1
|
Luciano F, Ruggiero L, Minetti AE, Pavei G. Move less, spend more: the metabolic demands of short walking bouts. Proc Biol Sci 2024; 291:20241220. [PMID: 39410664 PMCID: PMC11521144 DOI: 10.1098/rspb.2024.1220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/03/2024] [Accepted: 08/27/2024] [Indexed: 11/01/2024] Open
Abstract
The metabolic cost of steady-state walking is well known; however, across legged animals, most walking bouts are too short to reach steady state. Here, we investigate how bout duration affects the metabolic cost of human walking with varying mechanical power, metabolic intensity and duration. Ten participants walked for 10- to 240-s bouts on a stair climber at 0.20, 0.25 and 0.36 m s-1 and on a treadmill at 1.39 m s-1. Oxygen uptake was time-integrated and divided by bout duration to get bout average uptake (V̇O2(b)). Fitting of oxygen uptake kinetics allowed calculating non-metabolic oxygen exchange during phase-I transient and, hence, non-steady-state metabolic cost (C met(b)) and efficiency. For 240-s bouts, such variables were also calculated at steady state. Across all conditions, shorter bouts had higher V̇O2(b) and C met(b), with proportionally greater non-metabolic oxygen exchange. As the bout duration increased, V̇O2(b), C met(b) and efficiency approached steady-state values. Our findings show that the time-averaged oxygen uptake and metabolic cost are greater for shorter than longer bouts: 30-s bouts consume 20-60% more oxygen than steady-state extrapolations. This is partially explained by the proportionally greater non-metabolic oxygen uptake and leads to lower efficiency for shorter bouts. Inferring metabolic cost from steady state substantially underestimates energy expenditure for short bouts.
Collapse
Affiliation(s)
- F. Luciano
- Department of Pathophysiology and Transplantation, University of Milan, Milan20133, Italy
| | - L. Ruggiero
- Department of Pathophysiology and Transplantation, University of Milan, Milan20133, Italy
- Department of Sports Science, Human Performance Research Centre, University of Konstanz, Konstanz78464, Germany
| | - A. E. Minetti
- Department of Pathophysiology and Transplantation, University of Milan, Milan20133, Italy
| | - G. Pavei
- Department of Pathophysiology and Transplantation, University of Milan, Milan20133, Italy
| |
Collapse
|
2
|
Magris R, Monte A, Nardello F, Trinchi M, Vigolo N, Negri C, Moghetti P, Zamparo P. Effects of minute oscillation stretching training on muscle and tendon stiffness and walking capability in people with type 2 diabetes. Eur J Appl Physiol 2024:10.1007/s00421-024-05596-y. [PMID: 39249539 DOI: 10.1007/s00421-024-05596-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
AIM we investigated the effects of a 10 week training program (i.e., minute oscillatory stretching; MOS) on the mechanical responses and walking capability in people with type 2 diabetes (T2D). METHODS seventeen T2D patients performed maximum voluntary contractions of the plantar flexor muscles during which Achilles tendon stiffness (kT) and muscle-tendon stiffness (kM) were evaluated at different percentages of the maximum voluntary force (MVC). In addition, each participant was requested to walk at different walking speeds (i.e. 2, 3, 4, 5, and 6 kmh-1) while their net energy cost of walking (Cnet), cumulative EMG activity per distance travelled (CMAPD) and kinematic parameters (step length, step frequency, the ankle/knee range of motion) were evaluated. RESULTS maximum tendon elongation increased after MOS training, and kT significantly decreased (between 0 and 20% of MVC). No differences were observed for muscle elongation or kM after training. Cnet decreased after training (at the slowest tested speeds) while no changes in CMAPD were observed. Step length and ankle ROM during walking increased after training at the slowest tested speeds, while step frequency decreased; no significant effects were observed for knee ROM. CONCLUSION these results indicate the effectiveness of 10 weeks of MOS training in reducing tendon stiffness and the energy cost during walking in people with T2D. This training protocol requires no specific instrumentation, can be easily performed at home, and has a high adherence (92 ± 9%). It could, thus, be useful to mitigate mechanical tendon deterioration and improve physical behaviour in this population.
Collapse
Affiliation(s)
- Riccardo Magris
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Andrea Monte
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Francesca Nardello
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele Trinchi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Nicolò Vigolo
- Department of Medicine, University of Verona, Verona, Italy
| | - Carlo Negri
- Integrated University Hospital of Verona - Endocrinology, Diabetology and Metabolic Diseases Unit, Verona, Italy
| | - Paolo Moghetti
- Department of Medicine, University of Verona, Verona, Italy
| | - Paola Zamparo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
3
|
Luciano F, Ruggiero L, Minetti AE, Pavei G. The work to swing limbs in humans versus chimpanzees and its relation to the metabolic cost of walking. Sci Rep 2024; 14:8970. [PMID: 38637567 PMCID: PMC11026468 DOI: 10.1038/s41598-024-59171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Compared to their closest ape relatives, humans walk bipedally with lower metabolic cost (C) and less mechanical work to move their body center of mass (external mechanical work, WEXT). However, differences in WEXT are not large enough to explain the observed lower C: humans may also do less work to move limbs relative to their body center of mass (internal kinetic mechanical work, WINT,k). From published data, we estimated differences in WINT,k, total mechanical work (WTOT), and efficiency between humans and chimpanzees walking bipedally. Estimated WINT,k is ~ 60% lower in humans due to changes in limb mass distribution, lower stride frequency and duty factor. When summing WINT,k to WEXT, between-species differences in efficiency are smaller than those in C; variations in WTOT correlate with between-species, but not within-species, differences in C. These results partially support the hypothesis that the low cost of human walking is due to the concerted low WINT,k and WEXT.
Collapse
Affiliation(s)
- Francesco Luciano
- Department of Pathophysiology and Transplantation, University of Milan, 20133, Milan, Italy
| | - Luca Ruggiero
- Human Performance Research Centre, Department of Sports Science, University of Konstanz, Konstanz, Germany.
| | - Alberto E Minetti
- Department of Pathophysiology and Transplantation, University of Milan, 20133, Milan, Italy
| | - Gaspare Pavei
- Department of Pathophysiology and Transplantation, University of Milan, 20133, Milan, Italy
| |
Collapse
|
4
|
Luciano F, Minetti AE, Pavei G. Metabolic cost and mechanical work of walking in a virtual reality emulator. Eur J Appl Physiol 2024; 124:783-792. [PMID: 37776345 PMCID: PMC10879236 DOI: 10.1007/s00421-023-05306-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/31/2023] [Indexed: 10/02/2023]
Abstract
PURPOSE The purpose of this study was to investigate the metabolic cost (C), mechanical work, and kinematics of walking on a multidirectional treadmill designed for locomotion in virtual reality. METHODS Ten participants (5 females, body mass 67.2 ± 8.1 kg, height 1.71 ± 0.07 m, age 23.6 ± 1.9 years, mean ± SD) walked on a Virtuix Omni multidirectional treadmill at four imposed stride frequencies: 0.70, 0.85, 1.00, and 1.15 Hz. A portable metabolic system measured oxygen uptake, enabling calculation of C and the metabolic equivalent of task (MET). Gait kinematics and external, internal, and total mechanical work (WTOT) were calculated by an optoelectronic system. Efficiency was calculated either as WTOT/C or by summing WTOT to the work against sliding frictions. Results were compared with normal walking, running, and skipping. RESULTS C was higher for walking on the multidirectional treadmill than for normal walking, running, and skipping, and decreased with speed (best-fit equation: C = 20.2-27.5·speed + 15.8·speed2); the average MET was 4.6 ± 1.4. Mechanical work was higher at lower speeds, but similar to that of normal walking at higher speeds, with lower pendular energy recovery and efficiency; differences in efficiency were explained by the additional work against sliding frictions. At paired speeds, participants showed a more forward-leaned trunk and higher ankle dorsiflexion, stride frequency, and duty factor than normal walking. CONCLUSION Walking on a multidirectional treadmill requires a higher metabolic cost and different mechanical work and kinematics than normal walking. This raises questions on its use for gait rehabilitation but highlights its potential for high-intensity exercise and physical activity promotion.
Collapse
Affiliation(s)
- Francesco Luciano
- Locomotion Physiomechanics Laboratory, Department of Pathophysiology and Transplantation - Division of Physiology, University of Milan, Via Mangiagalli 32, 20133, Milan, Italy.
| | - Alberto E Minetti
- Locomotion Physiomechanics Laboratory, Department of Pathophysiology and Transplantation - Division of Physiology, University of Milan, Via Mangiagalli 32, 20133, Milan, Italy
| | - Gaspare Pavei
- Locomotion Physiomechanics Laboratory, Department of Pathophysiology and Transplantation - Division of Physiology, University of Milan, Via Mangiagalli 32, 20133, Milan, Italy
| |
Collapse
|
5
|
Cenni F, Alexander N, Sukanen M, Mustafaoglu A, Wang Z, Wang R, Finni T. ISB clinical biomechanics award winner 2023: Medial gastrocnemius muscle and Achilles tendon interplay during gait in cerebral palsy. Clin Biomech (Bristol, Avon) 2024; 111:106158. [PMID: 38061205 DOI: 10.1016/j.clinbiomech.2023.106158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND The interplay between the medial gastrocnemius muscle and the Achilles tendon is crucial for efficient walking. In cerebral palsy, muscle and tendon remodelling alters the role of contractile and elastic components. The aim was to investigate the length changes of medial gastrocnemius belly and fascicles, and Achilles tendon to understand their interplay to gait propulsion in individuals with cerebral palsy. METHODS Twelve young individuals with cerebral palsy and 12 typically developed peers were assessed during multiple gait cycles using 3D gait analysis combined with a portable ultrasound device. By mapping ultrasound image locations into the shank reference frame, the medial gastrocnemius belly, fascicle, and Achilles tendon lengths were estimated throughout the gait cycle. Participants with cerebral palsy were classified into equinus and non-equinus groups based on their sagittal ankle kinematics. FINDINGS In typically developed participants, the Achilles tendon undertook most of the muscle-tendon unit lengthening during stance, whereas in individuals with cerebral palsy, this lengthening was shared between the medial gastrocnemius belly and Achilles tendon, which was more evident in the equinus group. The lengthening behaviour of the medial gastrocnemius fascicles resembled that of the Achilles tendon in cerebral palsy. INTERPRETATION The findings revealed similar length changes of the medial gastrocnemius fascicles and Achilles tendon, highlighting the enhanced role of the muscle in absorbing energy during stance in cerebral palsy. These results, together with the current knowledge of increased intramuscular stiffness, suggest the exploitation of intramuscular passive forces for such energy absorption.
Collapse
Affiliation(s)
- Francesco Cenni
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - Nathalie Alexander
- Laboratory for Motion Analysis, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Maria Sukanen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Afet Mustafaoglu
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Zhongzheng Wang
- KTH MoveAbility Lab, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ruoli Wang
- KTH MoveAbility Lab, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Taija Finni
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
6
|
Takahashi K, Shiotani H, Evangelidis PE, Sado N, Kawakami Y. Coronal As Well As Sagittal Fascicle Dynamics Can Bring About a Gearing Effect in Muscle Elongation by Passive Lengthening. Med Sci Sports Exerc 2023; 55:2035-2044. [PMID: 37418239 DOI: 10.1249/mss.0000000000003229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
PURPOSE The amount of muscle belly elongation induced by passive lengthening is often assumed to be equal to that of fascicles. But these are different if fascicles shorter than the muscle belly rotate around their attachment sites. Such discrepancy between fascicles and muscle belly length changes can be considered as gearing. As the muscle fascicle arrangement is 3D, the fascicle rotation by passive lengthening may occur in the coronal as well as the sagittal planes. Here we examined the fascicle 3D dynamics and resultant gearing during passive elongation of human medial gastrocnemius in vivo . METHODS For 16 healthy adults, we reconstructed fascicles three-dimensionally using diffusion tensor imaging and evaluated the change in fascicle length and angles in the sagittal and coronal planes during passive ankle dorsiflexion (from 20° plantar flexion to 20° dorsiflexion). RESULTS Whole muscle belly elongation during passive ankle dorsiflexion was 38% greater than the fascicle elongation. Upon passive lengthening, the fascicle angle in the sagittal plane in all regions (-5.9°) and that in the coronal plane in the middle-medial (-2.7°) and distal-medial (-4.3°) regions decreased significantly. Combining the fascicle coronal and sagittal rotation significantly increased the gearing effects in the middle-medial (+10%) and distal-medial (+23%) regions. The gearing effect by fascicle sagittal and coronal rotations corresponded to 26% of fascicle elongation, accounting for 19% of whole muscle belly elongation. CONCLUSIONS Fascicle rotation in the coronal and sagittal planes is responsible for passive gearing, contributing to the whole muscle belly elongation. Passive gearing can be favorable for reducing fascicle elongation for a given muscle belly elongation.
Collapse
Affiliation(s)
| | | | | | - Natsuki Sado
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki, JAPAN
| | | |
Collapse
|
7
|
Pinto MD, Nosaka K, Wakeling JM, Blazevich AJ. Human in vivo medial gastrocnemius gear during active and passive muscle lengthening: effect of inconsistent methods and nomenclature on data interpretation. Biol Open 2023; 12:bio060023. [PMID: 37584384 PMCID: PMC10497039 DOI: 10.1242/bio.060023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023] Open
Abstract
'Muscle gear' is calculated as the ratio of fascicle-to-muscle length change, strain, or velocity. Inconsistencies in nomenclature and definitions of gear exist across disciplines partly due to differences in fascicle [curved (Lf) versus linear (Lf,straight)] and muscle [whole-muscle belly (Lb) versus belly segment (Lb,segment)] length calculation methods. We tested whether these differences affect gear magnitude during passive and active muscle lengthening of human medial gastrocnemius of young men (n=13, 26.3±5.0 years) using an isokinetic dynamometer. Lb, Lb,segment, Lf and Lf,straight were measured from motion analysis and ultrasound imaging data. Downshifts in belly gear but not belly segment gear occurred with muscle lengthening only during active lengthening. Muscle gear was unaffected by fascicle length measurement method (P=0.18) but differed when calculated as changes in Lb or Lb,segment (P<0.01) in a length-dependent manner. Caution is therefore advised for the use and interpretation of different muscle gear calculation methods and nomenclatures in animal and human comparative physiology.
Collapse
Affiliation(s)
- Matheus Daros Pinto
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - Kazunori Nosaka
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - James M. Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, V5A 1S6, Canada
| | - Anthony J. Blazevich
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| |
Collapse
|
8
|
Monte A, Zamparo P. Impairments in muscle shape changes affect metabolic demands during in-vivo contractions. Proc Biol Sci 2023; 290:20231469. [PMID: 37670588 PMCID: PMC10510444 DOI: 10.1098/rspb.2023.1469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/16/2023] [Indexed: 09/07/2023] Open
Abstract
The uncoupling behaviour between muscle belly and fascicle shortening velocity (i.e. belly gearing), affects mechanical output by allowing the muscle to circumvent the limits imposed by the fascicles' force-velocity relationship. However, little is known about the 'metabolic effect' of a decrease/increase in belly gearing. In this study, we manipulated the plantar flexor muscles' capacity to change in shape (and hence belly gearing) by using compressive multidirectional loads. Metabolic, kinetic, electromyography activity and ultrasound data (in soleus and gastrocnemius medialis) were recorded during cyclic fixed-end contractions of the plantar flexor muscles in three different conditions: no load, +5 kg and +10 kg of compression. No differences were observed in mechanical power and electrophysiological variables as a function of compression intensity, whereas metabolic power increased as a function of it. At each compression intensity, differences in efficiency were observed when calculated based on fascicle or muscle behaviour and significant positive correlations (R2 range: 0.7-0.8 and p > 0.001) were observed between delta efficiency (ΔEff: Effmus-Efffas) and belly gearing (Vmus/Vfas) or ΔV (Vmus-Vfas). Thus, changes in the muscles' capacity to change in shape (e.g. in muscle stiffness or owing to compressive garments) affect the metabolic demands and the efficiency of muscle contraction.
Collapse
Affiliation(s)
- Andrea Monte
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Paola Zamparo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
9
|
Monte A, Magris R, Nardello F, Bombieri F, Zamparo P. Muscle shape changes in Parkinson's disease impair function during rapid contractions. Acta Physiol (Oxf) 2023; 238:e13957. [PMID: 36876976 DOI: 10.1111/apha.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
AIM Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized, among the others, by muscle weakness. PD patients reach lower values of peak torque during maximal voluntary contractions but also slower rates of torque development (RTD) during explosive contractions. The aim of this study was to better understand how an impairment in structural/mechanical (peripheral) factors could explain the difficulty of PD patients to raise torque rapidly. METHODS Participants (PD patients and healthy matched controls) performed maximum voluntary explosive fixed-end contraction of the knee extensor muscles during which dynamic muscle shape changes (in muscle thickness, pennation angle, and belly gearing: the ratio between muscle belly velocity and fascicle velocity), muscle-tendon unit (MTU) stiffness and EMG activity of the vastus lateralis (VL) were investigated. Both the affected (PDA) and less affected limb (PDNA) were investigated in patients. RESULTS Control participants reached higher values of peak torque and showed a better capacity to express force rapidly compared to patients (PDA and PDNA). EMG activity was observed to differ between patients (PDA) and controls, but not between controls and PDNA. This suggests a specific neural/nervous effect on the most affected side. On the contrary, MTU stiffness and dynamic muscle shape changes were found to differ between controls and patients, but not between PDA and PDNA. Both sides are thus similarly affected by the pathology. CONCLUSION The higher MTU stiffness in PD patients is likely responsible for the impaired muscle capability to change in shape which, in turn, negatively affects the torque rise.
Collapse
Affiliation(s)
- Andrea Monte
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Riccardo Magris
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Francesca Nardello
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federica Bombieri
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Paola Zamparo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
10
|
Monte A, Tecchio P, Nardello F, Bachero‐Mena B, Ardigò LP, Zamparo P. The interplay between gastrocnemius medialis force-length and force-velocity potentials, cumulative EMG activity and energy cost at speeds above and below the walk to run transition speed. Exp Physiol 2023; 108:90-102. [PMID: 36394370 PMCID: PMC10103772 DOI: 10.1113/ep090657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022]
Abstract
NEW FINDINGS What is the central question of the study? Are the changes in force potentials (at the muscle level) related with metabolic changes at speeds above and below the walk-to-run transition? What is the main finding and its importance? The force-length and force-velocity potentials of gastrocnemius medialis during human walking decrease as a function of speed; this decrease is associated with an increase in cumulative EMG activity and in the energy cost of locomotion. Switching from fast walking to running is associated to an increase in the force potentials, supporting the idea that the 'metabolic trigger' that determines the transition from walking to running is ultimately driven by a reduction of the muscle's contractile capacity. ABSTRACT The aim of this study was to investigate the interplay between the force-length (F-L) and force-velocity (F-V) potentials of gastrocnemius medialis (GM) muscle fascicles, the cumulative muscle activity per distance travelled (CMAPD) of the lower limb muscles (GM, vastus lateralis, biceps femori, tibialis anterior) and net energy cost (Cnet ) during walking and running at speeds above and below the walk-to-run transition speed (walking: 2-8 km h-1 ; running: 6-10 km h-1 ). A strong association was observed between Cnet and CMAPD: both changed significantly with walking speed but were unaffected by speed in running. The F-L and F-V potentials decreased with speed in both gaits and, at 6-8 km h-1 , were significantly larger in running. At low to moderate walking speeds (2-6 km h-1 ), the changes in GM force potentials were not associated with substantial changes in CMAPD (and Cnet ), whereas at walking speeds of 7-8 km h-1 , even small changes in force potentials were associated with steep increases in CMAPD (and Cnet ). These data suggest that: (i) the walk to run transition could be explained by an abrupt increase in Cnet driven by an upregulation of the EMG activity (e.g., in CMAPD) at sustained walking speeds (>7 km h-1 ) and (ii) the reduction in the muscle's ability to produce force (e.g., in the F-L and F-V potentials) contributes to the increase in CMAPD (and Cnet ). Switching to running allows regaining of high force potentials, thus limiting the increase in CMAPD (and Cnet ) that would otherwise occur to sustain the increase in locomotion speed.
Collapse
Affiliation(s)
- Andrea Monte
- Department of NeurosciencesBiomedicine and Movement SciencesUniversity of VeronaVeronaItaly
| | - Paolo Tecchio
- Department of NeurosciencesBiomedicine and Movement SciencesUniversity of VeronaVeronaItaly
- Human Movement ScienceFaculty of Sports ScienceRuhr University BochumBochumGermany
| | - Francesca Nardello
- Department of NeurosciencesBiomedicine and Movement SciencesUniversity of VeronaVeronaItaly
| | | | | | - Paola Zamparo
- Department of NeurosciencesBiomedicine and Movement SciencesUniversity of VeronaVeronaItaly
| |
Collapse
|
11
|
Achilles Tendon Mechanical Behavior and Ankle Joint Function at the Walk-to-Run Transition. BIOLOGY 2022; 11:biology11060912. [PMID: 35741433 PMCID: PMC9219818 DOI: 10.3390/biology11060912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022]
Abstract
Walking at speeds higher than transition speed is associated with a decrease in the plantar-flexor muscle fibres’ ability to produce force and, potentially, to an impaired behaviour of the muscle−tendon unit (MTU) elastic components. This study aimed to investigate the ankle joint functional indexes and the Achilles tendon mechanical behaviour (changes in AT force and power) to better elucidate the mechanical determinants of the walk-to-run transition. Kinematics, kinetic and ultrasound data of the gastrocnemius medialis (GM) were investigated during overground walking and running at speeds ranging from 5−9 km·h−1. AT and GM MTU force and power were calculated during the propulsive phase; the ankle joint function indexes (damper, strut, spring and motor) were obtained using a combination of kinetic and kinematic data. AT force was larger in running at speeds > 6.5 km/h. The contribution of AT to the total power provided by the GM MTU was significantly larger in running at speeds > 7.5 km/h. The spring and strut indexes of the ankle were significantly larger in running at speeds > 7.5 km/h. These data suggest that the walk-to-run transition could (at least partially) be explained by the need to preserve AT mechanical behaviour and the ankle spring function.
Collapse
|