altitude exposure, due to competing positive (haematological and muscle metabolic) and negative (respiratory-mediated) effects of acclimatization on neuromuscular performance. In the final section, we consider evolutionary adaptations of native highlanders (primarily Himalayans of Tibet and Nepal) that may account for their superior performance at altitude and lesser degree of neuromuscular fatigability compared with acclimatized lowlanders, for both single-joint and whole-body exercise.
Collapse
Affiliation(s)
- Luca Ruggiero
- Laboratory of Physiomechanics of LocomotionDepartment of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Scott W. D. Harrison
- School of KinesiologyFaculty of Health SciencesThe University of Western OntarioLondonOntarioCanada
| | - Charles L. Rice
- School of KinesiologyFaculty of Health SciencesThe University of Western OntarioLondonOntarioCanada
- Department of Anatomy and Cell BiologySchulich School of Medicine and DentistryThe University of Western OntarioLondonOntarioCanada
| | - Chris J. McNeil
- Centre for Heart, Lung & Vascular HealthSchool of Health and Exercise SciencesUniversity of British ColumbiaKelownaBritish ColumbiaCanada
| |
Collapse
|
17
|
Wearing OH, Nelson D, Ivy CM, Crossley DA, Scott GR. Adrenergic control of the cardiovascular system in deer mice native to high altitude. Curr Res Physiol 2022; 5:83-92. [PMID: 35169714 PMCID: PMC8829085 DOI: 10.1016/j.crphys.2022.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/23/2021] [Accepted: 01/23/2022] [Indexed: 12/26/2022] Open
Abstract
Studies of animals native to high altitude can provide valuable insight into physiological mechanisms and evolution of performance in challenging environments. We investigated how mechanisms controlling cardiovascular function may have evolved in deer mice (Peromyscus maniculatus) native to high altitude. High-altitude deer mice and low-altitude white-footed mice (P. leucopus) were bred in captivity at sea level, and first-generation lab progeny were raised to adulthood and acclimated to normoxia or hypoxia. We then used pharmacological agents to examine the capacity for adrenergic receptor stimulation to modulate heart rate (fH) and mean arterial pressure (Pmean) in anaesthetized mice, and used cardiac pressure-volume catheters to evaluate the contractility of the left ventricle. We found that highlanders had a consistently greater capacity to increase fH via pharmacological stimulation of β1-adrenergic receptors than lowlanders. Also, whereas hypoxia acclimation reduced the capacity for increasing Pmean in response to α-adrenergic stimulation in lowlanders, highlanders exhibited no plasticity in this capacity. These differences in highlanders may help augment cardiac output during locomotion or cold stress, and may preserve their capacity for α-mediated vasoconstriction to more effectively redistribute blood flow to active tissues. Highlanders did not exhibit any differences in some measures of cardiac contractility (maximum pressure derivative, dP/dtmax, or end-systolic elastance, Ees), but ejection fraction was highest in highlanders after hypoxia acclimation. Overall, our results suggest that evolved changes in sensitivity to adrenergic stimulation of cardiovascular function may help deer mice cope with the cold and hypoxic conditions at high altitude. High-altitude deer mice have evolved increased aerobic capacity in hypoxia. Cardiovascular regulation was examined in normoxia and chronic hypoxia. Highland mice had increased capacity for β1-adrenergic stimulation of heart rate. Hypoxia reduced vascular α-adrenergic sensitivity in lowland but not highland mice. Cardiac ejection fraction was elevated in highland mice in chronic hypoxia.
Collapse
Affiliation(s)
- Oliver H. Wearing
- Department of Biology, McMaster University, Hamilton, ON, Canada
- Corresponding author.
| | - Derek Nelson
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Catherine M. Ivy
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Dane A. Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Graham R. Scott
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
18
|
Hypoxic Exercise Exacerbates Hypoxemia and Acute Mountain Sickness in Obesity: A Case Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179078. [PMID: 34501667 PMCID: PMC8430682 DOI: 10.3390/ijerph18179078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/14/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022]
Abstract
Acute mountain sickness (AMS) is a common syndrome characterized by headache, dizziness, loss of appetite, weakness, and nausea. As a major public health issue, obesity has increased in high altitude urban residents and intermittent commuters to high altitudes. The present study investigated acute hypoxic exposure and hypoxic exercise on hypoxemia severity and AMS symptoms in a physically active obese man. In this case analysis, peripheral oxygen saturation (SpO2) was used to evaluate hypoxemia, heart rate (HR) and blood pressure (BP) were used to reflect the function of autonomic nervous system (ANS), and Lake Louise scoring (LLS) was used to assess AMS. The results showed that acute hypoxic exposure led to severe hypoxemia (SpO2 = 72%) and tachycardia (HRrest = 97 bpm), and acute hypoxic exercise exacerbated severe hypoxemia (SpO2 = 59%) and ANS dysfunction (HRpeak = 167 bpm, SBP/DBP = 210/97 mmHg). At the end of the 6-h acute hypoxic exposure, the case developed severe AMS (LLS = 10) symptoms of headache, gastrointestinal distress, cyanosis, vomiting, poor appetite, and fatigue. The findings of the case study suggest that high physical activity level appears did not show a reliable protective effect against severe hypoxemia, ANS dysfunction, and severe AMS symptoms in acute hypoxia exposure and hypoxia exercise.
Collapse
|
19
|
Coombs GB, Akins JD, Patik JC, Vizcardo-Galindo GA, Figueroa-Mujica R, Tymko MM, Stacey BS, Iannetelli A, Bailey DM, Villafuerte FC, Ainslie PN, Brothers RM. Global Reach 2018: Nitric oxide-mediated cutaneous vasodilation is reduced in chronic, but not acute, hypoxia independently of enzymatic superoxide formation. Free Radic Biol Med 2021; 172:451-458. [PMID: 34129928 DOI: 10.1016/j.freeradbiomed.2021.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/23/2021] [Accepted: 06/06/2021] [Indexed: 01/15/2023]
Abstract
We tested the hypotheses that 1) cutaneous microvascular function is impaired by acute normobaric and chronic hypobaric hypoxia and 2) that the superoxide free radical (via NADPH oxidase or xanthine oxidase) contributes to this impairment via nitric oxide (NO) scavenging. Local heating-induced cutaneous hyperemia (39 °C) was measured in the forearm of 11 male lowlanders at sea level (SL) and following 14-18 days at high altitude (HA; 4340 m in Cerro de Pasco, Peru), and compared to 11 highlanders residing permanently at this elevation. Cutaneous vascular conductance (CVC; laser-Doppler flux/mean arterial pressure) was not different during 39 °C [control site: 73 (19) vs. 71 (18)%max; P = 0.68] between normoxia and acute normobaric hypoxia (FIO2 = 0.125; equivalent to HA), respectively. At HA, CVC was reduced during 39 °C in lowlanders compared to SL [control site: 54 (14) vs. 73 (19)%max; P < 0.01] and was lower in Andean highlanders compared to lowlanders at HA [control site: 50 (24) vs. 54 (14)%max; P = 0.02]. The NO contribution to vasodilation during 39 °C (i.e., effect of NO synthase inhibition) was reduced in lowlanders at HA compared to SL [control site: 41 (11) vs 49 (10)%max; P = 0.04] and in Andean highlanders compared to lowlanders at HA [control site: 32 (21) vs. 41 (11)%max; P = 0.01]. Intradermal administration (cutaneous microdialysis) of the superoxide mimetic Tempol, inhibition of xanthine oxidase (via allopurinol), or NADPH oxidase (via apocynin) had no influence on cutaneous endothelium-dependent dilation during any of the conditions (all main effects of drug P > 0.05). These results suggest that time at HA impairs NO-mediated cutaneous vasodilation independent of enzymatic superoxide formation.
Collapse
Affiliation(s)
- Geoff B Coombs
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada; School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - John D Akins
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Jordan C Patik
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA; Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Gustavo A Vizcardo-Galindo
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada; Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Romulo Figueroa-Mujica
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada; Neurovascular Health Laboratory, Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, United Kingdom
| | - Angelo Iannetelli
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, United Kingdom
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, United Kingdom
| | - Francisco C Villafuerte
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - R Matthew Brothers
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
20
|
Wang M, Liu M, Huang J, Fan D, Liu S, Yu T, Huang K, Wei X, Lei Q. Long-Term High-Altitude Exposure Does Not Increase the Incidence of Atrial Fibrillation Associated with Organic Heart Diseases. High Alt Med Biol 2021; 22:285-292. [PMID: 34143663 DOI: 10.1089/ham.2020.0228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Wang, Man, Mengxue Liu, Jia Huang, Dan Fan, Shengzhong Liu, Tao Yu, Keli Huang, Xinchuan Wei, and Qian Lei. Long-term high-altitude exposure does not increase the incidence of atrial fibrillation associated with organic heart diseases. High Alt Med Biol. 00:000-000, 2021.- Background: Atrial fibrillation (AF) is one of the most common arrhythmias and is associated with several complications following cardiac surgery. However, the differences in the incidence of AF associated with organic heart diseases between highland and lowland populations have not been comprehensively studied. Methods: In this retrospective study, a total of 2,316 highland and lowland patients who underwent cardiac surgery between January 2013 and December 2018 in a single center were enrolled. According to the altitude of residence, patients were divided into high-altitude (>1,500 m) and low-altitude (<1,500 m) groups. A propensity score matching analysis was performed to estimate the association of lifetime high-altitude exposure with AF. Results: Among the enrolled patients, 239 (10.9%) were from a high-altitude plateau, while 1,946 (89.1%) were from a low-altitude area. There were statistical differences in age, gender, European System for Cardiac Operative Risk Evaluation, and other factors, between the two groups (p < 0.05). According to the propensity score, 237 patients in the high-altitude group were successfully matched to 237 patients in the low-altitude group without significant difference in baseline data (p > 0.05). Among the matched patients, 125 patients (26.4%) suffered from AF, with 66 (27.8%) in the high-altitude group and 59 (24.9%) in the low-altitude group. The incidence of AF was statistically similar between the two groups and not significantly influenced by long-term high-altitude exposure (odds ratio 1.07; 95% confidence interval 0.71-1.60, p > 0.05). Conclusion: Long-term high-altitude exposure did not significantly increase the occurrence of AF in patients with organic heart diseases. Clinical Trial No. ChiCTR1900028612.
Collapse
Affiliation(s)
- Man Wang
- Anesthesia and Operation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mengxue Liu
- Anesthesia and Operation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jia Huang
- Anesthesia and Operation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Fan
- Anesthesia and Operation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shengzhong Liu
- Department of Cardiac Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Yu
- Department of Cardiac Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Keli Huang
- Department of Cardiac Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinchuan Wei
- Anesthesia and Operation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Lei
- Anesthesia and Operation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
21
|
Chen R, Yang J, Liu C, Ke J, Gao X, Yang Y, Shen Y, Yuan F, He C, Cheng R, Lv H, Zhang C, Gu W, Tan H, Zhang J, Huang L. Blood pressure and left ventricular function changes in different ambulatory blood pressure patterns at high altitude. J Clin Hypertens (Greenwich) 2021; 23:1133-1143. [PMID: 33677845 PMCID: PMC8678730 DOI: 10.1111/jch.14235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 11/29/2022]
Abstract
Acute high‐altitude (HA) exposure induces physiological responses of the heart and blood pressure (BP). However, few studies have investigated the responses associated with dipper and non‐dipper BP patterns. In this prospective study, 72 patients underwent echocardiography and 24‐h ambulatory BP testing at sea level and HA. Patients were divided into dipper and non‐dipper groups according to BP at sea level. Acute HA exposure elevated 24‐h systolic and diastolic BP and increased BP variability, particularly in the morning. Moreover, acute exposure increased left ventricular torsion, end‐systolic elastance, effective arterial elastance, and untwisting rate, but reduced peak early diastolic velocity/late diastolic velocity and peak early diastolic velocity/early diastolic velocity, implying enhanced left ventricular systolic function but impaired filling. Dippers showed pronounced increases in night‐time BP, while non‐dippers showed significant elevation in day‐time BP, which blunted differences in nocturnal BP fall, and lowest night‐time and evening BP. Dippers had higher global longitudinal strain, torsion, and untwisting rates after acute HA exposure. Variations in night‐time systolic BP correlated with variations in torsion and global longitudinal strain. Our study firstly demonstrates BP and cardiac function variations during acute HA exposure in different BP patterns and BP increases in dippers at night, while non‐dippers showed day‐time increases. Furthermore, enhanced left ventricular torsion and global longitudinal strain are associated with BP changes. Non‐dippers showed poor cardiac compensatory and maladaptive to acute HA exposure. However, the exact mechanisms involved need further illumination.
Collapse
Affiliation(s)
- Renzheng Chen
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jie Yang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chuan Liu
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jingbin Ke
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xubin Gao
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuanqi Yang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yang Shen
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fangzhengyuan Yuan
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunyan He
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ran Cheng
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hailin Lv
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chen Zhang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenzhu Gu
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hu Tan
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jihang Zhang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lan Huang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
22
|
Simmonds MJ, Sabapathy S, Hero JM. Rate-Pressure Product Responses to Static Contractions Performed at Various Altitudes. High Alt Med Biol 2021; 22:166-173. [PMID: 33470884 DOI: 10.1089/ham.2020.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Simmonds, Michael J., Surendran Sabapathy, and Jean-Marc Hero. Rate-pressure product responses to static contractions performed at various altitudes. High Alt Med Biol. 22: 166-173, 2021. Background: Adventure tourism has led to an unprecedented number of individuals being exposed to altitude, including those with subclinical cardiometabolic disorders. The disproportionate hemodynamic challenge associated with small-muscle static activities is potentially dangerous at altitude as these may compound the risk for cardiac events. We thus examined the cardiovascular response to, and during recovery from, static exercise performed at altitude. Methods: Eighteen individuals completed this study at three altitudes (sea level; ∼1,500 m; ∼3,000 m) in central Nepal. At each altitude, individuals performed two handgrip contractions for 2 minutes at the same intensity (30% maximal voluntary contraction [MVC]), with two distinct recovery periods: during control recovery was completed quietly at rest, while during ischemic challenge recovery was conducted with a cuff occluding the upper limb. Results: Oxygen saturation decreased during ascent to 1,500 m (-2%) and 3,000 m (-8%), compared with sea level. Handgrip MVC was not affected by altitude, although heart rate at rest (∼70 beat/min), during static exercise (range ∼90-95 beat/min), and during recovery in both conditions (each ∼70 beat/min) was significantly increased by ∼15% at 3,000 m, but not 1,500 m. The magnitude of the muscle metaboreflex during recovery from static exercise was unaffected by altitude; however, the rate-pressure product was significantly elevated by ∼10% during and following static exercise at 3,000 m. Conclusions: A significant increase in the rate-pressure product during static exercise was observed at altitude, which persisted during recovery. Individuals at risk for cardiac events should use awareness of static contractions while at altitude, especially considering that stress induced by static exercise is additive to that of dynamic activities such as hiking.
Collapse
Affiliation(s)
- Michael J Simmonds
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Surendran Sabapathy
- School of Allied Health Science, Griffith University, Gold Coast, Queensland, Australia
| | - Jean-Marc Hero
- College of Science & Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
23
|
Simpson LL, Steinback CD, Stembridge M, Moore JP. A sympathetic view of blood pressure control at high altitude: new insights from microneurographic studies. Exp Physiol 2020; 106:377-384. [PMID: 33345334 PMCID: PMC7898382 DOI: 10.1113/ep089194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
NEW FINDINGS What is the topic of the review? Sympathoexcitation and sympathetic control of blood pressure at high altitude. What advances does it highlight? Sustained sympathoexcitation is fundamental to integrative control of blood pressure in humans exposed to chronic hypoxia. The largest gaps in current knowledge are in understanding the complex mechanisms by which central sympathetic outflow is regulated at high altitude. ABSTRACT High altitude (HA) hypoxia is a potent activator of the sympathetic nervous system, eliciting increases in sympathetic vasomotor activity. Microneurographic evidence of HA sympathoexcitation dates back to the late 20th century, yet only recently have the characteristics and underpinning mechanisms been explored in detail. This review summarises recent findings and highlights the importance of HA sympathoexcitation for the regulation of blood pressure in lowlanders and indigenous highlanders. In addition, this review identifies gaps in our knowledge and corresponding avenues for future study.
Collapse
Affiliation(s)
- Lydia L Simpson
- Institute for Sport Science, Division of Physiology, Innsbruck University, Innsbruck, Austria
| | - Craig D Steinback
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Jonathan P Moore
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UK
| |
Collapse
|
24
|
Sánchez K, Ballaz SJ. Might a high hemoglobin mass be involved in non-cardiogenic pulmonary edema? The case of the chronic maladaptation to high-altitude in the Andes. Med Hypotheses 2020; 146:110418. [PMID: 33268002 DOI: 10.1016/j.mehy.2020.110418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/21/2020] [Indexed: 10/22/2022]
Abstract
Exposure to hypoxic environments when ascending at high altitudes may cause life-threatening pulmonary edema (HAPE) due to a rapid accumulation of extracellular fluid flooding in the pulmonary alveoli. In Andeans, high-altitude adaptation occurs at the expense of being more prone to chronic mountain sickness: relative hypoventilation, excess pulmonary hypertension, and secondary polycythemia. Because HAPE prevalence is high in the Andes, we posit the hypothesis that a high hemoglobine mass may increase HAPE risk. In support of it, high intrapulmonary hypertension along with hyperviscosity produced by polycytemia may enhance sear forces and intravascular hemolysis, thus leading to increased acellular hemoglobin and the subsequent damage of the alveolar and endothelial barrier. It is proposed to investigate the relationship between the vaso-endothelial homeostasis and erythropoiesis in the maladaptation to high altitude and HAPE. This research is especially important when reentry HAPE, since rheologic properties of blood changes with rapid ascent to high altitudes.
Collapse
Affiliation(s)
- Karen Sánchez
- School of Biological Sciences & Engineering. Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Santiago J Ballaz
- School of Biological Sciences & Engineering. Yachay Tech University, San Miguel de Urcuquí, Ecuador.
| |
Collapse
|
25
|
Bilo G, Acone L, Anza-Ramírez C, Macarlupú JL, Soranna D, Zambon A, Vizcardo-Galindo G, Pengo MF, Villafuerte FC, Parati G. Office and Ambulatory Arterial Hypertension in Highlanders: HIGHCARE-ANDES Highlanders Study. Hypertension 2020; 76:1962-1970. [PMID: 33175629 DOI: 10.1161/hypertensionaha.120.16010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Millions of people worldwide live at high altitude, being chronically exposed to hypobaric hypoxia. Hypertension is a major cardiovascular risk factor but data on its prevalence and determinants in highlanders are limited, and systematic studies with ambulatory blood pressure monitoring are not available. Aim of this study was to assess the prevalence of clinic and ambulatory hypertension and the associated factors in a sample of Andean highlanders. Hypertension prevalence and phenotypes were assessed with office and ambulatory blood pressure measurement in a sample of adults living in Cerro de Pasco, Peru (altitude 4340 m). Basic clinical data, blood oxygen saturation, hematocrit, and Qinghai Chronic Mountain Sickness score were obtained. Participants were classified according to the presence of excessive erythrocytosis and chronic mountain sickness diagnosis. Data of 289 participants (143 women, 146 men, mean age 38.3 years) were analyzed. Office hypertension was present in 20 (7%) participants, while ambulatory hypertension was found in 58 (20%) participants. Masked hypertension was common (15%), and white coat hypertension was rare (2%). Among participants with ambulatory hypertension, the most prevalent phenotypes included isolated nocturnal hypertension, isolated diastolic hypertension, and systodiastolic hypertension. Ambulatory hypertension was associated with male gender, age, overweight/obesity, 24-hour heart rate, and excessive erythrocytosis. Prevalence of hypertension among Andean highlanders may be significantly underestimated when based on conventional blood pressure measurements, due to the high prevalence of masked hypertension. In highlanders, ambulatory hypertension may be independently associated with excessive erythrocytosis.
Collapse
Affiliation(s)
- Grzegorz Bilo
- From the Department of Cardiovascular, Neural and Metabolic Sciences (G.B., M.F.P., G.P.), University of Milano-Bicocca, Milan, Italy.,Istituto Auxologico Italiano, IRCCS, Milan, Italy Department of Medicine and Surgery (G.B., L.A., G.P.), University of Milano-Bicocca, Milan, Italy
| | - Lorenzo Acone
- Istituto Auxologico Italiano, IRCCS, Milan, Italy Department of Medicine and Surgery (G.B., L.A., G.P.), University of Milano-Bicocca, Milan, Italy
| | - Cecilia Anza-Ramírez
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno-LID. Universidad Peruana Cayetano Heredia, Lima, Perú (C.A.-R., J.L.M., G.V.-G., F.C.V.)
| | - José Luis Macarlupú
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno-LID. Universidad Peruana Cayetano Heredia, Lima, Perú (C.A.-R., J.L.M., G.V.-G., F.C.V.)
| | - Davide Soranna
- Biostatistics Unit (D.S., A.Z.), University of Milano-Bicocca, Milan, Italy
| | - Antonella Zambon
- Biostatistics Unit (D.S., A.Z.), University of Milano-Bicocca, Milan, Italy.,Department of Statistics and Quantitative Methods (A.Z.), University of Milano-Bicocca, Milan, Italy
| | - Gustavo Vizcardo-Galindo
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno-LID. Universidad Peruana Cayetano Heredia, Lima, Perú (C.A.-R., J.L.M., G.V.-G., F.C.V.)
| | - Martino F Pengo
- From the Department of Cardiovascular, Neural and Metabolic Sciences (G.B., M.F.P., G.P.), University of Milano-Bicocca, Milan, Italy
| | - Francisco C Villafuerte
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno-LID. Universidad Peruana Cayetano Heredia, Lima, Perú (C.A.-R., J.L.M., G.V.-G., F.C.V.)
| | - Gianfranco Parati
- From the Department of Cardiovascular, Neural and Metabolic Sciences (G.B., M.F.P., G.P.), University of Milano-Bicocca, Milan, Italy.,Istituto Auxologico Italiano, IRCCS, Milan, Italy Department of Medicine and Surgery (G.B., L.A., G.P.), University of Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
26
|
Berthelsen LF, Fraser GM, Simpson LL, Vanden Berg ER, Busch SA, Steele AR, Meah VL, Lawley JS, Figueroa-Mujíca RJ, Vizcardo-Galindo G, Villafuerte F, Gasho C, Willie CK, Tymko MM, Ainslie PN, Stembridge M, Moore JP, Steinback CD. Highs and lows of sympathetic neurocardiovascular transduction: influence of altitude acclimatization and adaptation. Am J Physiol Heart Circ Physiol 2020; 319:H1240-H1252. [PMID: 32986967 DOI: 10.1152/ajpheart.00364.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High-altitude (>2,500 m) exposure results in increased muscle sympathetic nervous activity (MSNA) in acclimatizing lowlanders. However, little is known about how altitude affects MSNA in indigenous high-altitude populations. Additionally, the relationship between MSNA and blood pressure regulation (i.e., neurovascular transduction) at high-altitude is unclear. We sought to determine 1) how high-altitude effects neurocardiovascular transduction and 2) whether differences exist in neurocardiovascular transduction between low- and high-altitude populations. Measurements of MSNA (microneurography), mean arterial blood pressure (MAP; finger photoplethysmography), and heart rate (electrocardiogram) were collected in 1) lowlanders (n = 14) at low (344 m) and high altitude (5,050 m), 2) Sherpa highlanders (n = 8; 5,050 m), and 3) Andean (with and without excessive erythrocytosis) highlanders (n = 15; 4,300 m). Cardiovascular responses to MSNA burst sequences (i.e., singlet, couplet, triplet, and quadruplet) were quantified using custom software (coded in MATLAB, v.2015b). Slopes were generated for each individual based on peak responses and normalized total MSNA. High altitude reduced neurocardiovascular transduction in lowlanders (MAP slope: high altitude, 0.0075 ± 0.0060 vs. low altitude, 0.0134 ± 0.080; P = 0.03). Transduction was elevated in Sherpa (MAP slope, 0.012 ± 0.007) compared with Andeans (0.003 ± 0.002, P = 0.001). MAP transduction was not statistically different between acclimatizing lowlanders and Sherpa (MAP slope, P = 0.08) or Andeans (MAP slope, P = 0.07). When resting MSNA is accounted for (ANCOVA), transduction was inversely related to basal MSNA (bursts/minute) independent of population (RRI, r = 0.578 P < 0.001; MAP, r = -0.627, P < 0.0001). Our results demonstrate that transduction is blunted in individuals with higher basal MSNA, suggesting that blunted neurocardiovascular transduction is a physiological adaptation to elevated MSNA rather than an effect or adaptation specific to chronic hypoxic exposure.NEW & NOTEWORTHY This study has identified that sympathetically mediated blood pressure regulation is reduced following ascent to high-altitude. Additionally, we show that high altitude Andean natives have reduced blood pressure responsiveness to sympathetic nervous activity (SNA) compared with Nepalese Sherpa. However, basal sympathetic activity is inversely related to the magnitude of SNA-mediated fluctuations in blood pressure regardless of population or condition. These data set a foundation to explore more precise mechanisms of blood pressure control under conditions of persistent sympathetic activation and hypoxia.
Collapse
Affiliation(s)
- Lindsey F Berthelsen
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| | - Graham M Fraser
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Lydia L Simpson
- School of Sport, Health and Exercise Science, Bangor University, Bangor, United Kingdom
| | - Emily R Vanden Berg
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| | - Stephen A Busch
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| | - Andrew R Steele
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| | - Victoria L Meah
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| | - Justin S Lawley
- Department of Sport Science, Division of Physiology, University of Innsbruck, Innsbruck, Austria
| | - Romulo J Figueroa-Mujíca
- Laboratorio de Fisiologia Comparada, Departamento de Ciencias Biologicas y Fisiologicas, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gustavo Vizcardo-Galindo
- Laboratorio de Fisiologia Comparada, Departamento de Ciencias Biologicas y Fisiologicas, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Francisco Villafuerte
- Laboratorio de Fisiologia Comparada, Departamento de Ciencias Biologicas y Fisiologicas, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Chris Gasho
- Division of Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, California
| | - Christopher K Willie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Michael M Tymko
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada.,Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Mike Stembridge
- Cardiff Centre for Exercise and Health, Cardiff School of Sport and Health, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Jonathan P Moore
- School of Sport, Health and Exercise Science, Bangor University, Bangor, United Kingdom
| | - Craig D Steinback
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| |
Collapse
|
27
|
Neonatal oxygen saturations and blood pressure at school-age in children born extremely preterm: a cohort study. J Perinatol 2020; 40:902-908. [PMID: 32111975 PMCID: PMC7260090 DOI: 10.1038/s41372-020-0619-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/23/2020] [Accepted: 02/06/2020] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To explore the relationship between neonatal oxygen saturation and BP at age 6-7 years in a cohort of infants born extremely preterm. STUDY DESIGN Infants <28 weeks gestation were assigned to a higher or lower oxygen saturation target. Oximeter data were monitored throughout the neonatal period. A subset of survivors was seen at age 6. BP was measured and compared by group assignment, achieved saturations, and time spent in hypoxemia (saturations <80%). RESULTS There was no difference in systolic or diastolic BP between assigned groups. Median achieved weekly oxygen saturation was not associated with BP. Longer duration of hypoxemia during the first week of age was associated with higher systolic BP. CONCLUSIONS Neither target nor actual median oxygen saturations in this study was associated with BP at school age. Increased duration of hypoxemia in the first postnatal week was associated with higher systolic BP at 6-7 years of age.
Collapse
|
28
|
Simpson LL, Meah VL, Steele AR, Gasho C, Howe CA, Dawkins TG, Busch SA, Oliver SJ, Moralez G, Lawley JS, Tymko MM, Vizcardo-Galindo GA, Figueroa-Mujíca RJ, Villafuerte FC, Ainslie PN, Stembridge M, Steinback CD, Moore JP. Global REACH 2018: Andean highlanders, chronic mountain sickness and the integrative regulation of resting blood pressure. Exp Physiol 2020; 106:104-116. [PMID: 32271969 DOI: 10.1113/ep088473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does chronic mountain sickness (CMS) alter sympathetic neural control and arterial baroreflex regulation of blood pressure in Andean (Quechua) highlanders? What is the main finding and its importance? Compared to healthy Andean highlanders, basal sympathetic vasomotor outflow is lower, baroreflex control of muscle sympathetic nerve activity is similar, supine heart rate is lower and cardiovagal baroreflex gain is greater in mild CMS. Taken together, these findings reflect flexibility in integrative regulation of blood pressure that may be important when blood viscosity and blood volume are elevated in CMS. ABSTRACT The high-altitude maladaptation syndrome chronic mountain sickness (CMS) is characterized by excessive erythrocytosis and frequently accompanied by accentuated arterial hypoxaemia. Whether altered autonomic cardiovascular regulation is apparent in CMS is unclear. Therefore, during the 2018 Global REACH expedition to Cerro de Pasco, Peru (4383 m), we assessed integrative control of blood pressure (BP) and determined basal sympathetic vasomotor outflow and arterial baroreflex function in eight Andean natives with CMS ([Hb] 22.6 ± 0.9 g·dL-1 ) and seven healthy highlanders ([Hb] 19.3 ± 0.8 g·dL-1 ). R-R interval (RRI, electrocardiogram), beat-by-beat BP (photoplethysmography) and muscle sympathetic nerve activity (MSNA; microneurography) were recorded at rest and during pharmacologically induced changes in BP (modified Oxford test). Although [Hb] and blood viscosity (7.8 ± 0.7 vs. 6.6 ± 0.7 cP; d = 1.7, P = 0.01) were elevated in CMS compared to healthy highlanders, cardiac output, total peripheral resistance and mean BP were similar between groups. The vascular sympathetic baroreflex MSNA set-point (i.e. MSNA burst incidence) and reflex gain (i.e. responsiveness) were also similar between groups (MSNA set-point, d = 0.75, P = 0.16; gain, d = 0.2, P = 0.69). In contrast, in CMS the cardiovagal baroreflex operated around a longer RRI (960 ± 159 vs. 817 ± 50 ms; d = 1.4, P = 0.04) with a greater reflex gain (17.2 ± 6.8 vs. 8.8 ± 2.6 ms·mmHg-1 ; d = 1.8, P = 0.01) versus healthy highlanders. Basal sympathetic vasomotor activity was also lower compared to healthy highlanders (33 ± 11 vs. 45 ± 13 bursts·min-1 ; d = 1.0, P = 0.08). In conclusion, our findings indicate adaptive differences in basal sympathetic vasomotor activity and heart rate compensate for the haemodynamic consequences of excessive erythrocyte volume and contribute to integrative blood pressure regulation in Andean highlanders with mild CMS.
Collapse
Affiliation(s)
- Lydia L Simpson
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UK
| | - Victoria L Meah
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Andrew R Steele
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Christopher Gasho
- Division of Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Connor A Howe
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Tony G Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Stephen A Busch
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Samuel J Oliver
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UK
| | - Gilberto Moralez
- Department of Applied Clinical Research, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Justin S Lawley
- Department of Sport Science, Division of Physiology, University of Innsbruck, Innsbruck, Austria
| | - Michael M Tymko
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | | | - Rómulo J Figueroa-Mujíca
- Department of Biological and Physiological Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Francisco C Villafuerte
- Department of Biological and Physiological Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Phillip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Craig D Steinback
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Jonathan P Moore
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UK
| |
Collapse
|
29
|
Busch SA, van Diepen S, Steele AR, Meah VL, Simpson LL, Figueroa-Mujíca RJ, Vizcardo-Galindo G, Villafuerte FC, Tymko MM, Ainslie PN, Moore JP, Stembridge M, Steinback CD. Global REACH: Assessment of Brady-Arrhythmias in Andeans and Lowlanders During Apnea at 4330 m. Front Physiol 2020; 10:1603. [PMID: 32038287 PMCID: PMC6987448 DOI: 10.3389/fphys.2019.01603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/20/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Ascent to altitude increases the prevalence of arrhythmogenesis in low-altitude dwelling populations (Lowlanders). High altitude populations (i.e., Nepalese Sherpa) may have arrhythmias resistant adaptations that prevent arrhythmogenesis at altitude, though this has not been documented in other High altitude groups, including those diagnosed with chronic mountain sickness (CMS). We investigated whether healthy (CMS-) and CMS afflicted (CMS +) Andeans exhibit cardiac arrhythmias under acute apneic stress at altitude. Methods and Results: Electrocardiograms (lead II) were collected in CMS- (N = 9), CMS + (N = 8), and Lowlanders (N = 13) following several days at 4330 m (Cerro de Pasco, Peru). ECG rhythm and HR were assessed at both rest and during maximal volitional apnea. Both CMS- and CMS + had similar basal HR (69 ± 8 beats/min vs. 62 ± 11 beats/min), while basal HR was higher in Lowlanders (77 ± 18 beats/min; P < 0.05 versus CMS +). Apnea elicited significant bradycardia (nadir −32 ± 15 beats/min; P < 0.01) and the development of arrhythmias in 8/13 Lowlanders (junctional rhythm, 3° atrio-ventricular block, sinus pause). HR was preserved was prior to volitional breakpoint in both CMS- (nadir −6 ± 1 beat/min) and CMS + (1 ± 12 beats/min), with 2/17 Andeans developing arrhythmias (1 CMS+ and 1 CMS-; both Premature atrial contraction) prior to breakpoint. Conclusion: Andeans showed an absence of arrhythmias and preserved HR response to volitional apnea at altitude, demonstrating that potential cardio-resistant adaptations to arrhythmogenesis exist across permanent HA populations. Acclimatized Lowlanders have further demonstrated an increased prevalence of arrhythmias at altitude.
Collapse
Affiliation(s)
- Stephen A Busch
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Sean van Diepen
- Department of Critical Care and Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Andrew R Steele
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Victoria L Meah
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Lydia L Simpson
- School of Sport, Health and Exercise Sciences, Bangor University, Bangor, United Kingdom
| | - Rómulo J Figueroa-Mujíca
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gustavo Vizcardo-Galindo
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Francisco C Villafuerte
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Jonathan P Moore
- School of Sport, Health and Exercise Sciences, Bangor University, Bangor, United Kingdom
| | - Mike Stembridge
- Cardiff Centre for Exercise and Health, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Craig D Steinback
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
30
|
Busch SA, Simpson LL, Sobierajski F, Riske L, Ainslie PN, Willie CK, Stembridge M, Moore JP, Steinback CD. Muscle sympathetic reactivity to apneic and exercise stress in high-altitude Sherpa. Am J Physiol Regul Integr Comp Physiol 2020; 318:R493-R502. [PMID: 31913686 DOI: 10.1152/ajpregu.00119.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lowland-dwelling populations exhibit persistent sympathetic hyperactivity at altitude that alters vascular function. High-altitude populations, such as Sherpa, have previously exhibited greater peripheral blood flow in response to acute stress than Lowlanders, which may be explained through lower sympathetic activity. Our purpose was to determine whether Sherpa exhibit lower sympathetic reactivity to stress than Lowlanders. Muscle sympathetic nerve activity (MSNA; microneurography) was measured at rest in Lowlanders (n = 14; age = 27 ± 6 yr) at 344 m and between 1 and 10 days at 5,050 m. Sherpa (age = 32 ± 11 yr) were tested at 5,050 m (n = 8). Neurovascular reactivity (i.e., change in MSNA patterns) was measured during maximal end-expiratory apnea, isometric hand grip (IHG; 30% maximal voluntary contraction for 2-min), and postexercise circulatory occlusion (PECO; 3 min). Burst frequency (bursts/min) and incidence (bursts/100 heartbeats) and total normalized SNA (arbitrary units/min) were analyzed at rest, immediately before apnea breakpoint, and during the last minute of IHG and PECO. Vascular responses to apnea, IHG, and PECO were also measured. MSNA reactivity to apnea was smaller in Sherpa than Lowlanders at 5,050 m, although blood pressure responses were similar between groups. MSNA increases in Lowlanders during apnea at 5,050 m were significantly lower than at 344 m (P < 0.05), indicating that a possible sympathetic ceiling was reached in Lowlanders at 5,050 m. MSNA increased similarly during IHG and PECO in Lowlanders at both 334 m and 5,050 m and in Sherpa at 5,050 m, while vascular changes (mean brachial arterial pressure, contralateral brachial flow and resistance) were similar between groups. Sherpa demonstrate overall lower sympathetic reactivity that may be a result of heightened vascular responsiveness to potential apneic stress at altitude.
Collapse
Affiliation(s)
- Stephen A Busch
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Lydia L Simpson
- School of Sport, Health, and Exercise Sciences, Bangor University, Bangor, United Kingdom
| | - Frances Sobierajski
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Laurel Riske
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Chris K Willie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Mike Stembridge
- Cardiff Centre for Exercise and Health, Cardiff School of Sport and Health, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Jonathan P Moore
- School of Sport, Health, and Exercise Sciences, Bangor University, Bangor, United Kingdom
| | - Craig D Steinback
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
31
|
Bhandari S, Cavalleri GL. Population History and Altitude-Related Adaptation in the Sherpa. Front Physiol 2019; 10:1116. [PMID: 31555147 PMCID: PMC6722185 DOI: 10.3389/fphys.2019.01116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/12/2019] [Indexed: 12/29/2022] Open
Abstract
The first ascent of Mount Everest by Tenzing Norgay and Sir Edmund Hillary in 1953 brought global attention to the Sherpa people and human performance at altitude. The Sherpa inhabit the Khumbu Valley of Nepal, and are descendants of a population that has resided continuously on the Tibetan plateau for the past ∼25,000 to 40,000 years. The long exposure of the Sherpa to an inhospitable environment has driven genetic selection and produced distinct adaptive phenotypes. This review summarizes the population history of the Sherpa and their physiological and genetic adaptation to hypoxia. Genomic studies have identified robust signals of positive selection across EPAS1, EGLN1, and PPARA, that are associated with hemoglobin levels, which likely protect the Sherpa from altitude sickness. However, the biological underpinnings of other adaptive phenotypes such as birth weight and the increased reproductive success of Sherpa women are unknown. Further studies are required to identify additional signatures of selection and refine existing Sherpa-specific adaptive phenotypes to understand how genetic factors have underpinned adaptation in this population. By correlating known and emerging signals of genetic selection with adaptive phenotypes, we can further reveal hypoxia-related biological mechanisms of adaptation. Ultimately this work could provide valuable information regarding treatments of hypoxia-related illnesses including stroke, heart failure, lung disease and cancer.
Collapse
Affiliation(s)
- Sushil Bhandari
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
32
|
Tremblay JC, Coombs GB, Howe CA, Vizcardo-Galindo GA, Figueroa-Mujíca RJ, Bermudez D, Tymko MM, Villafuerte FC, Ainslie PN, Pyke KE. Global Reach 2018: reduced flow-mediated dilation stimulated by sustained increases in shear stress in high-altitude excessive erythrocytosis. Am J Physiol Heart Circ Physiol 2019; 317:H991-H1001. [PMID: 31441692 DOI: 10.1152/ajpheart.00316.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Excessive erythrocytosis [EE; hemoglobin concentration (Hb) ≥ 21 g/dL in adult men] is a maladaptive high-altitude pathology associated with increased cardiovascular risk and reduced reactive hyperemia flow-mediated dilation (FMD); however, whether a similar impairment occurs in response to more commonly encountered sustained increases in shear stress [sustained stimulus (SS)-FMD] over a range of overlapping stimuli is unknown. We characterized SS-FMD in response to handgrip exercise in Andeans with and without EE in Cerro de Pasco, Peru (4,330 m). Andean highlanders with EE (n = 17, Hb = 23.2 ± 1.2 g/dL) and without EE (n = 23, Hb = 18.7 ± 1.9 g/dL) performed 3 min of rhythmic handgrip exercise at 20, 35, and 50% of maximum voluntary contraction (MVC). Duplex ultrasound was used to continuously record blood velocity and diameter in the brachial artery, and blood viscosity was measured to accurately calculate shear stress. Although baseline shear stress did not differ, Andeans with EE had 22% lower shear stress than Andeans without at 50% MVC (P = 0.004). At 35 and 50% MVC, SS-FMD was 2.1 ± 2.0 and 2.8 ± 2.7% in Andeans with EE compared with 4.1 ± 3.4 and 7.5 ± 4.5% in those without (P = 0.048 and P < 0.001). The stimulus-response slope (∆shear stress vs. ∆diameter) was lower in Andeans with EE compared with Andeans without (P = 0.028). This slope was inversely related to Hb in Andeans with EE (r2 = 0.396, P = 0.007). A reduced SS-FMD in response to small muscle mass exercise in Andeans with EE indicates a generalized reduction in endothelial sensitivity to shear stress, which may contribute to increased cardiovascular risk in this population.NEW & NOTEWORTHY High-altitude excessive erythrocytosis (EE; hemoglobin concentration ≥ 21 g/dL) is a maladaptation to chronic hypoxia exposure and is associated with increased cardiovascular risk. We examined flow-mediated dilation (FMD) in response to sustained elevations in shear stress achieved using progressive handgrip exercise [sustained stimulus (SS)-FMD] in Andean highlanders with and without EE at 4,330 m. Andeans with EE demonstrated lower SS-FMD compared with those without. Heightened hemoglobin concentration was related to lower SS-FMD in Andeans with EE.
Collapse
Affiliation(s)
- Joshua C Tremblay
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Geoff B Coombs
- Centre for Heart, Lung and Vascular Health, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Gustavo A Vizcardo-Galindo
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Rómulo J Figueroa-Mujíca
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Daniela Bermudez
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Francisco C Villafuerte
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Kyra E Pyke
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
33
|
Sanz-Quinto S, López-Grueso R, Brizuela G, Flatt AA, Moya-Ramón M. Influence of Training Models at 3,900-m Altitude on the Physiological Response and Performance of a Professional Wheelchair Athlete: A Case Study. J Strength Cond Res 2019; 33:1714-1722. [PMID: 29927887 DOI: 10.1519/jsc.0000000000002667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sanz-Quinto, S, López-Grueso, R, Brizuela, G, Flatt, AA, and Moya-Ramón, M. Influence of training models at 3,900-m altitude on the physiological response and performance of a professional wheelchair athlete: A case study. J Strength Cond Res 33(6): 1715-1723, 2019-This case study compared the effects of two training camps using flexible planning (FP) vs. inflexible planning (IP) at 3,860-m altitude on physiological and performance responses of an elite marathon wheelchair athlete with Charcot-Marie-Tooth disease (CMT). During IP, the athlete completed preplanned training sessions. During FP, training was adjusted based on vagally mediated heart rate variability (HRV) with specific sessions being performed when a reference HRV value was attained. The camp phases were baseline in normoxia (BN), baseline in hypoxia (BH), specific training weeks 1-4 (W1, W2, W3, W4), and Post-camp (Post). Outcome measures included the root mean square of successive R-R interval differences (rMSSD), resting heart rate (HRrest), oxygen saturation (SO2), diastolic blood pressure and systolic blood pressure, power output and a 3,000-m test. A greater impairment of normalized rMSSD (BN) was shown in IP during BH (57.30 ± 2.38% vs. 72.94 ± 11.59%, p = 0.004), W2 (63.99 ± 10.32% vs. 81.65 ± 8.87%, p = 0.005), and W4 (46.11 ± 8.61% vs. 59.35 ± 6.81%, p = 0.008). At Post, only in FP was rMSSD restored (104.47 ± 35.80%). Relative changes were shown in power output (+3 W in IP vs. +6 W in FP) and 3,000-m test (-7s in IP vs. -16s in FP). This case study demonstrated that FP resulted in less suppression and faster restoration of rMSSD and more positive changes in performance than IP in an elite wheelchair marathoner with CMT.
Collapse
Affiliation(s)
| | | | - Gabriel Brizuela
- Department of Physical and Sports Education, University of Valencia, Valencia, Spain
| | - Andrew A Flatt
- Department of Health Science and Kinesiology, Georgia Southern University, Savannah, Georgia
| | - Manuel Moya-Ramón
- Sports Research Center, Miguel Hernandez University, Elche, Spain.,Department of Health Psychology, Miguel Hernandez University, Elche, Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante, Spain
| |
Collapse
|
34
|
Grocott MPW, Levett DZH, Ward SA. Exercise physiology: exercise performance at altitude. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Soria R, Egger M, Scherrer U, Bender N, Rimoldi SF. Pulmonary arterial pressure at rest and during exercise in chronic mountain sickness: a meta-analysis. Eur Respir J 2019; 53:13993003.02040-2018. [PMID: 31023845 DOI: 10.1183/13993003.02040-2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/21/2019] [Indexed: 01/22/2023]
Abstract
Up to 10% of the more than 140 million high-altitude dwellers worldwide suffer from chronic mountain sickness (CMS). Patients suffering from this debilitating problem often display increased pulmonary arterial pressure (PAP), which may contribute to exercise intolerance and right heart failure. However, there is little information on the usual PAP in these patients.We systematically reviewed and meta-analysed all data published in English or Spanish until June 2018 on echocardiographic estimations of PAP at rest and during mild exercise in CMS patients.Nine studies comprising 287 participants fulfilled the inclusion criteria. At rest, the point estimate from meta-analysis of the mean systolic PAP was 27.9 mmHg (95% CI 26.3-29.6 mmHg). These values are 11% (+2.7 mmHg) higher than those previously meta-analysed in apparently healthy high-altitude dwellers. During mild exercise (50 W) the difference in mean systolic PAP between patients and high-altitude dwellers was markedly more accentuated (48.3 versus 36.3 mmHg) than at rest.These findings indicate that in patients with CMS PAP is moderately increased at rest, but markedly increased during mild exercise, which will be common with activities of daily living.
Collapse
Affiliation(s)
- Rodrigo Soria
- Dept of Cardiology and Clinical Research, Inselspital, University of Bern, Bern, Switzerland
| | - Matthias Egger
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland.,Division of Epidemiology and Biostatistics, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Urs Scherrer
- Dept of Cardiology and Clinical Research, Inselspital, University of Bern, Bern, Switzerland.,Facultad de Ciencias, Departamento de Biología, Universidad de Tarapacá, Arica, Chile
| | - Nicole Bender
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland.,Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.,These two authors contributed equally to this work
| | - Stefano F Rimoldi
- Dept of Cardiology and Clinical Research, Inselspital, University of Bern, Bern, Switzerland .,These two authors contributed equally to this work
| |
Collapse
|
36
|
Narvaez-Guerra O, Herrera-Enriquez K, Medina-Lezama J, Chirinos JA. Systemic Hypertension at High Altitude. Hypertension 2019; 72:567-578. [PMID: 30354760 DOI: 10.1161/hypertensionaha.118.11140] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Offdan Narvaez-Guerra
- From the Santa María Catholic University and PREVENCION Research Institute, Arequipa, Peru (O.N.-G., K.H.-E., J.M.-L.)
| | - Karela Herrera-Enriquez
- From the Santa María Catholic University and PREVENCION Research Institute, Arequipa, Peru (O.N.-G., K.H.-E., J.M.-L.)
| | - Josefina Medina-Lezama
- From the Santa María Catholic University and PREVENCION Research Institute, Arequipa, Peru (O.N.-G., K.H.-E., J.M.-L.)
| | - Julio A Chirinos
- University of Pennsylvania Perelman School of Medicine and Hospital of the University of Pennsylvania, Philadelphia (J.A.C.)
| |
Collapse
|
37
|
Simpson LL, Busch SA, Oliver SJ, Ainslie PN, Stembridge M, Steinback CD, Moore JP. Baroreflex control of sympathetic vasomotor activity and resting arterial pressure at high altitude: insight from Lowlanders and Sherpa. J Physiol 2019; 597:2379-2390. [PMID: 30893472 DOI: 10.1113/jp277663] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/18/2019] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS Hypoxia, a potent activator of the sympathetic nervous system, is known to increase muscle sympathetic nerve activity (MSNA) to the peripheral vasculature of native Lowlanders during sustained high altitude (HA) exposure. We show that the arterial baroreflex control of MSNA functions normally in healthy Lowlanders at HA, and that upward baroreflex resetting permits chronic activation of basal sympathetic vasomotor activity under this condition. The baroreflex MSNA operating point and resting sympathetic vasomotor outflow both are lower for highland Sherpa compared to acclimatizing Lowlanders; these lower levels may represent beneficial hypoxic adaptation in Sherpa. Acute hyperoxia at HA had minimal effect on baroreflex control of MSNA in Lowlanders and Sherpa, raising the possibility that mechanisms other than peripheral chemoreflex activation contribute to vascular sympathetic baroreflex resetting and sympathoexcitation. These findings provide a better understanding of sympathetic nervous system activation and the control of blood pressure during the physiological stress of sustained HA hypoxia. ABSTRACT Exposure to high altitude (HA) is characterized by heightened muscle sympathetic neural activity (MSNA); however, the effect on arterial baroreflex control of MSNA is unknown. Furthermore, arterial baroreflex control at HA may be influenced by genotypic and phenotypic differences between lowland and highland natives. Fourteen Lowlanders (12 male) and nine male Sherpa underwent haemodynamic and sympathetic neural assessment at low altitude (Lowlanders, low altitude; 344 m, Sherpa, Kathmandu; 1400 m) and following gradual ascent to 5050 m. Beat-by-beat haemodynamics (photoplethysmography) and MSNA (microneurography) were recorded lying supine. Indices of vascular sympathetic baroreflex function were determined from the relationship of diastolic blood pressure (DBP) and corresponding MSNA at rest (i.e. DBP 'operating pressure' and MSNA 'operating point'), as well as during a modified Oxford baroreflex test (i.e. 'gain'). Operating pressure and gain were unchanged for Lowlanders during HA exposure; however, the operating point was reset upwards (48 ± 16 vs. 22 ± 12 bursts 100 HB-1 , P = 0.001). Compared to Lowlanders at 5050 m, Sherpa had similar gain and operating pressure, although the operating point was lower (30 ± 13 bursts 100 HB-1 , P = 0.02); MSNA burst frequency was lower for Sherpa (22 ± 11 vs. 30 ± 9 bursts min-1 P = 0.03). Breathing 100% oxygen did not alter vascular sympathetic baroreflex function for either group at HA. For Lowlanders, upward baroreflex resetting promotes heightened sympathetic vasoconstrictor activity and maintains blood pressure stability, at least during early HA exposure; mechanisms other than peripheral chemoreflex activation could be involved. Sherpa adaptation appears to favour a lower sympathetic vasoconstrictor activity compared to Lowlanders for blood pressure homeostasis.
Collapse
Affiliation(s)
- Lydia L Simpson
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Bangor, Wales, UK
| | - Stephen A Busch
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Samuel J Oliver
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Bangor, Wales, UK
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, BC, Kelowna, Canada
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, Wales, UK
| | - Craig D Steinback
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan P Moore
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Bangor, Wales, UK
| |
Collapse
|
38
|
Lefferts WK, DeBlois JP, White CN, Day TA, Heffernan KS, Brutsaert TD. Changes in cognitive function and latent processes of decision-making during incremental ascent to high altitude. Physiol Behav 2019; 201:139-145. [DOI: 10.1016/j.physbeh.2019.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 12/29/2022]
|
39
|
Stembridge M, Levine B. Cardiac performance with chronic hypoxia: mechanisms regulating stroke volume. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2018.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Savla JJ, Levine BD, Sadek HA. The Effect of Hypoxia on Cardiovascular Disease: Friend or Foe? High Alt Med Biol 2019; 19:124-130. [PMID: 29939783 DOI: 10.1089/ham.2018.0044] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Savla, Jainy J., Benjamin D. Levine, and Hesham A. Sadek. The effect of hypoxia on cardiovascular disease: Friend or foe? High Alt Med Biol. 19:124-130, 2018.-Over 140 million people reside at altitudes exceeding 2500 m across the world, resulting in exposure to atmospheric (hypobaric) hypoxia. Whether this chronic exposure is beneficial or detrimental to the cardiovascular system, however, is uncertain. On one hand, multiple studies have suggested a protective effect of living at moderate and high altitudes for cardiovascular risk factors and cardiovascular disease (CVD) events. Conversely, residence at high altitude comes at the tradeoff of developing diseases such as chronic mountain sickness and high-altitude pulmonary hypertension and worsens outcomes for diseases such as chronic obstructive pulmonary disease. Interestingly, recently published data show a potential role for severe hypoxia as a unique and unexpected therapy after myocardial infarction. In this review, we will discuss the current literature evaluating the effects of altitude exposure and the accompanying hypoxia on health and the potential therapeutic applications of hypoxia on CVD.
Collapse
Affiliation(s)
- Jainy J Savla
- 1 Department of Cardiology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Benjamin D Levine
- 1 Department of Cardiology, University of Texas Southwestern Medical Center , Dallas, Texas
- 2 Institute for Exercise and Environmental Medicine , Texas Health Presbyterian Hospital, Dallas, Texas
| | - Hesham A Sadek
- 1 Department of Cardiology, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
41
|
Purdy GM, James MA, Rees JL, Ondrus P, Keess JL, Day TA, Steinback CD. Spleen reactivity during incremental ascent to altitude. J Appl Physiol (1985) 2019; 126:152-159. [PMID: 30462566 PMCID: PMC6383637 DOI: 10.1152/japplphysiol.00753.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/29/2018] [Accepted: 11/18/2018] [Indexed: 11/22/2022] Open
Abstract
The spleen contains a reservoir of red blood cells that are mobilized into circulation when under physiological stress. Despite the spleen having an established role in compensation to acute hypoxia, no previous work has assessed the role of the spleen during ascent to high altitude. Twelve participants completed 2 min of handgrip exercise at 30% of maximal voluntary contraction at 1,045, 3,440, and 4,240 m. In a subset of eight participants, an infusion of phenylephrine hydrochloride was administered at a dosage of 30 µg/l of predicted blood volume at each altitude. The spleen was imaged by ultrasound via a 2- to 5.5-MHz curvilinear probe. Spleen volume was calculated by the prolate ellipsoid formula. Finger capillary blood samples were taken to measure hematocrit. Spleen images and hematocrit were taken both before and at the end of both handgrip and phenylephrine infusion. No changes in resting spleen volume were observed between altitudes. At low altitude, the spleen contracted in response to handgrip [272.8 ml (SD 102.3) vs. 249.6 ml (SD 105.7), P = 0.009], leading to an increase in hematocrit (42.6% (SD 3.3) vs. 44.3% (SD 3.3), P = 0.023] but did not contract or increase hematocrit at the high-altitude locations. Infusion of phenylephrine led to spleen contraction at all altitudes, but only lead to an increase in hematocrit at low altitude. These data reveal that the human spleen may not contribute to acclimatization to chronic hypoxia, contrary to its response to acute sympathoexcitation. These results are explained by alterations in spleen reactivity to increased sympathetic activation at altitude. NEW & NOTEWORTHY The present study demonstrated that, despite the known role of the human spleen in increasing oxygen delivery to tissues during acute hypoxia scenarios, the spleen does not mobilize red blood cells during ascent to high altitude. Furthermore, the spleen's response to acute stressors at altitude depends on the nature of the stressor; the spleen's sensitivity to neurotransmitter is maintained, while its reflex response to stress is dampened.
Collapse
Affiliation(s)
- Graeme M Purdy
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta , Edmonton, Alberta , Canada
| | - Marina A James
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta , Edmonton, Alberta , Canada
| | - Jordan L Rees
- Physical Activity and Diabetes Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta , Edmonton, Alberta , Canada
| | - Peter Ondrus
- Department of Family Medicine, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Alberta , Canada
| | - Jamie L Keess
- Department of Family Medicine, College of Medicine, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| | - Trevor A Day
- Faculty of Science and Technology, Department of Biology, Mount Royal University , Calgary, Alberta , Canada
| | - Craig D Steinback
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta , Edmonton, Alberta , Canada
| |
Collapse
|
42
|
Bailey DM, Brugniaux JV, Filipponi T, Marley CJ, Stacey B, Soria R, Rimoldi SF, Cerny D, Rexhaj E, Pratali L, Salmòn CS, Murillo Jáuregui C, Villena M, Smirl JD, Ogoh S, Pietri S, Scherrer U, Sartori C. Exaggerated systemic oxidative-inflammatory-nitrosative stress in chronic mountain sickness is associated with cognitive decline and depression. J Physiol 2019; 597:611-629. [PMID: 30397919 PMCID: PMC6332753 DOI: 10.1113/jp276898] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Chronic mountain sickness (CMS) is a maladaptation syndrome encountered at high altitude (HA) characterised by severe hypoxaemia that carries a higher risk of stroke and migraine and is associated with increased morbidity and mortality. We examined if exaggerated oxidative-inflammatory-nitrosative stress (OXINOS) and corresponding decrease in vascular nitric oxide bioavailability in patients with CMS (CMS+) is associated with impaired cerebrovascular function and adverse neurological outcome. Systemic OXINOS was markedly elevated in CMS+ compared to healthy HA (CMS-) and low-altitude controls. OXINOS was associated with blunted cerebral perfusion and vasoreactivity to hypercapnia, impaired cognition and, in CMS+, symptoms of depression. These findings are the first to suggest that a physiological continuum exists for hypoxaemia-induced systemic OXINOS in HA dwellers that when excessive is associated with accelerated cognitive decline and depression, helping identify those in need of more specialist neurological assessment and targeted support. ABSTRACT Chronic mountain sickness (CMS) is a maladaptation syndrome encountered at high altitude (HA) characterised by severe hypoxaemia that carries a higher risk of stroke and migraine and is associated with increased morbidity and mortality. The present cross-sectional study examined to what extent exaggerated systemic oxidative-inflammatory-nitrosative stress (OXINOS), defined by an increase in free radical formation and corresponding decrease in vascular nitric oxide (NO) bioavailability, is associated with impaired cerebrovascular function, accelerated cognitive decline and depression in CMS. Venous blood was obtained from healthy male lowlanders (80 m, n = 17), and age- and gender-matched HA dwellers born and bred in La Paz, Bolivia (3600 m) with (CMS+, n = 23) and without (CMS-, n = 14) CMS. We sampled blood for oxidative (electron paramagnetic resonance spectroscopy, HPLC), nitrosative (ozone-based chemiluminescence) and inflammatory (fluorescence) biomarkers. We employed transcranial Doppler ultrasound to measure cerebral blood flow (CBF) and reactivity. We utilised psychometric tests and validated questionnaires to assess cognition and depression. Highlanders exhibited elevated systemic OXINOS (P < 0.05 vs. lowlanders) that was especially exaggerated in the more hypoxaemic CMS+ patients (P < 0.05 vs. CMS-). OXINOS was associated with blunted cerebral perfusion and vasoreactivity to hypercapnia, impaired cognition and, in CMS+, symptoms of depression. Collectively, these findings are the first to suggest that a physiological continuum exists for hypoxaemia-induced OXINOS in HA dwellers that when excessive is associated with accelerated cognitive decline and depression, helping identify those in need of specialist neurological assessment and support.
Collapse
Affiliation(s)
- Damian M. Bailey
- Neurovascular Research LaboratoryFaculty of Life Sciences and Education, University of South WalesUK
| | - Julien V. Brugniaux
- Neurovascular Research LaboratoryFaculty of Life Sciences and Education, University of South WalesUK
- HP2 Laboratory, INSERM U1042Grenoble Alpes UniversityGrenobleFrance
| | - Teresa Filipponi
- Neurovascular Research LaboratoryFaculty of Life Sciences and Education, University of South WalesUK
| | - Christopher J. Marley
- Neurovascular Research LaboratoryFaculty of Life Sciences and Education, University of South WalesUK
| | - Benjamin Stacey
- Neurovascular Research LaboratoryFaculty of Life Sciences and Education, University of South WalesUK
| | - Rodrigo Soria
- Department of Cardiology and Clinical ResearchUniversity HospitalBernSwitzerland
| | - Stefano F. Rimoldi
- Department of Cardiology and Clinical ResearchUniversity HospitalBernSwitzerland
| | - David Cerny
- Department of Cardiology and Clinical ResearchUniversity HospitalBernSwitzerland
| | - Emrush Rexhaj
- Department of Cardiology and Clinical ResearchUniversity HospitalBernSwitzerland
| | | | | | | | | | - Jonathan D. Smirl
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise ScienceUniversity of British Columbia OkanaganKelownaBritish ColumbiaCanada
| | | | | | - Urs Scherrer
- Department of Cardiology and Clinical ResearchUniversity HospitalBernSwitzerland
- Facultad de Ciencias, Departamento de BiologíaUniversidad de TarapacáAricaChile
| | - Claudio Sartori
- Department of Internal MedicineUniversity HospitalUNIL‐LausanneSwitzerland
| |
Collapse
|
43
|
Tremblay JC, Hoiland RL, Carter HH, Howe CA, Stembridge M, Willie CK, Gasho C, MacLeod DB, Pyke KE, Ainslie PN. UBC-Nepal expedition: upper and lower limb conduit artery shear stress and flow-mediated dilation on ascent to 5,050 m in lowlanders and Sherpa. Am J Physiol Heart Circ Physiol 2018; 315:H1532-H1543. [PMID: 30168724 DOI: 10.1152/ajpheart.00345.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The study of conduit artery endothelial adaptation to hypoxia has been restricted to the brachial artery, and comparisons with highlanders have been confounded by differences in altitude exposure, exercise, and unknown levels of blood viscosity. To address these gaps, we tested the hypothesis that lowlanders, but not Sherpa, would demonstrate decreased mean shear stress and increased retrograde shear stress and subsequently reduced flow-mediated dilation (FMD) in the upper and lower limb conduit arteries on ascent to 5,050 m. Healthy lowlanders (means ± SD, n = 22, 28 ± 6 yr) and Sherpa ( n = 12, 34 ± 11 yr) ascended over 10 days, with measurements taken on nontrekking days at 1,400 m (baseline), 3,440 m ( day 4), 4,371 m ( day 7), and 5,050 m ( day 10). Arterial blood gases, blood viscosity, shear stress, and FMD [duplex ultrasound of the brachial and superficial femoral arteries (BA and SFA, respectively)] were acquired at each time point. Ascent decreased mean and increased retrograde shear stress in the upper and lower limb of lowlanders and Sherpa. Although BA FMD decreased in lowlanders from 7.1 ± 3.9% to 3.8 ± 2.8% at 5,050 versus 1,400 m ( P < 0.001), SFA FMD was preserved. In Sherpa, neither BA nor SFA FMD were changed upon ascent to 5,050 m. In lowlanders, the ascent-related exercise may favorably influence endothelial function in the active limb (SFA); selective impairment in FMD in the BA in lowlanders is likely mediated via the low mean or high oscillatory baseline shear stress. In contrast, Sherpa presented protected endothelial function, suggesting a potential vascular aspect of high-altitude acclimatization/adaptation. NEW & NOTEWORTHY Upper and lower limb arterial shear stress and flow-mediated dilation (FMD) were assessed on matched ascent from 1,400 to 5,050 m in lowlanders and Sherpa. A shear stress pattern associated with vascular dysfunction/risk manifested in both limbs of lowlanders and Sherpa. FMD was impaired only in the upper limb of lowlanders. The findings indicate a limb-specific impact of high-altitude trekking on FMD and a vascular basis to acclimatization wherein endothelial function is protected in Sherpa on ascent.
Collapse
Affiliation(s)
- Joshua C Tremblay
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung, and Vascular Health, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Howard H Carter
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Connor A Howe
- Centre for Heart, Lung, and Vascular Health, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Mike Stembridge
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University , Cardiff , United Kingdom
| | - Christopher K Willie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Christopher Gasho
- Division of Pulmonary, Critical Care, Hyperbaric and Sleep Medicine, Loma Linda University School of Medicine , Loma Linda, California
| | - David B MacLeod
- Human Pharmacology and Physiology Laboratory, Department of Anesthesiology, Duke University Medical Center , Durham, North Carolina
| | - Kyra E Pyke
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
44
|
Tremblay JC, Howe CA, Ainslie PN, Pyke KE. UBC-Nepal Expedition: imposed oscillatory shear stress does not further attenuate flow-mediated dilation during acute and sustained hypoxia. Am J Physiol Heart Circ Physiol 2018. [PMID: 29522371 DOI: 10.1152/ajpheart.00717.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Experimentally induced oscillatory shear stress (OSS) and hypoxia reduce endothelial function in humans. Acute and sustained hypoxia may cause increases in resting OSS; however, whether this influences endothelial susceptibility to further increases in OSS is unknown. Healthy lowlanders ( n = 15, 30 ± 6 yr; means ± SD) participated in three OSS interventions: two interventions at sea level [normoxia and after 20 min of normobaric hypoxia (acute hypoxia, 11% O2)] and one intervention 5-7 days after a 9-day ascent to 5,050 m (sustained hypoxia). OSS was provoked in the brachial artery using a 30-min distal cuff inflation (75 mmHg). Endothelial function was assessed before and after each intervention by reactive hyperemia flow-mediated dilation (FMD). Shear stress magnitude and patterns were obtained via Duplex ultrasound. Baseline retrograde shear stress and OSS were greater in acute hypoxia versus normoxia ( P < 0.001), and OSS was elevated in sustained hypoxia versus normoxia ( P = 0.011). The intervention further augmented OSS during each condition. Preintervention FMD was decreased by 29 ± 48% in acute hypoxia and by 25 ± 31% in sustained hypoxia compared with normoxia ( P = 0.001 and 0.026); these changes correlated with changes in baseline mean and antegrade shear stress. After the intervention, FMD decreased during normoxia (-41 ± 26%, P < 0.001) and was unaltered during acute or sustained hypoxia. Therefore, a 30-min exposure to OSS reduced FMD during normoxia, a condition with an unchallenged, healthy endothelium; however, imposed OSS did not appear to worsen endothelial function during acute or sustained hypoxia. Exposure to an altered magnitude and pattern of shear stress at baseline in hypoxia may contribute to the insensitivity to further acute augmentation of OSS. NEW & NOTEWORTHY We investigated whether the endothelium remains sensitive to experimental increases in oscillatory shear stress in acute (11% O2) and sustained (2 wk at 5,050 m) hypoxia. Hypoxia altered baseline shear stress and decreased endothelial function (flow-mediated dilation); however, exposure to experimentally induced oscillatory shear stress only impaired flow-mediated dilation in normoxia.
Collapse
Affiliation(s)
- Joshua C Tremblay
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| | - Connor A Howe
- Centre for Heart, Lung, and Vascular Health, University of British Columbia , Kelowna, British Columbia , Canada
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia , Kelowna, British Columbia , Canada
| | - Kyra E Pyke
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| |
Collapse
|