1
|
Lin Y, Chen M, Huang S, Chen Y, Ho JH, Lin F, Tan X, Chiang H, Huang C, Tu C, Cho D, Chiu S. Targeting Dual Immune Checkpoints PD-L1 and HLA-G by Trispecific T Cell Engager for Treating Heterogeneous Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309697. [PMID: 39234811 PMCID: PMC11538689 DOI: 10.1002/advs.202309697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/04/2024] [Indexed: 09/06/2024]
Abstract
Immunotherapy targeting immune checkpoints (ICPs), such as programmed death-ligand-1 (PD-L1), is used as a treatment option for advanced or metastatic non-small cell lung cancer (NSCLC). However, overall response rate to anti-PD-L1 treatment is limited due to antigen heterogeneity and the immune-suppressive tumor microenvironment. Human leukocyte antigen-G (HLA-G), an ICP as well as a neoexpressed tumor-associated antigen, is previously demonstrated to be a beneficial target in combination with anti-PD-L1. In this study, a nanobody-based trispecific T cell engager (Nb-TriTE) is developed, capable of simultaneously binding to T cells, macrophages, and cancer cells while redirecting T cells toward tumor cells expressing PD-L1- and/or HLA-G. Nb-TriTE shows broad spectrum anti-tumor effects in vitro by augmenting cytotoxicity mediated by human peripheral blood mononuclear cells (PBMCs). In a humanized immunodeficient murine NSCLC model, Nb-TriTE exhibits superior anti-cancer potency compared to monoclonal antibodies and bispecific T cell engagers. Nb-TriTE, at the dose with pharmacoactivity, does not induce additional enhancement of circulating cytokines secretion from PMBCs. Nb-TriTE effectively prolongs the survival of mice without obvious adverse events. In conclusion, this study introduces an innovative therapeutic approach to address the challenges of immunotherapy and the tumor microenvironment in NSCLC through utilizing the dual ICP-targeting Nb-TriTE.
Collapse
Affiliation(s)
- Yu‐Chuan Lin
- Translational Cell Therapy CenterChina Medical University HospitalNo. 2, Yude Rd., North Dist.Taichung City404Taiwan
- Shine‐On BioMedical Co. Ltd.Rm. B, 10F., No. 573, Sec. 2, Taiwan Blvd., West Dist.Taichung City403Taiwan
| | - Mei‐Chih Chen
- Translational Cell Therapy CenterChina Medical University HospitalNo. 2, Yude Rd., North Dist.Taichung City404Taiwan
| | - Shi‐Wei Huang
- Translational Cell Therapy CenterChina Medical University HospitalNo. 2, Yude Rd., North Dist.Taichung City404Taiwan
- Institute of New Drug DevelopmentChina Medical UniversityTaichung City404Taiwan
- Institute of Biomedical SciencesNational Chung Hsing UniversityTaichung City402Taiwan
| | - Yeh Chen
- Department of Food Science and BiotechnologyNational Chung Hsing UniversityTaichung City402Taiwan
| | - Jennifer Hui‐Chun Ho
- Shine‐On BioMedical Co. Ltd.Rm. B, 10F., No. 573, Sec. 2, Taiwan Blvd., West Dist.Taichung City403Taiwan
- Center for Translational Genomics and Regenerative Medicine ResearchChina Medical University HospitalTaichung City404Taiwan
- Department of OphthalmologyChina Medical University HospitalChina Medical UniversityTaichung City404Taiwan
- Department of Medical ResearchEye CenterChina Medical University HospitalTaichung City404Taiwan
| | - Fang‐Yu Lin
- Translational Cell Therapy CenterChina Medical University HospitalNo. 2, Yude Rd., North Dist.Taichung City404Taiwan
| | - Xiao‐Tong Tan
- Translational Cell Therapy CenterChina Medical University HospitalNo. 2, Yude Rd., North Dist.Taichung City404Taiwan
| | - Hung‐Che Chiang
- Shine‐On BioMedical Co. Ltd.Rm. B, 10F., No. 573, Sec. 2, Taiwan Blvd., West Dist.Taichung City403Taiwan
- College of MedicineChina Medical UniversityTaichung City404Taiwan
| | - Chiu‐Ching Huang
- Shine‐On BioMedical Co. Ltd.Rm. B, 10F., No. 573, Sec. 2, Taiwan Blvd., West Dist.Taichung City403Taiwan
- Division of Nephrology and the Kidney InstituteDepartment of Internal MedicineChina Medical University HospitalTaichung City404Taiwan
| | - Chih‑Yen Tu
- Division of Pulmonary and Critical CareDepartment of Internal MedicineChina Medical University HospitalTaichung City404Taiwan
- School of MedicineCollege of MedicineChina Medical UniversityTaichung City404Taiwan
| | - Der‐Yang Cho
- Translational Cell Therapy CenterChina Medical University HospitalNo. 2, Yude Rd., North Dist.Taichung City404Taiwan
- Institute of New Drug DevelopmentChina Medical UniversityTaichung City404Taiwan
- Drug Development CenterChina Medical UniversityTaichung City404Taiwan
- Department of NeurosurgeryChina Medical University HospitalTaichung City404Taiwan
| | - Shao‐Chih Chiu
- Translational Cell Therapy CenterChina Medical University HospitalNo. 2, Yude Rd., North Dist.Taichung City404Taiwan
- Shine‐On BioMedical Co. Ltd.Rm. B, 10F., No. 573, Sec. 2, Taiwan Blvd., West Dist.Taichung City403Taiwan
- Institute of New Drug DevelopmentChina Medical UniversityTaichung City404Taiwan
- Drug Development CenterChina Medical UniversityTaichung City404Taiwan
| |
Collapse
|
2
|
Mejía-Guarnizo LV, Monroy-Camacho PS, Turizo-Smith AD, Rodríguez-García JA. The role of immune checkpoints in antitumor response: a potential antitumor immunotherapy. Front Immunol 2023; 14:1298571. [PMID: 38162657 PMCID: PMC10757365 DOI: 10.3389/fimmu.2023.1298571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Immunotherapy aims to stimulate the immune system to inhibit tumor growth or prevent metastases. Tumor cells primarily employ altered expression of human leukocyte antigen (HLA) as a mechanism to avoid immune recognition and antitumor immune response. The antitumor immune response is primarily mediated by CD8+ cytotoxic T cells (CTLs) and natural killer (NK) cells, which plays a key role in the overall anti-tumor immune response. It is crucial to comprehend the molecular events occurring during the activation and subsequent regulation of these cell populations. The interaction between antigenic peptides presented on HLA-I molecules and the T-cell receptor (TCR) constitutes the initial signal required for T cell activation. Once activated, in physiologic circumstances, immune checkpoint expression by T cells suppress T cell effector functions when the antigen is removed, to ensures the maintenance of self-tolerance, immune homeostasis, and prevention of autoimmunity. However, in cancer, the overexpression of these molecules represents a common method through which tumor cells evade immune surveillance. Numerous therapeutic antibodies have been developed to inhibit immune checkpoints, demonstrating antitumor activity with fewer side effects compared to traditional chemotherapy. Nevertheless, it's worth noting that many immune checkpoint expressions occur after T cell activation and consequently, altered HLA expression on tumor cells could diminish the clinical efficacy of these antibodies. This review provides an in-depth exploration of immune checkpoint molecules, their corresponding blocking antibodies, and their clinical applications.
Collapse
Affiliation(s)
- Lidy Vannessa Mejía-Guarnizo
- Cancer Biology Research Group, Instituto Nacional de Cancerología, Bogotá, Colombia
- Sciences Faculty, Master in Microbiology, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | | |
Collapse
|
3
|
Bertol BC, Debortoli G, Dias FC, de Araújo JNG, Maia LSM, de Almeida BS, de Figueiredo-Feitosa NL, de Freitas LCC, Castelli EC, Mendes-Junior CT, Silbiger VN, Maciel LMZ, Donadi EA. HLA-G Gene Variability Is Associated with Papillary Thyroid Carcinoma Morbidity and the HLA-G Protein Profile. Int J Mol Sci 2023; 24:12858. [PMID: 37629044 PMCID: PMC10454351 DOI: 10.3390/ijms241612858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Human leukocyte antigen (HLA)-G is an immune checkpoint molecule that is highly expressed in papillary thyroid carcinoma (PTC). The HLA-G gene presents several functional polymorphisms distributed across the coding and regulatory regions (5'URR: 5' upstream regulatory region and 3'UTR: 3' untranslated region) and some of them may impact HLA-G expression and human malignancy. To understand the contribution of the HLA-G genetic background in PTC, we studied the HLA-G gene variability in PTC patients in association with tumor morbidity, HLA-G tissue expression, and plasma soluble (sHLA-G) levels. We evaluated 185 PTC patients and 154 healthy controls. Polymorphic sites defining coding, regulatory and extended haplotypes were characterized by sequencing analyses. HLA-G tissue expression and plasma soluble HLA-G levels were evaluated by immunohistochemistry and ELISA, respectively. Compared to the controls, the G0104a(5'URR)G*01:04:04(coding)UTR-03(3'UTR) extended haplotype was underrepresented in the PTC patients, while G0104a(5'URR)G*01:04:01(coding)UTR-03(3'UTR) was less frequent in patients with metastatic and multifocal tumors. Decreased HLA-G tissue expression and undetectable plasma sHLA-G were associated with the G010102a(5'URR)G*01:01:02:01(coding)UTR-02(3'UTR) extended haplotype. We concluded that the HLA-G variability was associated with PTC development and morbidity, as well as the magnitude of the encoded protein expression at local and systemic levels.
Collapse
Affiliation(s)
- Bruna C. Bertol
- Postgraduate Program of Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Guilherme Debortoli
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada;
| | - Fabrício C. Dias
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (F.C.D.); (L.S.M.M.); (B.S.d.A.)
| | - Jéssica N. G. de Araújo
- Department of Clinical Analysis and Toxicology, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (J.N.G.d.A.); (V.N.S.)
| | - Luana S. M. Maia
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (F.C.D.); (L.S.M.M.); (B.S.d.A.)
| | - Bibiana S. de Almeida
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (F.C.D.); (L.S.M.M.); (B.S.d.A.)
| | - Nathalie L. de Figueiredo-Feitosa
- Division of Endocrinology and Metabolism, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (N.L.d.F.-F.); (L.M.Z.M.)
| | - Luiz Carlos C. de Freitas
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
| | - Erick C. Castelli
- Department of Pathology, School of Medicine, São Paulo State University, Botucatu 18618-687, Brazil;
| | - Celso T. Mendes-Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil;
| | - Vivian N. Silbiger
- Department of Clinical Analysis and Toxicology, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (J.N.G.d.A.); (V.N.S.)
| | - Léa M. Z. Maciel
- Division of Endocrinology and Metabolism, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (N.L.d.F.-F.); (L.M.Z.M.)
| | - Eduardo A. Donadi
- Postgraduate Program of Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (F.C.D.); (L.S.M.M.); (B.S.d.A.)
| |
Collapse
|
4
|
Amodio G, Capogrosso P, Pontillo M, Tassara M, Boeri L, Carenzi C, Cignoli D, Ferrara AM, Ramirez GA, Tresoldi C, Locatelli M, Santoleri L, Castagna A, Zangrillo A, De Cobelli F, Tresoldi M, Landoni G, Rovere‐Querini P, Ciceri F, Montorsi F, Salonia A, Gregori S. Combined plasma levels of IL-10 and testosterone, but not soluble HLA-G5, predict the risk of death in COVID-19 patients. Andrology 2023; 11:32-44. [PMID: 36323494 PMCID: PMC9877736 DOI: 10.1111/andr.13334] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND The identification of biomarkers correlated with coronavirus disease 2019 (COVID-19) outcomes is a relevant need for clinical management. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is characterized by elevated interleukin (IL)-6, IL-10, HLA-G, and impaired testosterone production. OBJECTIVES We aimed at defining the combined impact of sex hormones, interleukin-10, and HLA-G on COVID-19 pathophysiology and their relationship in male patients. MATERIALS AND METHODS We measured by chemiluminescence immunoassay, electrochemiluminescent assays, and enzyme-linked immunosorbent assay circulating total testosterone, 17β-estradiol (E2 ), IL-10, and -HLAG5 as well as SARS-CoV-2 S1/S2 Immunoglobulin G from 292 healthy controls and 111 COVID-19 patients with different disease severity at hospital admission, and in 53 COVID-19 patients at 7-month follow-up. RESULTS AND DISCUSSION We found significantly higher levels of IL-10, HLA-G, and E2 in COVID-19 patients compared to healthy controls and an inverse correlation between IL-10 and testosterone, with IL-10, progressively increasing and testosterone progressively decreasing with disease severity. This correlation was lost at the 7-month follow-up. The risk of death in COVID-19 patients with low testosterone increased in the presence of high IL-10. A negative correlation between SARS-CoV-2 Immunoglobulin G and HLA-G or IL-10 at hospitalization was observed. At the 7-month follow-up, IL-10 and testosterone normalized, and HLA-G decreased. CONCLUSION Our findings indicate that combined evaluation of IL-10 and testosterone predicts the risk of death in men with COVID-19 and support the hypothesis that IL-10 fails to suppress excessive inflammation by promoting viral spreading.
Collapse
Affiliation(s)
- Giada Amodio
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS Ospedale San RaffaeleMilanItaly
| | - Paolo Capogrosso
- Division of Experimental Oncology/Unit of UrologyURI, IRCCS Ospedale San RaffaeleMilanItaly,Department of Urology and AndrologyOspedale di Circolo and Macchi FoundationVareseItaly
| | - Marina Pontillo
- Laboratory Medicine ServiceIRCCS Ospedale San RaffaeleMilanItaly
| | - Michela Tassara
- Laboratory Medicine ServiceIRCCS Ospedale San RaffaeleMilanItaly
| | - Luca Boeri
- Division of Experimental Oncology/Unit of UrologyURI, IRCCS Ospedale San RaffaeleMilanItaly,IRCCS Foundation Ca’ Granda, Maggiore Policlinico Hospital, Department of UrologyUniversity of MilanMilanItaly
| | - Cristina Carenzi
- Division of Experimental Oncology/Unit of UrologyURI, IRCCS Ospedale San RaffaeleMilanItaly
| | - Daniele Cignoli
- Division of Experimental Oncology/Unit of UrologyURI, IRCCS Ospedale San RaffaeleMilanItaly,University Vita‐Salute San RaffaeleMilanItaly
| | - Anna Maria Ferrara
- Division of Experimental Oncology/Unit of UrologyURI, IRCCS Ospedale San RaffaeleMilanItaly
| | - Giuseppe A. Ramirez
- University Vita‐Salute San RaffaeleMilanItaly,Immunology, Rheumatology, Allergology and Rare Diseases UnitIRCCS Ospedale San RaffaeleMilanItaly
| | | | | | - Luca Santoleri
- Immunohematology and Transfusion MedicineIRRCS Ospedale San RaffaeleMilanItaly
| | - Antonella Castagna
- University Vita‐Salute San RaffaeleMilanItaly,Department of Infectious DiseasesIRCCS Ospedale San RaffaeleMilanItaly
| | - Alberto Zangrillo
- University Vita‐Salute San RaffaeleMilanItaly,Anesthesia and Intensive Care DepartmentIRCCS Ospedale San RaffaeleMilanItaly
| | - Francesco De Cobelli
- University Vita‐Salute San RaffaeleMilanItaly,Department of RadiologyIRCCS Ospedale San RaffaeleMilanItaly
| | - Moreno Tresoldi
- General Medicine and Advanced Care UnitIRCCS Ospedale San RaffaeleMilanItaly
| | - Giovanni Landoni
- University Vita‐Salute San RaffaeleMilanItaly,Anesthesia and Intensive Care DepartmentIRCCS Ospedale San RaffaeleMilanItaly
| | - Patrizia Rovere‐Querini
- University Vita‐Salute San RaffaeleMilanItaly,Internal Medicine, Diabetes, and Endocrinology UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Fabio Ciceri
- University Vita‐Salute San RaffaeleMilanItaly,Hematology and Bone Marrow Transplant UnitIRCCS Ospedale San RaffaeleMilanItaly
| | - Francesco Montorsi
- Division of Experimental Oncology/Unit of UrologyURI, IRCCS Ospedale San RaffaeleMilanItaly,University Vita‐Salute San RaffaeleMilanItaly
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of UrologyURI, IRCCS Ospedale San RaffaeleMilanItaly,University Vita‐Salute San RaffaeleMilanItaly
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS Ospedale San RaffaeleMilanItaly
| |
Collapse
|
5
|
Silalahi ER, Wibowo N, Prasmusinto D, Djuwita R, Rengganis I, Mose JC. Decidual dendritic cells 10 and CD4 +CD25 +FOXP3 regulatory T cell in preeclampsia and their correlation with nutritional factors in pathomechanism of immune rejection in pregnancy. J Reprod Immunol 2022; 154:103746. [PMID: 36108422 DOI: 10.1016/j.jri.2022.103746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Immune intolerance is thought to be the underlying cause of immune rejection to fetus in preeclampsia. Decidual dendritic cell-10 (DC-10) and T regulator cell (Treg) play important role to create tolerogenic environment during pregnancy. However, their roles on the specific pathomechanism of preeclampsia along with various nutritional factors have not been widely studied. AIM To determine the number of DC-10 and Treg in preeclampsia and their correlations with decidual nutritional factors. METHOD This was a cross-sectional study among early onset preeclampsia (EOPE), late onset preeclampsia (LOPE), and normotensive (NT) pregnancies. Decidual specimens were obtained by curettage after caesarean section. The number of DC-10 and Treg cells were counted using flow cytometry. The levels of nutritional factors (zinc, retinol, all-trans retinoic acid, vitamin D) were determined using ICP-MS and LC-MS method. RESULT A total of 14 subjects for each group were included in the study. The DC-10 was significantly lower in both EOPE and LOPE compared to NT (p < 0.001). Treg cells were significantly higher in EOPE compare to NT (p = 0.015). There was a moderate correlation between zinc level and DC-10 (p = 0.011) and a strong correlation between retinol level and DC-10 (p = 0.002) in the NT group. A moderate correlation was found between vitamin D level and Treg cells in the NT group (p = 0.026). CONCLUSION There was a lower number of DC-10 and higher number of Treg cells in early preeclampsia. There was no correlation between DC-10 and Treg number with decidual nutritional factors in preeclampsia.
Collapse
Affiliation(s)
- Eva Roria Silalahi
- Doctoral Program in Medical Sciences, Faculty of Medicine, Universitas Indonesia, Indonesia.
| | - Noroyono Wibowo
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Indonesia
| | - Damar Prasmusinto
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Indonesia
| | - Ratna Djuwita
- Department of Epidemiology, Faculty of Public Health, Universitas Indonesia, Indonesia
| | - Iris Rengganis
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Indonesia
| | - Johanes C Mose
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjadjaran - Hasan Sadikin Hospital, Indonesia
| |
Collapse
|
6
|
Seliger B, Jasinski-Bergner S, Massa C, Mueller A, Biehl K, Yang B, Bachmann M, Jonigk D, Eichhorn P, Hartmann A, Wickenhauser C, Bauer M. Induction of pulmonary HLA-G expression by SARS-CoV-2 infection. Cell Mol Life Sci 2022; 79:582. [PMID: 36334153 PMCID: PMC9637071 DOI: 10.1007/s00018-022-04592-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
The non-classical human leukocyte antigen (HLA)-G exerts immune-suppressive properties modulating both NK and T cell responses. While it is physiologically expressed at the maternal-fetal interface and in immune-privileged organs, HLA-G expression is found in tumors and in virus-infected cells. So far, there exists little information about the role of HLA-G and its interplay with immune cells in biopsies, surgical specimen or autopsy tissues of lung, kidney and/or heart muscle from SARS-CoV-2-infected patients compared to control tissues. Heterogeneous, but higher HLA-G protein expression levels were detected in lung alveolar epithelial cells of SARS-CoV-2-infected patients compared to lung epithelial cells from influenza-infected patients, but not in other organs or lung epithelia from non-viral-infected patients, which was not accompanied by high levels of SARS-CoV-2 nucleocapsid antigen and spike protein, but inversely correlated to the HLA-G-specific miRNA expression. High HLA-G expression levels not only in SARS-CoV-2-, but also in influenza-infected lung tissues were associated with a high frequency of tissue-infiltrating immune cells, but low numbers of CD8+ cells and an altered expression of hyperactivation and exhaustion markers in the lung epithelia combined with changes in the spatial distribution of macrophages and T cells. Thus, our data provide evidence for an involvement of HLA-G and HLA-G-specific miRNAs in immune escape and as suitable therapeutic targets for the treatment of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, 04103, Leipzig, Germany.
- Institute of Translational Immunology, Medical School "Theodor Fontane", 14770, Brandenburg, Germany.
| | - Simon Jasinski-Bergner
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Anja Mueller
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Katharina Biehl
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Bo Yang
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Michael Bachmann
- Helmholtz Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, 30625, Hannover, Germany
- German Center for Lung Research (DZL), Hannover Medical School (BREATH), 30625, Hannover, Germany
| | - Philip Eichhorn
- Institute of Pathology, Friedrich-Alexander University, 91054, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander University, 91054, Erlangen, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112, Halle (Saale), Germany
| | - Marcus Bauer
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112, Halle (Saale), Germany
| |
Collapse
|
7
|
Dhouioui S, Boujelbene N, Ouzari HI, Tizaoui K, Zidi I. Meta-analysis of HLA-G 14bp insertion/deletion polymorphism and soluble HLA-G revealed an association with digestive cancers initiation and prognosis. Heliyon 2022; 8:e09986. [PMID: 35874075 PMCID: PMC9305369 DOI: 10.1016/j.heliyon.2022.e09986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/24/2022] [Accepted: 07/13/2022] [Indexed: 11/27/2022] Open
Abstract
Background/Objective Conflicting results on the association between HLA-G and digestive cancers were reported. We conducted a meta-analysis to further investigate the true relationship between HLA-G and digestive cancers (DC). Methods Following PRISMA guidelines, we performed a meta-analysis including 7 case-control studies on HLA-G 14-bp Insertion/deletion (I/D) polymorphism, and 15 studies on soluble HLA-G (sHLA-G). Odds ratios (OR) and their corresponding 95% confidence intervals (CI) for genetic polymorphisms were calculated. The pooled OR was calculated under three genetic models: allelic, recessive, and dominant models. Concerning sHLA-G meta-analysis, standardized mean differences (SMDs) were calculated. Results The HLA-G 14-bp I/D was not associated with the risk of DC. However, in the subset of HBV/HCV positive hepato-cellular cancer (HCC) patients, we reported a significant association of HLA-G 14-bp I/D with the disease initiation under allelic (D vs. I; OR = 1.698, 95% CI = 1.263-2.282, p = 0.000), dominant (DD + ID vs. II; OR = 2.321, 95% CI = 1.277-4.218, p = 0.006)and recessive (DD vs. DI + II; OR = 1.739, 95% CI = 1.173-2.577, p = 0.006) genetic models. Interestingly, HLA-G 14-bp I/D was not associated with the disease initiation in HBV/HCV negative HCC patients. However, the infection by HBV/HCV seems to be implicated in the HCC development when we compared HBV/HCV positive patients to HBV/HCV negative patients under allelic (D vs. I; OR = 1.429, 95% CI = 1.029-1.983, p = 0.033, and dominant (DD + ID vs.II; OR = 1.981, 95% CI = 1.002-3.916, p = 0.049) genetic models.Overall analysis of DC showed significant increased sHLA-G in patients compared to healthy controls (SMD = 3.341, 95% CI = 2.415-4.267, p = 0.000). In Asian patients with gastric cancer, sHLA-G was significantly increased in grade 3 compared to low grades (SMD = 0.448, 95% CI = 0.109-0.787, p = 0.000). Further analysis showed that sHLA-G was significantly increased in positive DC vascular invasion (SMD = 0.743, 95% CI = 0.385-1.100, p = 0.000). Accordingly, sHLA-G was associated with a poor prognosis for DC. Conclusion The current meta-analysis supports the significant role of HLA-G in DC. The HLA-G 14-bp I/D polymorphism was associated with HCC patients with concomitant HBV/HCV viral infections. Increased sHLA-G indicated a poor prognosis for DC cancer patients.
Collapse
Affiliation(s)
- Sabrine Dhouioui
- Laboratory Microorganisms and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Nadia Boujelbene
- Laboratory Microorganisms and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis, Tunisia
- Department of Pathology, Salah Azaiez Institute, Tunis, Tunisia
| | - Hadda-imene Ouzari
- Laboratory Microorganisms and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Kalthoum Tizaoui
- Laboratory Microorganisms and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Inès Zidi
- Laboratory Microorganisms and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
8
|
Hoogstad-van Evert J, Paap R, Nap A, van der Molen R. The Promises of Natural Killer Cell Therapy in Endometriosis. Int J Mol Sci 2022; 23:ijms23105539. [PMID: 35628346 PMCID: PMC9146217 DOI: 10.3390/ijms23105539] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023] Open
Abstract
Endometriosis is a gynaecological disease defined by the growth of endometrium-like tissue outside the uterus. The disease is present in approximately 5–10% of women of reproductive age and causes pelvic pain and infertility. The pathophysiology is not completely understood, but retrograde menstruation and deficiency in natural killer (NK) cells that clear endometriotic cells in the peritoneal cavity play an important role. Nowadays, hormonal therapy and surgery to remove endometriosis lesions are used as treatment. However, these therapies do not work for all patients, and hormonal therapy prevents patients from getting pregnant. Therefore, new treatment strategies should be developed. Since the cytotoxicity of NK cells is decreased in endometriosis, we performed a literature search into the possibility of NK cell therapy. Available treatment options include the inhibition of receptor–ligand interaction for KIR2DL1, NKG2A, LILRB1/2, and PD-1/PD-L1; inhibition of TGF-β; stimulation of NK cells with IL-2; and mycobacterial treatment with BCG. In preclinical work, these therapies show promising results but unfortunately have side effects, which have not specifically been studied in endometriosis patients. Before NK cell treatment can be used in the clinic, more research is needed.
Collapse
Affiliation(s)
| | - Romy Paap
- Center of Translational Immunology, University Medical Center, 3553 Utrecht, The Netherlands;
| | - Annemiek Nap
- Department of Obstetrics and Gynecology, Radboudumc, 6524 Nijmegen, The Netherlands;
| | | |
Collapse
|
9
|
Bucova M, Kluckova K, Kozak J, Rychly B, Suchankova M, Svajdler M, Matejcik V, Steno J, Zsemlye E, Durmanova V. HLA-G 14bp Ins/Del Polymorphism, Plasma Level of Soluble HLA-G, and Association with IL-6/IL-10 Ratio and Survival of Glioma Patients. Diagnostics (Basel) 2022; 12:1099. [PMID: 35626255 PMCID: PMC9139224 DOI: 10.3390/diagnostics12051099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
HLA-G is an immune checkpoint molecule with immunosuppressive and anti-inflammatory activities, and its expression and level of its soluble form (sHLA-G) may play an important role in tumor prognosis. The HLA-G 14bp ins/del polymorphism and the plasma level of soluble HLA-G (sHLA-G) were investigated by a polymerase chain reaction and ELISA, respectively, in 59 glioma patients. A significantly higher proportion of glioma patients had the 14 nt insert in both homozygous and heterozygous states compared to the control group. Glioma patients also had higher plasma levels of sHLA-G. Patients with methylated MGMT promoters had lower levels of sHLA-G than those with unmethylated MGMT promoters. The level of sHLA-G negatively correlated with the overall survival of patients. Glioblastoma patients who survived more than one year after diagnosis had lower levels of sHLA-G than those surviving less than one year. Patients with sHLA-G levels below the cut-off value of 40 U/mL survived significantly longer than patients with sHLA-G levels above 40 U/mL. The levels of sHLA-G were also negatively correlated with the level of IL-6 (p = 0.0004) and positively with IL-10/IL-6 (p = 0.046). Conclusion: The presence of the 14 nt insert in both homozygous and heterozygous states of the HLA-G 14bp ins/del polymorphism is more frequent in glioma patients and the elevated plasma levels of sHLA-G are negatively associated with their survival.
Collapse
Affiliation(s)
- Maria Bucova
- Faculty of Medicine, Institute of Immunology, Comenius University, 813 72 Bratislava, Slovakia; (K.K.); (M.S.); (E.Z.); (V.D.)
| | - Kristina Kluckova
- Faculty of Medicine, Institute of Immunology, Comenius University, 813 72 Bratislava, Slovakia; (K.K.); (M.S.); (E.Z.); (V.D.)
| | - Jan Kozak
- Department of Neurosurgery, Faculty of Medicine, Comenius University and University Hospital, 833 05 Bratislava, Slovakia; (J.K.); (V.M.); (J.S.)
| | - Boris Rychly
- Alpha Medical, Ltd., 841 01 Bratislava, Slovakia;
| | - Magda Suchankova
- Faculty of Medicine, Institute of Immunology, Comenius University, 813 72 Bratislava, Slovakia; (K.K.); (M.S.); (E.Z.); (V.D.)
| | - Marian Svajdler
- Cytopathos Ltd., 831 03 Bratislava, Slovakia;
- Sikl’s Department of Pathology, the Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
| | - Viktor Matejcik
- Department of Neurosurgery, Faculty of Medicine, Comenius University and University Hospital, 833 05 Bratislava, Slovakia; (J.K.); (V.M.); (J.S.)
| | - Juraj Steno
- Department of Neurosurgery, Faculty of Medicine, Comenius University and University Hospital, 833 05 Bratislava, Slovakia; (J.K.); (V.M.); (J.S.)
| | - Eszter Zsemlye
- Faculty of Medicine, Institute of Immunology, Comenius University, 813 72 Bratislava, Slovakia; (K.K.); (M.S.); (E.Z.); (V.D.)
| | - Vladimira Durmanova
- Faculty of Medicine, Institute of Immunology, Comenius University, 813 72 Bratislava, Slovakia; (K.K.); (M.S.); (E.Z.); (V.D.)
| |
Collapse
|
10
|
Matrix Metalloproteinases on Severe COVID-19 Lung Disease Pathogenesis: Cooperative Actions of MMP-8/MMP-2 Axis on Immune Response through HLA-G Shedding and Oxidative Stress. Biomolecules 2022; 12:biom12050604. [PMID: 35625532 PMCID: PMC9138255 DOI: 10.3390/biom12050604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with COVID-19 predominantly have a respiratory tract infection and acute lung failure is the most severe complication. While the molecular basis of SARS-CoV-2 immunopathology is still unknown, it is well established that lung infection is associated with hyper-inflammation and tissue damage. Matrix metalloproteinases (MMPs) contribute to tissue destruction in many pathological situations, and the activity of MMPs in the lung leads to the release of bioactive mediators with inflammatory properties. We sought to characterize a scenario in which MMPs could influence the lung pathogenesis of COVID-19. Although we observed high diversity of MMPs in lung tissue from COVID-19 patients by proteomics, we specified the expression and enzyme activity of MMP-2 in tracheal-aspirate fluid (TAF) samples from intubated COVID-19 and non-COVID-19 patients. Moreover, the expression of MMP-8 was positively correlated with MMP-2 levels and possible shedding of the immunosuppression mediator sHLA-G and sTREM-1. Together, overexpression of the MMP-2/MMP-8 axis, in addition to neutrophil infiltration and products, such as reactive oxygen species (ROS), increased lipid peroxidation that could promote intensive destruction of lung tissue in severe COVID-19. Thus, the inhibition of MMPs can be a novel target and promising treatment strategy in severe COVID-19.
Collapse
|
11
|
Ray SK, Mukherjee S. Directing hypoxic tumor microenvironment and HIF to illuminate cancer immunotherapy's existing prospects and challenges in drug targets. Curr Drug Targets 2022; 23:471-485. [PMID: 35021970 DOI: 10.2174/1389450123666220111114649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022]
Abstract
Cancer is now also reflected as a disease of the tumor microenvironment, primarily supposed to be a decontrolled genetic and cellular expression disease. Over the past two decades, significant and rapid progress has been made in recognizing the dynamics of the tumor's microenvironment and its contribution to influencing the response to various anti-cancer therapies and drugs. Modulations in the tumor microenvironment and immune checkpoint blockade are interesting in cancer immunotherapy and drug targets. Simultaneously, the immunotherapeutic strategy can be done by modulating the immune regulatory pathway; however, the tumor microenvironment plays an essential role in suppressing the antitumor's immunity by its substantial heterogeneity. Hypoxia inducible factor (HIF) is a significant contributor to solid tumor heterogeneity and a key stressor in the tumor microenvironment to drive adaptations to prevent immune surveillance. Checkpoint inhibitors here halt the ability of cancer cells to stop the immune system from activating, and in turn, amplify your body's immune system to help destroy cancer cells. Common checkpoints that these inhibitors affect are the PD-1/PD-L1 and CTLA-4 pathways and important drugs involved are Ipilimumab and Nivolumab, mainly along with other drugs in this group. Targeting the hypoxic tumor microenvironment may provide a novel immunotherapy strategy, break down traditional cancer therapy resistance, and build the framework for personalized precision medicine and cancer drug targets. We hope that this knowledge can provide insight into the therapeutic potential of targeting Hypoxia and help to develop novel combination approaches of cancer drugs to increase the effectiveness of existing cancer therapies, including immunotherapy.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya pradesh-462020. India
| |
Collapse
|
12
|
Lin A, Yan WH. Perspective of HLA-G Induced Immunosuppression in SARS-CoV-2 Infection. Front Immunol 2021; 12:788769. [PMID: 34938296 PMCID: PMC8685204 DOI: 10.3389/fimmu.2021.788769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has threatened public health worldwide. Host antiviral immune responses are essential for viral clearance and disease control, however, remarkably decreased immune cell numbers and exhaustion of host cellular immune responses are commonly observed in patients with COVID-19. This is of concern as it is closely associated with disease severity and poor outcomes. Human leukocyte antigen-G (HLA-G) is a ligand for multiple immune inhibitory receptors, whose expression can be upregulated by viral infections. HLA-G/receptor signalling, such as engagement with immunoglobulin-like transcript 2 (ILT-2) or ILT-4, not only inhibit T and natural killer (NK) cell immune responses, dendritic cell (DC) maturation, and B cell antibody production. It also induces regulatory cells such as myeloid-derived suppressive cells (MDSCs), or M2 type macrophages. Moreover, HLA-G interaction with CD8 and killer inhibitory receptor (KIR) 2DL4 can provoke T cell apoptosis and NK cell senescence. In this context, HLA-G can induce profound immune suppression, which favours the escape of SARS-CoV-2 from immune attack. Although detailed knowledge on the clinical relevance of HLA-G in SARS-CoV-2 infection is limited, we herein review the immunopathological aspects of HLA-G/receptor signalling in SARS-CoV-2 infection, which could provide a better understanding of COVID-19 disease progression and identify potential immunointerventions to counteract SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Aifen Lin
- Biological Resource Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China.,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Wei-Hua Yan
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province, Linhai, China.,Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| |
Collapse
|
13
|
Kawashima M, Higuchi H, Kotani A. Significance of trogocytosis and exosome-mediated transport in establishing and maintaining the tumor microenvironment in lymphoid malignancies. J Clin Exp Hematop 2021; 61:192-201. [PMID: 34193756 PMCID: PMC8808107 DOI: 10.3960/jslrt.21005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/05/2021] [Accepted: 04/04/2021] [Indexed: 11/25/2022] Open
Abstract
It is widely accepted that the tumor microenvironment plays an important role in the progression of lymphoid malignancies. Interaction between the tumor and its surrounding immune cells is considered a potential therapeutic target. For example, anti-programmed cell death 1 (PD-1) antibody stimulates the surrounding exhausted immune cells to release PD-1/PD-L1, thereby leading to the regression of PD-L1-positive tumors. Recently, biological phenomena, such as trogocytosis and exosome-mediated transport were demonstrated to be involved in establishing and maintaining the tumor microenvironment. We found that trogocytosis-mediated PD-L1/L2 transfer from tumor cells to monocytes/macrophages is involved in immune dysfunction in classic Hodgkin lymphoma. Exosomes derived from Epstein-Barr virus (EBV)-associated lymphoma cells induce lymphoma tumorigenesis by transferring the EBV-coding microRNAs from the infected cells to macrophages. In this review, we summarized these biological phenomena based on our findings.
Collapse
|
14
|
Rao JS, Hosny N, Kumbha R, Naqvi RA, Singh A, Swanson Z, Levy H, Matson AW, Steinhoff M, Forneris N, Walters E, Hering BJ, Burlak C. HLA-G1 + Expression in GGTA1KO Pigs Suppresses Human and Monkey Anti-Pig T, B and NK Cell Responses. Front Immunol 2021; 12:730545. [PMID: 34566993 PMCID: PMC8459615 DOI: 10.3389/fimmu.2021.730545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/23/2021] [Indexed: 12/04/2022] Open
Abstract
The human leukocyte antigen G1 (HLA-G1), a non-classical class I major histocompatibility complex (MHC-I) protein, is a potent immunomodulatory molecule at the maternal/fetal interface and other environments to regulate the cellular immune response. We created GGTA1-/HLAG1+ pigs to explore their use as organ and cell donors that may extend xenograft survival and function in both preclinical nonhuman primate (NHP) models and future clinical trials. In the present study, HLA-G1 was expressed from the porcine ROSA26 locus by homology directed repair (HDR) mediated knock-in (KI) with simultaneous deletion of α-1-3-galactotransferase gene (GGTA1; GTKO) using the clustered regularly interspersed palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) (CRISPR/Cas9) gene-editing system. GTKO/HLAG1+ pigs showing immune inhibitory functions were generated through somatic cell nuclear transfer (SCNT). The presence of HLA-G1 at the ROSA26 locus and the deletion of GGTA1 were confirmed by next generation sequencing (NGS) and Sanger's sequencing. Fibroblasts from piglets, biopsies from transplantable organs, and islets were positive for HLA-G1 expression by confocal microscopy, flow cytometry, or q-PCR. The expression of cell surface HLA-G1 molecule associated with endogenous β2-microglobulin (β2m) was confirmed by staining genetically engineered cells with fluorescently labeled recombinant ILT2 protein. Fibroblasts obtained from GTKO/HLAG1+ pigs were shown to modulate the immune response by lowering IFN-γ production by T cells and proliferation of CD4+ and CD8+ T cells, B cells and natural killer (NK) cells, as well as by augmenting phosphorylation of Src homology region 2 domain-containing phosphatase-2 (SHP-2), which plays a central role in immune suppression. Islets isolated from GTKO/HLA-G1+ genetically engineered pigs and transplanted into streptozotocin-diabetic nude mice restored normoglycemia, suggesting that the expression of HLA-G1 did not interfere with their ability to reverse diabetes. The findings presented here suggest that the HLA-G1+ transgene can be stably expressed from the ROSA26 locus of non-fetal maternal tissue at the cell surface. By providing an immunomodulatory signal, expression of HLA-G1+ may extend survival of porcine pancreatic islet and organ xenografts.
Collapse
Affiliation(s)
- Joseph Sushil Rao
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
- Division of Solid Organ Transplantation, Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Nora Hosny
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
- Medical Biochemistry and Molecular Biology Department, Suez Canal University, Faculty of Medicine, Ismailia, Egypt
| | - Ramesh Kumbha
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Raza Ali Naqvi
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Amar Singh
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Zachary Swanson
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Heather Levy
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Anders W. Matson
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Magie Steinhoff
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Nicole Forneris
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Eric Walters
- Independent Consultant, Centralia, MO, United States
| | - Bernhard J. Hering
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Christopher Burlak
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
15
|
Bai Y, Liu W, Xie Y, Liang J, Wang F, Li C. Human leukocyte antigen-G (HLA-G) expression plays an important role in the diagnosis and grading of endometrial cancer. J OBSTET GYNAECOL 2021; 42:641-647. [PMID: 34382498 DOI: 10.1080/01443615.2021.1920007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The research aimed to investigate the expression of human leukocyte antigen G (HLA-G) in cancer tissues and normal endometrium and the expression of HLA-G in the three different grades of Endometrial cancer, to determine if HLA-G expression is related with the diagnosis and grading of endometrial cancer. The expression of HLA-G protein was analysed in the primary tumour in 97 tissue samples obtained from endometrial cancer, in which 30 samples were at pathological Grade 1; 37 samples were at Grade 2; 27 samples were at Grade 3; and the other 5 samples were obtained from normal endometrium. The HLA-G protein level was measured by immunohistochemical method and analysed according to the clinicopathological parameters of patients. A statistically significant difference (p < .05) was observed in HLA-G expression between the cancerous tissue and the normal endometrium (p = .0007), and the histochemistry score (H-score) of the negative control was 0.05 ± 0.03 (mean ± SD). Statistically significant correlations were also observed between samples of pathological Grade 1 and Grade 2 (p = .0126), Grade 2 and Grade 3 (p = .0359), Grade 1 and Grade 3 (p = .0001). Endometrial cancer cells express higher levels of HLA-G probably to escape immune surveillance, and HLA-G expression level is related with the pathological grade of endometrial cancer. Therefore, HLA-G detecting and quantifying could possibly help diagnosing, grading and treatment of endometrial cancer.Impact statementWhat is already known on this subject? The expression of a member of the non-classical HLA antigens, HLA-G, is one of the main ways for tumour immune escape and progression. The significance of HLA-G in tumour biology has been intensively investigated (Carosella et al. 2015), and now it is widely acknowledged that HLA-G expression in tumours is highly linked with immune suppressive microenvironments, advanced tumour stage, poor therapeutic responses and prognosis (Lin and Yan, 2018). However, to our knowledge, no research has been conducted on the correlation between HLA-G expression and pathological grades of endometrial cancer.What do the results of this study add? Our study demonstrated that the expression of HLA-G plays an important role in the pathological grading of endometrial cancer.What are the implications of these findings for clinical practice and/or further research? Measuring the level of HLA-G expression to help pathological grading of endometrial cancer is important in determining the treatment of patients with endometrial cancer and studying the underlying mechanisms of the development of endometrial cancer, while proving or finding new targeted therapies inhibiting or modifying these processes still requires further investigation.
Collapse
Affiliation(s)
- Yixuan Bai
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Wei Liu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yunkai Xie
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Junhui Liang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Fei Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Changzhong Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
16
|
Bu X, Zhong J, Li W, Cai S, Gao Y, Ping B. Immunomodulating functions of human leukocyte antigen-G and its role in graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Ann Hematol 2021; 100:1391-1400. [PMID: 33709198 PMCID: PMC8116272 DOI: 10.1007/s00277-021-04486-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/02/2021] [Indexed: 11/28/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapeutic strategy to treat several hematological malignancies and non-hematological malignancies. However, graft-versus-host disease (GVHD) is a frequent and serious transplant-related complication which dramatically restrains the curative effect of allo-HSCT and a significant cause of morbidity and mortality in allogeneic HCT recipients. Effective prevention of GVHD mainly depends on the induction of peripheral immune tolerance. Human leukocyte antigen-G (HLA-G) is a non-classical MHC class I molecule with a strong immunosuppressive function, which plays a prominent role in immune tolerance. HLA-G triggers different reactions depending on the activation state of the immune cells and system. It also exerts a long-term immune tolerance mechanism by inducing regulatory cells. In this present review, we demonstrate the immunomodulatory properties of human leukocyte antigen-G and highlight the role of HLA-G as an immune regulator of GVHD. Furthermore, HLA-G could also serve as a good predictor of GVHD and represent a new therapeutic target for GVHD.
Collapse
Affiliation(s)
- Xiaoyin Bu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Jinman Zhong
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Weiru Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Shengchun Cai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Ya Gao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
| | - Baohong Ping
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
- Department of Huiqiao, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
| |
Collapse
|
17
|
Darbas S, Yilmaz VT, Kocak H, Kisaoglu A, Demiryilmaz I, Aydinli B, Arslan HS, Ucar F. New markers for predictions of acute and chronic rejection and graft outcomes in kidney transplant recipients; HLA-G gene 3'UTR 14 bp polymorphism and sHLA-G. Gene 2021; 790:145712. [PMID: 33984446 DOI: 10.1016/j.gene.2021.145712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/19/2021] [Accepted: 05/06/2021] [Indexed: 01/10/2023]
Abstract
The aim of this study was to evaluate the relation of Human Leukocyte Antigen-G (HLA-G) 14 bp ins/del (insertion/deletion) polymorphism and soluble HLA-G (sHLA-G) level with rejection in kidney transplant recipients. The study was planned as a case-control study involving two hundred fifty kidney transplant recipients. The case group consisted of 125 (female/male: 56/69) kidney transplant recipients diagnosed with acute (n = 52) and chronic rejection (n = 73). The control group consisted of one hundred twenty-five kidney transplant patients with no acute or chronic rejection matched by gender and age in the case group. The sHLA-G level in the recipient's plasma (at the time of rejection for the case, the same time as the case after the transplant for control) was analyzed by Enzyme-Linked Immunosorbent Assay (ELISA). HLA-G 3' untranslated region (3'UTR) polymorphism of recipient and donor was determined using agarose gel electrophoresis and DNA sequencing method. In our study, it was shown that acute rejection rate increased 1.06 times and chronic rejection rate increased 1.14 times in kidney transplant recipients with low serum sHLA-G levels. The rejection patients with the HLA-G 14 bp del/del genotype had higher sHLA-G levels post-transplantation. The frequency of acute rejection was lower in patients with HLA-G 14 bp del/del polymorphism than those with ins/ins and ins/del polymorphisms. This study proposes that HLA-G 3'UTR polymorphism and sHLA-G level might be useful in prediction of rejection in kidney transplant recipients.
Collapse
Affiliation(s)
- Sule Darbas
- Department of Medical Biology and Genetics, Akdeniz University Faculty of Medicine, Antalya, Turkey.
| | - Vural Taner Yilmaz
- Division of Nephrology, Department of Internal Medicine, Akdeniz University Faculty of Medicine, Antalya, Turkey; Tuncer Karpuzoglu Transplantation Center, Akdeniz University Hospital, Antalya, Turkey.
| | - Huseyin Kocak
- Division of Nephrology, Department of Internal Medicine, Akdeniz University Faculty of Medicine, Antalya, Turkey; Tuncer Karpuzoglu Transplantation Center, Akdeniz University Hospital, Antalya, Turkey.
| | - Abdullah Kisaoglu
- Department of General Surgery, Akdeniz University Faculty of Medicine, Antalya, Turkey; Tuncer Karpuzoglu Transplantation Center, Akdeniz University Hospital, Antalya, Turkey.
| | - Ismail Demiryilmaz
- Department of General Surgery, Akdeniz University Faculty of Medicine, Antalya, Turkey; Tuncer Karpuzoglu Transplantation Center, Akdeniz University Hospital, Antalya, Turkey.
| | - Bulent Aydinli
- Department of General Surgery, Akdeniz University Faculty of Medicine, Antalya, Turkey; Tuncer Karpuzoglu Transplantation Center, Akdeniz University Hospital, Antalya, Turkey.
| | - Habibe Sema Arslan
- Department of Medical Biology and Genetics, Akdeniz University Faculty of Medicine, Antalya, Turkey.
| | - Fahri Ucar
- Department of Medical Biology and Genetics, Akdeniz University Faculty of Medicine, Antalya, Turkey; Tuncer Karpuzoglu Transplantation Center, Akdeniz University Hospital, Antalya, Turkey.
| |
Collapse
|
18
|
Cruz-Bermúdez A, Laza-Briviesca R, Casarrubios M, Sierra-Rodero B, Provencio M. The Role of Metabolism in Tumor Immune Evasion: Novel Approaches to Improve Immunotherapy. Biomedicines 2021; 9:361. [PMID: 33807260 PMCID: PMC8067102 DOI: 10.3390/biomedicines9040361] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 12/16/2022] Open
Abstract
The tumor microenvironment exhibits altered metabolic properties as a consequence of the needs of tumor cells, the natural selection of the most adapted clones, and the selfish relationship with other cell types. Beyond its role in supporting uncontrolled tumor growth, through energy and building materials obtention, metabolism is a key element controlling tumor immune evasion. Immunotherapy has revolutionized the treatment of cancer, being the first line of treatment for multiple types of malignancies. However, many patients either do not benefit from immunotherapy or eventually relapse. In this review we overview the immunoediting process with a focus on the metabolism-related elements that are responsible for increased immune evasion, either through reduced immunogenicity or increased resistance of tumor cells to the apoptotic action of immune cells. Finally, we describe the main molecules to modulate these immune evasion processes through the control of the metabolic microenvironment as well as their clinical developmental status.
Collapse
Affiliation(s)
- Alberto Cruz-Bermúdez
- Medical Oncology Department, Health Research Institute Puerta de Hierro–Segovia de Arana (IDIPHISA) & Puerta de Hierro Hospital, Manuel de Falla Street #1, 28222 Madrid, Spain; (R.L.-B.); (M.C.); (B.S.-R.)
| | - Raquel Laza-Briviesca
- Medical Oncology Department, Health Research Institute Puerta de Hierro–Segovia de Arana (IDIPHISA) & Puerta de Hierro Hospital, Manuel de Falla Street #1, 28222 Madrid, Spain; (R.L.-B.); (M.C.); (B.S.-R.)
- PhD Programme in Molecular Biosciences, Faculty of Medicine Doctoral School, Universidad Autónoma de Madrid, 28222 Madrid, Spain
| | - Marta Casarrubios
- Medical Oncology Department, Health Research Institute Puerta de Hierro–Segovia de Arana (IDIPHISA) & Puerta de Hierro Hospital, Manuel de Falla Street #1, 28222 Madrid, Spain; (R.L.-B.); (M.C.); (B.S.-R.)
- PhD Programme in Molecular Biosciences, Faculty of Medicine Doctoral School, Universidad Autónoma de Madrid, 28222 Madrid, Spain
| | - Belén Sierra-Rodero
- Medical Oncology Department, Health Research Institute Puerta de Hierro–Segovia de Arana (IDIPHISA) & Puerta de Hierro Hospital, Manuel de Falla Street #1, 28222 Madrid, Spain; (R.L.-B.); (M.C.); (B.S.-R.)
- PhD Programme in Molecular Biosciences, Faculty of Medicine Doctoral School, Universidad Autónoma de Madrid, 28222 Madrid, Spain
| | - Mariano Provencio
- Medical Oncology Department, Health Research Institute Puerta de Hierro–Segovia de Arana (IDIPHISA) & Puerta de Hierro Hospital, Manuel de Falla Street #1, 28222 Madrid, Spain; (R.L.-B.); (M.C.); (B.S.-R.)
| |
Collapse
|
19
|
Zidi I. Puzzling out the COVID-19: Therapy targeting HLA-G and HLA-E. Hum Immunol 2020; 81:697-701. [PMID: 33046268 PMCID: PMC7539797 DOI: 10.1016/j.humimm.2020.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 01/12/2023]
Abstract
SARS-CoV2 might conduce to rapid respiratory complications challenging healthcare systems worldwide. Immunological mechanisms associated to SARS-CoV2 infection are complex and not yet clearly elucidated. Arguments are in favour of a well host-adapted virus. Here I draw a systemic immunological representation linking actual SARS-CoV2 infection literature that hopefully might guide healthcare decisions to treat COVID-19. I suggest HLA-G and HLA-E, non classical HLA class I molecules, in the core of COVID-19 complications. These molecules are powerful in immune tolerance and might inhibit/suppress immune cells functions during SARS-CoV2 infection promoting virus subversion. Dosing soluble forms of these molecules in COVID-19 patients' plasma might help the identification of critical cases. I recommend also developing new SARS-CoV2 therapies based on the use of HLA-G and HLA-E or their specific receptors antibodies in combination with FDA approved therapeutics to combat efficiently COVID-19.
Collapse
Affiliation(s)
- Inès Zidi
- Laboratory Microorganismes and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
20
|
Attia JVD, Dessens CE, van de Water R, Houvast RD, Kuppen PJK, Krijgsman D. The Molecular and Functional Characteristics of HLA-G and the Interaction with Its Receptors: Where to Intervene for Cancer Immunotherapy? Int J Mol Sci 2020; 21:ijms21228678. [PMID: 33213057 PMCID: PMC7698525 DOI: 10.3390/ijms21228678] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Human leukocyte antigen G (HLA-G) mediates maternal-fetal immune tolerance. It is also considered an immune checkpoint in cancer since it may mediate immune evasion and thus promote tumor growth. HLA-G is, therefore, a potential target for immunotherapy. However, existing monoclonal antibodies directed against HLA-G lack sufficient specificity and are not suitable for immune checkpoint inhibition in a clinical setting. For this reason, it is essential that alternative approaches are explored to block the interaction between HLA-G and its receptors. In this review, we discuss the structure and peptide presentation of HLA-G, and its interaction with the receptors Ig-like transcript (ILT) 2, ILT4, and Killer cell immunoglobulin-like receptor 2DL4 (KIR2DL4). Based on our findings, we propose three alternative strategies to block the interaction between HLA-G and its receptors in cancer immunotherapy: (1) prevention of HLA-G dimerization, (2) targeting the peptide-binding groove of HLA-G, and (3) targeting the HLA-G receptors. These strategies should be an important focus of future studies that aim to develop immune checkpoint inhibitors to block the interaction between HLA-G and its receptors for the treatment of cancer.
Collapse
|
21
|
Contini P, Murdaca G, Puppo F, Negrini S. HLA-G Expressing Immune Cells in Immune Mediated Diseases. Front Immunol 2020; 11:1613. [PMID: 32983083 PMCID: PMC7484697 DOI: 10.3389/fimmu.2020.01613] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
HLA-G is a HLA class Ib antigen that possesses immunomodulatory properties. HLA-G-expressing CD4+ and CD8+ T lymphocytes, NK cells, monocytes, and dendritic cells with immunoregulatory functions are present in small percentages of patients with physiologic conditions. Quantitative and qualitative derangements of HLA-G+ immune cells have been detected in several conditions in which the immune system plays an important role, such as infectious, neoplastic, and autoimmune diseases as well as in complications from transplants and pregnancy. These observations strongly support the hypothesis that HLA-G+ immune cells may be implicated in the complex mechanisms underlying the pathogenesis of these disorders.
Collapse
Affiliation(s)
- P Contini
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Francesco Puppo
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Simone Negrini
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
22
|
Cho K, Kook H, Kang S, Lee J. Study of immune-tolerized cell lines and extracellular vesicles inductive environment promoting continuous expression and secretion of HLA-G from semiallograft immune tolerance during pregnancy. J Extracell Vesicles 2020; 9:1795364. [PMID: 32944184 PMCID: PMC7480490 DOI: 10.1080/20013078.2020.1795364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
An immune reaction is a protector of our body but a target to be overcome for all non-self-derived medicine. Extracellular Vesicles (EVs), noted as a primary alternative to cell therapy products that exhibit immune rejection due to mismatching-major histocompatibility complex (MHC), were discovered to have excellent curative effects through the delivery of various biologically active substances. Although EVs are sure to incur immune reaction by immunogenicity due to alloantigens from their parental cells, their immune rejection is rarely known. Hence, to develop cell lines and EVs as medicines with no immune rejection, we noted the immune tolerance where the foetus, as semi-allograft, is perfectly protected from the maternal immune system. We designed the ex-vivo culture systems to simulate in-vivo environmental factors inducing extravillous trophoblast (EVT)-specific Human Leukocyte Antigen-G (HLA-G) expression and secretion of HLA-G-bearing EVs at the mother-foetus interface. Using them, we confirmed that immune-tolerized stem cells (itSCs) continuously expressing and secreting HLA-G like EVTs during pregnancy can be induced. Also, EVs secreted from itSCs are verified as immune-tolerized EVs (itSC-EVs) containing HLA-G and not causing immune rejection through various analytical methods. These findings can provide a new perspective on the local and extensive immune tolerance environment where HLA-G is expressed and secreted by pregnancy-related hormones and different biological conditions. Furthermore, they show the new way to develop itSCs-EVs-based therapeutics that are free from time, space, and donor limitation causing immune rejection. Abbreviations CFSE: carboxyfluorescein succinimidyl ester; DC: dendritic cells; ELISA: enzyme-linked immunosorbent assay; EV: extracellular vesicles; EVT: extravillous trophoblast; FSH: follicle stimulating hormone; HA: hyaluronic acid; hCG: human chorionic gonadotropin; HLA-G: human leukocyte antigen G; iPSC: induced pluripotent stem cells; itSC-EVs: immune-tolerized extracellular vesicles from itSCs; itTBC-EVs: immune-tolerized extracellular vesicles from itTBCs; itSCs: immune tolerized stem cells; itTBCs: immune-tolerized trophoblast cells; LH: luteinizing hormone; MHC: major histocompatibility complex; MSC: mesenchymal stem cells; NK: natural killer cells; NTA: nanoparticle tracking analysis; PBMC: peripheral blood mononuclear cells; PHA: phytohemagglutinin; SP-IRIS: single particle interferometric reflectance imaging sensing; STB: syncytiotrophoblast
Collapse
Affiliation(s)
- Kyoungshik Cho
- R&D Center of Stemmedicare Ltd, Seoul, Republic of Korea
| | - Hyejin Kook
- R&D Center of Stemmedicare Ltd, Seoul, Republic of Korea
| | - Suman Kang
- R&D Center of Stemmedicare Ltd, Seoul, Republic of Korea
| | - Jangho Lee
- R&D Center of Stemmedicare Ltd, Seoul, Republic of Korea
| |
Collapse
|
23
|
Ghavimi R, Alsahebfosoul F, Salehi R, Kazemi M, Etemadifar M, Zavaran Hosseini A. High-resolution melting curve analysis of polymorphisms within CD58, CD226, HLA-G genes and association with multiple sclerosis susceptibility in a subset of Iranian population: a case-control study. Acta Neurol Belg 2020; 120:645-652. [PMID: 30128676 DOI: 10.1007/s13760-018-0992-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system with unknown etiology, which typically is manifested in early to middle adulthood. Recently, genome-wide association studies have identified susceptibility of immune-related genes to be involved in MS predisposition. The goal of the current study was to investigate the association of single nucleotide polymorphisms (SNP) with the immunologically related genes responsible for the disease, composed of CD58 (rs2300747 A>G), CD226 (rs763361 C>T), and HLA-G (rs1611715 A>C), with MS susceptibility. In this case-control study, a total of 200 patients suffering from relapsing-remitting multiple sclerosis and 200 healthy individuals were recruited. DNA was extracted from blood and then all subjects were genotyped for the polymorphism within mentioned genes by high-resolution melting (HRM) real-time PCR method. Statistical analyses were performed using SPSS software (version 20; SPSS, Chicago, IL, USA). Our finding showed that there are significant differences in genotype and allele frequencies between two groups regarding rs763361 (P = 0.035, OR 0.64, CI 95% for C allele) and rs1611715 (P = 0.038, OR 1.57, CI 95% for AA genotype) polymorphisms within CD226 and HLA-G genes, respectively. Concerning rs2300747 polymorphism on CD58 gene, no significant differences were found between cases and controls. In general, results from the current study indicate that CD226 and HLA-G, but not CD58 genetic polymorphisms are associated with increased risk of MS in Isfahan population similar to European populations. However, to elucidate how these SNPs contribute to MS pathogenesis, functional studies are needed.
Collapse
|
24
|
Bertol BC, Dias FC, da Silva DM, Zambelli Ramalho LN, Donadi EA. Human Antigen Leucocyte (HLA)-G and HLA-E are differentially expressed in pancreatic disorders. Hum Immunol 2019; 80:948-954. [PMID: 31561913 DOI: 10.1016/j.humimm.2019.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Little information is available regarding the expression of the immunomodulatory Human Leukocyte Antigen (HLA)-G and -E molecules in pancreatic disorders. AIM To analyze HLA-G and -E expression in specimens of alcoholic chronic pancreatitis (ACP), idiopathic chronic pancreatitis (ICP), type 1 (T1D) and type 2 diabetes (T2D) and in histologically normal pancreas (HNP). METHODS HLA-G and -E expression (ACP = 30, ICP = 10, T1D = 10, T2D = 30 and HNP = 20) was evaluated by immunohistochemistry in three different areas (acini, islets and inflammatory infiltrate). RESULTS Acini and islets from HNP specimens exhibited higher HLA-G and -E expression compared to corresponding areas from all other patient groups. In inflammatory infiltrate, HLA-G and -E expression was observed only among the pancreatic disorders. We observed higher HLA-G and -E expression in acini from T2D compared to ACP, as well as higher HLA-G expression compared to ICP. CONCLUSION The decreased expression of HLA-G and -E in islets and acini together with the expression of these molecules in the inflammatory infiltrating cells were shared features among chronic inflammatory and autoimmune pancreatic disorders evaluated in this study, possibly reflecting tissue damage.
Collapse
Affiliation(s)
- Bruna Cristina Bertol
- Postgraduate Program of Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, ZIP Code: 14049-900 Ribeirão Preto, Brazil.
| | - Fabrício César Dias
- Department of Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, ZIP Code: 14049-900 Ribeirão Preto, Brazil.
| | - Deisy Mara da Silva
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, ZIP Code: 14049-900 Ribeirão Preto, Brazil.
| | - Leandra Náira Zambelli Ramalho
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, ZIP Code: 14049-900 Ribeirão Preto, Brazil.
| | - Eduardo Antônio Donadi
- Postgraduate Program of Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, ZIP Code: 14049-900 Ribeirão Preto, Brazil; Department of Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, ZIP Code: 14049-900 Ribeirão Preto, Brazil.
| |
Collapse
|
25
|
Doyon-Laliberté K, Chagnon-Choquet J, Byrns M, Aranguren M, Memmi M, Chrobak P, Stagg J, Poudrier J, Roger M. NR4A Expression by Human Marginal Zone B-Cells. Antibodies (Basel) 2019; 8:antib8040050. [PMID: 31614541 PMCID: PMC6963983 DOI: 10.3390/antib8040050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/11/2019] [Accepted: 10/03/2019] [Indexed: 01/30/2023] Open
Abstract
We have previously characterized a human blood CD19+CD1c+IgM+CD27+CD21loCD10+ innate-like B-cell population, which presents features shared by both transitional immature and marginal zone (MZ) B-cells, named herein “precursor-like” MZ B-cells. B-cells with similar attributes have been associated with regulatory potential (Breg). In order to clarify this issue and better characterize this population, we have proceeded to RNA-Seq transcriptome profiling of mature MZ and precursor-like MZ B-cells taken from the blood of healthy donors. We report that ex vivo mature MZ and precursor-like MZ B-cells express transcripts for the immunoregulatory marker CD83 and nuclear receptors NR4A1, 2, and 3, known to be associated with T-cell regulatory (Treg) maintenance and function. Breg associated markers such as CD39 and CD73 were also expressed by both populations. We also show that human blood and tonsillar precursor-like MZ B-cells were the main B-cell population to express elevated levels of CD83 and NR4A1-3 proteins ex vivo and without stimulation. Sorted tonsillar precursor-like MZ B-cells exerted regulatory activity on autologous activated CD4+ T-cells, and this was affected by a CD83 blocking reagent. We believe these observations shed light on the Breg potential of MZ populations, and identify NR4A1-3 as potential Breg markers, which as for Tregs, may be involved in stabilization of a regulatory status. Since expression and activity of these molecules can be modulated therapeutically, our findings may be useful in strategies aiming at modulation of Breg responses.
Collapse
Affiliation(s)
- Kim Doyon-Laliberté
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger 900 rue St-Denis, Montréal, QC H2X 0A9, Canada.
- Département de Microbiologie, Infectiologie et Immunologie de l'Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - Josiane Chagnon-Choquet
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger 900 rue St-Denis, Montréal, QC H2X 0A9, Canada.
- Département de Microbiologie, Infectiologie et Immunologie de l'Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - Michelle Byrns
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger 900 rue St-Denis, Montréal, QC H2X 0A9, Canada.
- Département de Microbiologie, Infectiologie et Immunologie de l'Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - Matheus Aranguren
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger 900 rue St-Denis, Montréal, QC H2X 0A9, Canada.
- Département de Microbiologie, Infectiologie et Immunologie de l'Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - Meriam Memmi
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger 900 rue St-Denis, Montréal, QC H2X 0A9, Canada.
- Département de Microbiologie, Infectiologie et Immunologie de l'Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - Pavel Chrobak
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger 900 rue St-Denis, Montréal, QC H2X 0A9, Canada.
- Faculte de Pharmacie, Université de Montréal, Montréal, QC H3C 3J7, Canada.
- Institut du Cancer de Montréal CRCHUM, Montreal, QC H2X 0A9, Canada.
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger 900 rue St-Denis, Montréal, QC H2X 0A9, Canada.
- Faculte de Pharmacie, Université de Montréal, Montréal, QC H3C 3J7, Canada.
- Institut du Cancer de Montréal CRCHUM, Montreal, QC H2X 0A9, Canada.
| | - Johanne Poudrier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger 900 rue St-Denis, Montréal, QC H2X 0A9, Canada.
- Département de Microbiologie, Infectiologie et Immunologie de l'Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - Michel Roger
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger 900 rue St-Denis, Montréal, QC H2X 0A9, Canada.
- Département de Microbiologie, Infectiologie et Immunologie de l'Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
26
|
Improving Cancer Immunotherapy by Targeting the Hypoxic Tumor Microenvironment: New Opportunities and Challenges. Cells 2019; 8:cells8091083. [PMID: 31540045 PMCID: PMC6770817 DOI: 10.3390/cells8091083] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/30/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Initially believed to be a disease of deregulated cellular and genetic expression, cancer is now also considered a disease of the tumor microenvironment. Over the past two decades, significant and rapid progress has been made to understand the complexity of the tumor microenvironment and its contribution to shaping the response to various anti-cancer therapies, including immunotherapy. Nevertheless, it has become clear that the tumor microenvironment is one of the main hallmarks of cancer. Therefore, a major challenge is to identify key druggable factors and pathways in the tumor microenvironment that can be manipulated to improve the efficacy of current cancer therapies. Among the different tumor microenvironmental factors, this review will focus on hypoxia as a key process that evolved in the tumor microenvironment. We will briefly describe our current understanding of the molecular mechanisms by which hypoxia negatively affects tumor immunity and shapes the anti-tumor immune response. We believe that such understanding will provide insight into the therapeutic value of targeting hypoxia and assist in the design of innovative combination approaches to improve the efficacy of current cancer therapies, including immunotherapy.
Collapse
|
27
|
Lin A, Yan W. Intercellular transfer of HLA-G: its potential in cancer immunology. Clin Transl Immunology 2019; 8:e1077. [PMID: 31489189 PMCID: PMC6716982 DOI: 10.1002/cti2.1077] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/03/2019] [Accepted: 08/04/2019] [Indexed: 12/14/2022] Open
Abstract
Intercellular protein transfer between cancer cells and immune cells is a very common phenomenon that can affect different stages of host antitumor immune responses. HLA-G, a non-classical HLA class I antigen, has been observed to be widely expressed in various malignancies, and its immune-suppressive functions have been well recognised. HLA-G expression in cancer cells can directly mediate immune tolerance by interacting with inhibitory receptors such as ILT2 and ILT4 expressed on immune cells. Moreover, a network of multiple directional intercellular transfers of HLA-G among cancer cells and immune cells through trogocytosis, exosomes and tunnelling nanotubes provides malignant cells with an alternative ploy for antigen sharing and induces more complex heterogeneity, to modulate immune responses, ultimately leading to immune evasion, therapy resistance, disease progression and poor clinical outcome. Herein, we discuss the relative aspects of the intercellular transfer of HLA-G between tumor cells and immune cells and its potential use in tumor immunology research and translational cancer therapy.
Collapse
Affiliation(s)
- Aifen Lin
- Biological Resource CenterTaizhou Hospital of Zhejiang ProvinceWenzhou Medical UniversityLinhaiZhejiangChina
| | - Wei‐Hua Yan
- Medical Research CenterTaizhou Hospital of Zhejiang ProvinceWenzhou Medical UniversityLinhaiZhejiangChina
| |
Collapse
|
28
|
Riera-Domingo C, Audigé A, Granja S, Cheng WC, Ho PC, Baltazar F, Stockmann C, Mazzone M. Immunity, Hypoxia, and Metabolism-the Ménage à Trois of Cancer: Implications for Immunotherapy. Physiol Rev 2019; 100:1-102. [PMID: 31414610 DOI: 10.1152/physrev.00018.2019] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that metabolism is able to shape the immune response. Only recently we are gaining awareness that the metabolic crosstalk between different tumor compartments strongly contributes to the harsh tumor microenvironment (TME) and ultimately impairs immune cell fitness and effector functions. The major aims of this review are to provide an overview on the immune system in cancer; to position oxygen shortage and metabolic competition as the ground of a restrictive TME and as important players in the anti-tumor immune response; to define how immunotherapies affect hypoxia/oxygen delivery and the metabolic landscape of the tumor; and vice versa, how oxygen and metabolites within the TME impinge on the success of immunotherapies. By analyzing preclinical and clinical endeavors, we will discuss how a metabolic characterization of the TME can identify novel targets and signatures that could be exploited in combination with standard immunotherapies and can help to predict the benefit of new and traditional immunotherapeutic drugs.
Collapse
Affiliation(s)
- Carla Riera-Domingo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Annette Audigé
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Sara Granja
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Wan-Chen Cheng
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Ping-Chih Ho
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Fátima Baltazar
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Christian Stockmann
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| |
Collapse
|
29
|
Boujelbene N, Ben Yahia H, Babay W, Gadria S, Zemni I, Azaiez H, Dhouioui S, Zidi N, Mchiri R, Mrad K, Ouzari HI, Charfi L, Zidi I. HLA-G, HLA-E, and IDO overexpression predicts a worse survival of Tunisian patients with vulvar squamous cell carcinoma. HLA 2019; 94:11-24. [PMID: 30907063 DOI: 10.1111/tan.13536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022]
Abstract
Little is known about non-classical HLA molecules in vulvar squamous cell carcinoma (VSCC). Because of the indoleamine-2,3-dioxygenase (IDO) immune tolerant role in association with HLA-G, we evaluated the clinical and prognostic value of HLA-G, HLA-E, and IDO in VSCC. HLA-G, HLA-E, and IDO expression was determined by immunohistochemistry in VSCC and associated with clinicopathological parameters and disease outcome. These three molecules were highly represented in tumoral tissues vs healthy matched vulvar tissues (P = 0.0001). Significant differences in HLA-G expression in stages, tumor size, tumor invasion depth, and resection margins subgroups were reported (P < 0.05). At 5 years, the cumulative survival rates was of 79.8% in patients with HLA-Glow expression vs 12.5% in those with HLA-Ghigh expression (P < 3 × 10-5 ). Similarly, patients with IDOhigh expression were at a significantly reduced overall survival (OS) and disease-free survival (DFS) rates (P = 0.011 and 0.045, respectively). The overexpression of the three molecules together worsen survival rates of VSCC patients (OS: P = 0.000038, DFS: P = 0.000085). Altogether, our results showed that HLA-G, HLA-E, and IDO may represent novel candidate markers for patients' prognosis and potential targets for VSCC therapy.
Collapse
Affiliation(s)
- Nadia Boujelbene
- Department of Pathology, Salah Azaïez Institute, Tunis, Tunisia
- Laboratory Microorganismes and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Hamza Ben Yahia
- Laboratory Microorganismes and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Wafa Babay
- Laboratory Microorganismes and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Selma Gadria
- Department of Surgical Oncology, Salah Azaïez Institute, Tunis, Tunisia
| | - Ines Zemni
- Department of Surgical Oncology, Salah Azaïez Institute, Tunis, Tunisia
| | - Houda Azaiez
- Department of Pathology, Salah Azaïez Institute, Tunis, Tunisia
| | - Sabrine Dhouioui
- Laboratory Microorganismes and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Nour Zidi
- Department of Radiotherapy, Salah Azaïez Institute, Tunis, Tunisia
| | - Rim Mchiri
- Department of Pathology, Salah Azaïez Institute, Tunis, Tunisia
| | - Karima Mrad
- Department of Pathology, Salah Azaïez Institute, Tunis, Tunisia
- Laboratory Microorganismes and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Hadda-Imene Ouzari
- Laboratory Microorganismes and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Lamia Charfi
- Department of Pathology, Salah Azaïez Institute, Tunis, Tunisia
| | - Inès Zidi
- Laboratory Microorganismes and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
30
|
Schumacher A, Sharkey DJ, Robertson SA, Zenclussen AC. Immune Cells at the Fetomaternal Interface: How the Microenvironment Modulates Immune Cells To Foster Fetal Development. THE JOURNAL OF IMMUNOLOGY 2019; 201:325-334. [PMID: 29987001 DOI: 10.4049/jimmunol.1800058] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/06/2018] [Indexed: 12/23/2022]
Abstract
Immune cells adapt their phenotypic and functional characteristics in response to the tissue microenvironment within which they traffic and reside. The fetomaternal interface, consisting of placental trophoblasts and the maternal decidua, is a highly specialized tissue with a unique and time-limited function: to nourish and support development of the semiallogeneic fetus and protect it from inflammatory or immune-mediated injury. It is therefore important to understand how immune cells within these tissues are educated and adapt to fulfill their biological functions. This review article focuses on the local regulatory mechanisms ensuring that both innate and adaptive immune cells appropriately support the early events of implantation and placental development through direct involvement in promoting immune tolerance of fetal alloantigens, suppressing inflammation, and remodeling of maternal uterine vessels to facilitate optimal placental function and fetal growth.
Collapse
Affiliation(s)
- Anne Schumacher
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg 39108, Germany; and
| | - David J Sharkey
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, South Australia 5005, Australia
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, South Australia 5005, Australia
| | - Ana C Zenclussen
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg 39108, Germany; and
| |
Collapse
|
31
|
Durmanova V, Bandzuchova H, Zilinska Z, Tirpakova J, Kuba D, Buc M, Polakova K. Association of HLA-G Polymorphisms in the 3'UTR Region and Soluble HLA-G with Kidney Graft Outcome. Immunol Invest 2019; 48:644-658. [PMID: 31094243 DOI: 10.1080/08820139.2019.1610888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background: Human leukocyte antigen G (HLA-G) belongs to nonclassical HLA I molecule involving in the suppression of immune response. Besides its profound effect to induce fetal tolerance, HLA-G expression has been associated with allograft acceptance. For the regulation of HLA-G levels, polymorphic sites within the 3' untranslated region (3'UTR) are of crucial importance. The aim of the study was to analyze the association between several HLA-G 3'UTR variants (+3003T/C, +3010C/G, +3027C/A, +3035C/T, +3142G/C, +3187A/G, and +3196C/G), soluble HLA-G (sHLA-G) level, and kidney graft outcome in the Slovak Caucasian population. Methods: We investigated 69 kidney transplant recipients (45 males, 24 females) of age 27-65 years. Out of this group, 37 recipients developed acute rejection that was biopsy proven. Recipient's plasma was obtained at 1 day before transplantation and analyzed by ELISA. The HLA-G 3'UTR polymorphisms were typed by direct sequencing. Results: In the recipients with stable allograft function, significantly higher values of sHLA-G were found in the homozygous +3010GG, +3142CC, +3187GG, and +3196CC carriers in comparison to the acute rejection recipients (P = 0.01-0.05). Conclusion: The study demonstrated genetic association between HLA-G 3'UTR variants and sHLA-G level in kidney recipients leading to graft acceptance. We suggest to monitor the pretransplantation sHLA-G level as additional marker to predict kidney graft outcome. Abbreviations: AMR: Antibody-mediated rejection; APC: antigen-presenting cell; CD: cluster of designation; del: deletion; HLA: human leukocyte antigen; ILT: immunoglobulin-like transcript; ins: insertion; KIR: killer-cell immunoglobulin-like receptor; NK: natural killer; sHLA-G: soluble HLA-G; SNP: single nucleotide polymorphism; TCMR: T cell-mediated rejection; URR: upstream regulatory region; UTR: untranslated region.
Collapse
Affiliation(s)
- Vladimira Durmanova
- a Institute of Immunology, Faculty of Medicine , Comenius University in Bratislava , Bratislava , Slovakia
| | | | - Zuzana Zilinska
- c Urological Clinic and Center for Kidney Transplantation, University Hospital Bratislava and Faculty of Medicine , Comenius University in Bratislava , Bratislava , Slovakia
| | - Jana Tirpakova
- b National Transplantation Organisation , Bratislava , Slovakia
| | - Daniel Kuba
- b National Transplantation Organisation , Bratislava , Slovakia
| | - Milan Buc
- a Institute of Immunology, Faculty of Medicine , Comenius University in Bratislava , Bratislava , Slovakia
| | - Katarina Polakova
- d Cancer Research Institute, Biomedical Research Center , Slovak Academy of Sciences , Bratislava , Slovakia
| |
Collapse
|
32
|
Giacomini E, Alleva E, Fornelli G, Quartucci A, Privitera L, Vanni VS, Viganò P. Embryonic extracellular vesicles as informers to the immune cells at the maternal-fetal interface. Clin Exp Immunol 2019; 198:15-23. [PMID: 31009068 DOI: 10.1111/cei.13304] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2019] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicle (EV) exchange is emerging as a novel method of communication at the maternal-fetal interface. The presence of the EVs has been demonstrated in the preimplantation embryo culture medium from different species, such as bovines, porcines and humans. Preimplantation embryo-derived EVs have been shown to carry molecules potentially able to modulate the local endometrial immune system. The non-classical major histocompatibility complex (MHC) class I molecule human leucocyte antigen (HLA)-G, the immunomodulatory molecule progesterone-induced blocking factor and some regulatory miRNAs species are contained in embryo-derived EV cargo. The implanted syncytiotrophoblasts are also well known to secrete EVs, with microvesicles exerting a mainly proinflammatory effect while exosomes in general mediate local immunotolerance. This review focuses on the current knowledge on the potential role of EVs released by the embryo in the first weeks of pregnancy on the maternal immune cells. Collectively, the data warrant further exploration of the dialogue between the mother and the embryo via EVs.
Collapse
Affiliation(s)
- E Giacomini
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - E Alleva
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - G Fornelli
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - A Quartucci
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - L Privitera
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - V S Vanni
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - P Viganò
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
33
|
Janssen M, Thaiss F, Nashan B, Koch M, Thude H. Donor derived HLA-G polymorphisms have a significant impact on acute rejection in kidney transplantation. Hum Immunol 2019; 80:176-183. [PMID: 30610894 DOI: 10.1016/j.humimm.2018.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/04/2018] [Accepted: 12/31/2018] [Indexed: 12/22/2022]
Abstract
Human leucocyte antigen G (HLA-G) is a non-classical HLA-class I antigen that exerts immunoregulatory functions. The polymorphisms 14-base pair (bp) insertion/deletion (ins/del) (rs1704) and +3142C > G (rs1063320) could modify the expression level of HLA-G. We genotyped 175 kidney recipients (41 with acute rejection and 134 without rejection) and additionally the corresponding donors for both polymorphisms in order to assess their impact on acute rejections one year after transplantation. In addition, we analyzed soluble HLA-G (sHLA-G) levels in sera of 32 living kidney donors and compared the sHLA-G levels in terms of the present genotype. In kidney transplant recipients we did not observe an impact of the 14-bp ins/ins and the +3142GG genotypes on acute rejection. In contrast, we found a higher frequency of these genotypes in the donors of the no-rejection collective compared to the rejection collective (4.9% vs. 24.6%; p = 0.010; 9.8% vs. 31.3%; p = 0.006). Soluble HLA-G levels were highest in healthy kidney donors homozygous for the 14-bp insertion. We conclude that the HLA-G polymorphisms of the donor are of importance for susceptibility of acute rejection in kidney transplantation. We suggest that the 14-bp ins/ins and the +3142GG genotypes are protective against kidney transplant rejection.
Collapse
Affiliation(s)
- Maike Janssen
- University Medical Center Hamburg-Eppendorf, Department of Hepatobiliary and Transplant Surgery, Martinistraße 52, 20246 Hamburg, Germany; University Hospital Heidelberg, Department for Hematology, Oncology and Rheumatology, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| | - Friedrich Thaiss
- University Medical Center Hamburg-Eppendorf, Center for Internal Medicine, Martinistraße 52, 20246 Hamburg, Germany
| | - Björn Nashan
- University Medical Center Hamburg-Eppendorf, Department of Hepatobiliary and Transplant Surgery, Martinistraße 52, 20246 Hamburg, Germany; University of Science and Technology, Hefei, Anhui, China
| | - Martina Koch
- University Medical Center Hamburg-Eppendorf, Department of Hepatobiliary and Transplant Surgery, Martinistraße 52, 20246 Hamburg, Germany; University Medical Center of the Johannes Gutenberg University Mainz, Department of General, Visceral, and Abdominal Surgery, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Hansjörg Thude
- University Medical Center Hamburg-Eppendorf, Department of Hepatobiliary and Transplant Surgery, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
34
|
Geldenhuys J, Rossouw TM, Lombaard HA, Ehlers MM, Kock MM. Disruption in the Regulation of Immune Responses in the Placental Subtype of Preeclampsia. Front Immunol 2018; 9:1659. [PMID: 30079067 PMCID: PMC6062603 DOI: 10.3389/fimmu.2018.01659] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/04/2018] [Indexed: 01/21/2023] Open
Abstract
Preeclampsia is a pregnancy-specific disorder, of which one of its major subtypes, the placental subtype is considered a response to an ischemic placental environment, impacting fetal growth and pregnancy outcome. Inflammatory immune responses have been linked to metabolic and inflammatory disorders as well as reproductive failures. In healthy pregnancy, immune regulatory mechanisms prevent excessive systemic inflammation. However, in preeclampsia, the regulation of immune responses is disrupted as a result of aberrant activation of innate immune cells and imbalanced differentiation of T-helper cell subsets creating a cytotoxic environment in utero. Recognition events that facilitate immune interaction between maternal decidual T cells, NK cells, and cytotrophoblasts are considered an indirect cause of the incomplete remodeling of spiral arteries in preeclampsia. The mechanisms involved include the activation of immune cells and the subsequent secretion of cytokines and placental growth factors affecting trophoblast invasion, angiogenesis, and eventually placentation. In this review, we focus on the role of excessive systemic inflammation as the result of a dysregulated immune system in the development of preeclampsia. These include insufficient control of inflammation, failure of tolerance toward paternal antigens at the fetal-maternal interface, and subsequent over- or insufficient activation of immune mediators. It is also possible that external stimuli, such as bacterial endotoxin, may contribute to the excessive systemic inflammation in preeclampsia by stimulating the release of pro-inflammatory cytokines. In conclusion, a disrupted immune system might be a predisposing factor or result of placental oxidative stress or excessive inflammation in preeclampsia. Preeclampsia can thus be considered a hyperinflammatory state associated with defective regulation of the immune system proposed as a key element in the pathological events of the placental subtype of this disorder.
Collapse
Affiliation(s)
- Janri Geldenhuys
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Theresa Marie Rossouw
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
| | - Hendrik Andries Lombaard
- Obstetrics and Gynecology, Rahima Moosa Mother and Child Hospital, Wits Obstetrics and Gynecology Clinical Research Division, Faculty of Health Sciences, School of Clinical Medicine, University of Witwatersrand, Johannesburg, South Africa
| | - Marthie Magdaleen Ehlers
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
| | - Marleen Magdalena Kock
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
| |
Collapse
|
35
|
Li Y, Patel SP, Roszik J, Qin Y. Hypoxia-Driven Immunosuppressive Metabolites in the Tumor Microenvironment: New Approaches for Combinational Immunotherapy. Front Immunol 2018; 9:1591. [PMID: 30061885 PMCID: PMC6054965 DOI: 10.3389/fimmu.2018.01591] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/27/2018] [Indexed: 12/13/2022] Open
Abstract
Hypoxia is not only a prominent contributor to the heterogeneity of solid tumors but also a crucial stressor in the microenvironment to drive adaptations for tumors to evade immunosurveillance. Herein, we discuss the potential role of hypoxia within the microenvironment contributing to immune resistance and immune suppression of tumor cells. We outline recent discoveries of hypoxia-driven adaptive mechanisms that diminish immune cell response via skewing the expression of important immune checkpoint molecules (e.g., cluster of differentiation 47, programmed death ligand 1, and human leukocyte antigen G), altered metabolism and metabolites, and pH regulation. Importantly, inhibition of hypoxic stress-relevant pathways can collectively enhance T-cell-mediated tumor cell killing. Furthermore, we discuss how manipulation of hypoxia stress may pose a promising new strategy for a combinational therapeutic intervention to enhance immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Yiliang Li
- Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Sapna Pradyuman Patel
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yong Qin
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
36
|
Sharif K, Sharif Y, Watad A, Yavne Y, Lichtbroun B, Bragazzi NL, Amital H, Shoenfeld Y. Vitamin D, autoimmunity and recurrent pregnancy loss: More than an association. Am J Reprod Immunol 2018; 80:e12991. [PMID: 29923244 DOI: 10.1111/aji.12991] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022] Open
Abstract
Recurrent pregnancy loss (RPL) affects close to 1% of couples; however, the etiology is known in only about 50% of the cases. Recent studies show that autoimmune dysregulation is a probable cause of RPL, which in some cases may be overlooked. In order for a pregnancy to proceed to term, early modulation of immunologic response is required to induce tolerance to the semi-allogenic fetus. Certain subsets of both the innate and adaptive immune responses play a role in the induction of fetomaternal tolerance. A relatively predominant T-cell helper (Th) 2 and T regulatory (Treg) cell population seem to favor a better pregnancy outcome, whereas Th1 and Th17 cell populations appear to have an opposite effect. Lately, the role of vitamin D in the modulation of immune response was established. Vitamin D has been shown to promote a more favorable environment for pregnancy through various mechanisms, such as enhancement of the shift toward Th2 cells and regulation of immune cell differentiation and cytokine secretion. Therefore, it seems that vitamin D deficiency sways the balance toward a worse outcome and may play a part in recurrent pregnancy loss. This review sheds light on the immunologic changes, which occur in early pregnancy and the regulatory role vitamin D has in the maintenance of this delicate balance.
Collapse
Affiliation(s)
- Kassem Sharif
- Department of Medicine 'B', Sheba Medical Center, Tel-Hashomer, Israel.,Zabludowicz center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
| | - Yousra Sharif
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
| | - Abdulla Watad
- Department of Medicine 'B', Sheba Medical Center, Tel-Hashomer, Israel.,Zabludowicz center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
| | - Yarden Yavne
- Department of Medicine 'B', Sheba Medical Center, Tel-Hashomer, Israel.,Zabludowicz center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
| | - Benjamin Lichtbroun
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | | - Howard Amital
- Department of Medicine 'B', Sheba Medical Center, Tel-Hashomer, Israel.,Zabludowicz center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
| | - Yehuda Shoenfeld
- Zabludowicz center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
37
|
Pellerin L, Chen P, Gregori S, Hernandez-Hoyos G, Bacchetta R, Roncarolo MG. APVO210: A Bispecific Anti-CD86-IL-10 Fusion Protein (ADAPTIR™) to Induce Antigen-Specific T Regulatory Type 1 Cells. Front Immunol 2018; 9:881. [PMID: 29887861 PMCID: PMC5980965 DOI: 10.3389/fimmu.2018.00881] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/09/2018] [Indexed: 12/30/2022] Open
Abstract
IL-10 is a potent immunosuppressive cytokine that promotes the differentiation of tolerogenic dendritic cells (DC-10), and the subsequent induction of antigen-specific T regulatory type 1 (Tr1) cells, which suppress immune responses. However, IL-10 acts on multiple cell types and its effects are not solely inhibitory, therefore, limiting its use as immunomodulant. APVO210 is a bispecific fusion protein composed of an anti-CD86 antibody fused with monomeric IL-10 (ADAPTIR™ from Aptevo Therapeutics). APVO210 specifically induces IL-10R signaling in CD86+ antigen-presenting cells, but not in T and B cells. In this study, we tested whether APVO210 promotes the differentiation of tolerogenic DC-10 and the differentiation of antigen-specific CD4+ Tr1 cells in vitro. We compared the effect of APVO210 with that of recombinant human (rh) IL-10 on the in vitro differentiation of DC-10, induction of alloantigen-specific anergic CD4+ T cells, enrichment in CD49b+LAG3+ Tr1 cells mediating antigen-specific suppression, and stability upon exposure to inflammatory cytokines. APVO210 induced the differentiation of tolerogenic DC (DC-A210) that produced high levels of IL-10, expressed CD86, HLA-G, and intermediate levels of CD14 and CD16. These DC-A210 induced alloantigen-specific anergic T-cell cultures (T-alloA210) that were enriched in CD49b+ LAG3+ Tr1 cells, produced high levels of IL-10, and had suppressive properties. The phenotype and high IL-10 production by DC-A210, and the alloantigen-specific anergy of T-alloA210 were preserved upon exposure to the inflammatory cytokines IL-1β, IL-6, and TNF-α. The effects of APVO210 were comparable to that of dimeric rh IL-10. In conclusion, our data demonstrate that APVO210 drives the differentiation of tolerogenic DC and functional alloantigen-specific Tr1 cells in vitro. Since APVO210 specifically targets CD86+ cells, we hypothesize that it will specifically target CD86+ DC to induce Tr1 cells in vivo, and mediate antigen-specific immunological tolerance by induction of tolerogenic DC and Tr1 cells.
Collapse
Affiliation(s)
- Laurence Pellerin
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States
| | - Ping Chen
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Rosa Bacchetta
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States
| | - Maria Grazia Roncarolo
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
38
|
Regeneration of cervical reserve cell-like cells from human induced pluripotent stem cells (iPSCs): A new approach to finding targets for cervical cancer stem cell treatment. Oncotarget 2018; 8:40935-40945. [PMID: 28402962 PMCID: PMC5522215 DOI: 10.18632/oncotarget.16783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 02/27/2017] [Indexed: 12/27/2022] Open
Abstract
Cervical reserve cells are epithelial progenitor cells that are pathologically evident as the origin of cervical cancer. Thus, investigating the characteristics of cervical reserve cells could yield insight into the features of cervical cancer stem cells (CSCs). In this study, we established a method for the regeneration of cervical reserve cell-like properties from human induced pluripotent stem cells (iPSCs) and named these cells induced reserve cell-like cells (iRCs). Approximately 70% of iRCs were positive for the reserve cell markers p63, CK5 and CK8. iRCs also expressed the SC junction markers CK7, AGR2, CD63, MMP7 and GDA. While iRCs expressed neither ERα nor ERβ, they expressed CA125. These data indicated that iRCs possessed characteristics of cervical epithelial progenitor cells. iRCs secreted higher levels of several inflammatory cytokines such as macrophage migration inhibitory factor (MIF), soluble intercellular adhesion molecule 1 (sICAM-1) and C-X-C motif ligand 10 (CXCL-10) compared with normal cervical epithelial cells. iRCs also expressed human leukocyte antigen-G (HLA-G), which is an important cell-surface antigen for immune tolerance and carcinogenesis. Together with the fact that cervical CSCs can originate from reserve cells, our data suggested that iRCs were potent immune modulators that might favor cervical cancer cell survival. In conclusion, by generating reserve cell-like properties from iPSCs, we provide a new approach that may yield new insight into cervical cancer stem cells and help find new oncogenic targets.
Collapse
|
39
|
Li JB, Ruan YY, Hu B, Dong SS, Bi TN, Lin A, Yan WH. Importance of the plasma soluble HLA-G levels for prognostic stratification with traditional prognosticators in colorectal cancer. Oncotarget 2018; 8:48854-48862. [PMID: 28415627 PMCID: PMC5564730 DOI: 10.18632/oncotarget.16457] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/13/2017] [Indexed: 01/14/2023] Open
Abstract
An increased peripheral soluble HLA-G (sHLA-G) expression has been observed in various malignancies while its prognostic significance was rather limited. In this study, the prognostic value of plasma sHLA-G in 178 colorectal cancer (CRC) patients was investigated. sHLA-G levels were analyzed by specific enzyme-linked immunosorbent assay. Data showed sHLA-G levels were significantly increased in CRC patients compared with normal controls (36.8 U/ml vs 25.4 U/ml, p = 0.009). sHLA-G in the died were obviously higher than that of alive CRC patients (46.8 U/ml vs 27.4 U/ml, p = 0.012). Patients with sHLA-G above median levels (≥ 36.8 U/ml, sHLA-Ghigh) had a significantly shorter survival time than those with sHLA-Glow (< 36.8 U/ml, p < 0.001), and sHLA-G could be an independent prognostic factor for CRC patients. With stratification of clinical parameters in survival by sHLA-Glow and sHLA-Ghigh, sHLA-G exhibited a significant predictive value for CRC patients of the female (p = 0.036), the elder (p = 0.009), advanced tumor burden (T3 + 4, p = 0.038), regional lymph node status (N0, p = 0.041), both metastasis status (M0, p = 0.014) and (M1, p=0.018), and clinical stage (I + II, p = 0.018), respectively. Summary, our data demonstrated for the first time that sHLA-G levels is an independent prognosis factor and improves the prognostic stratification offered by traditional prognosticators in CRC patients.
Collapse
Affiliation(s)
- Jing-Bo Li
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China
| | - Yan-Yun Ruan
- Human Tissue Bank, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China
| | - Bin Hu
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China
| | - Shan-Shan Dong
- Human Tissue Bank, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China
| | - Tie-Nan Bi
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China
| | - Aifen Lin
- Human Tissue Bank, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China
| | - Wei-Hua Yan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China.,Department of Laboratory Medicine, Xianju People's Hospital, Xianju, Zhejiang, People's Republic of China
| |
Collapse
|
40
|
Impact of HLA-G polymorphism on the outcome of allogeneic hematopoietic stem cell transplantation for metastatic renal cell carcinoma. Bone Marrow Transplant 2017; 53:213-218. [DOI: 10.1038/bmt.2017.243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 08/29/2017] [Accepted: 09/08/2017] [Indexed: 01/28/2023]
|
41
|
Garziera M, Scarabel L, Toffoli G. Hypoxic Modulation of HLA-G Expression through the Metabolic Sensor HIF-1 in Human Cancer Cells. J Immunol Res 2017; 2017:4587520. [PMID: 28781970 PMCID: PMC5525073 DOI: 10.1155/2017/4587520] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/16/2017] [Accepted: 06/11/2017] [Indexed: 12/17/2022] Open
Abstract
The human leukocyte antigen-G (HLA-G) is considered an immune checkpoint molecule involved in tumor immune evasion. Hypoxia and the metabolic sensor hypoxia-inducible factor 1 (HIF-1) are hallmarks of metastasization, angiogenesis, and intense tumor metabolic activity. The purpose of this review was to examine original in vitro studies carried out in human cancer cell lines, which reported data about HLA-G expression and HIF-1 mediated-HLA-G expression in response to hypoxia. The impact of HLA-G genomic variability on the hypoxia responsive elements (HREs) specific for HIF-1 binding was also discussed. Under hypoxia, HLA-G-negative cell lines might transcribe HLA-G without translation of the protein while in contrast, HLA-G-positive cell lines, showed a reduced HLA-G transcriptional activity and protein level. HIF-1 modulation of HLA-G expression induced by hypoxia was demonstrated in different cell lines. HLA-G SNPs rs1632947 and rs41551813 located in distinct HREs demonstrated a prominent role of HIF-1 binding by DNA looping. Our research revealed a fine regulation of HLA-G in hypoxic conditions through HIF-1, depending on the cellular type and HLA-G genomic variability. Specifically, SNPs found in HREs should be considered in future investigations as markers with potential clinical value especially in metastatic malignancies.
Collapse
Affiliation(s)
- Marica Garziera
- Experimental and Clinical Pharmacology Unit, CRO Aviano National Cancer Institute, IRCCS, Via F. Gallini 2, 33081 Aviano, Italy
| | - Lucia Scarabel
- Experimental and Clinical Pharmacology Unit, CRO Aviano National Cancer Institute, IRCCS, Via F. Gallini 2, 33081 Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, CRO Aviano National Cancer Institute, IRCCS, Via F. Gallini 2, 33081 Aviano, Italy
| |
Collapse
|
42
|
Cavalcanti A, Almeida R, Mesquita Z, Duarte ALBP, Donadi EA, Lucena-Silva N. Gene polymorphism and HLA-G expression in patients with childhood-onset systemic lupus erythematosus: A pilot study. HLA 2017; 90:219-227. [DOI: 10.1111/tan.13084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 06/11/2017] [Accepted: 06/15/2017] [Indexed: 11/28/2022]
Affiliation(s)
- A. Cavalcanti
- Pediatric Rheumatology Unit; Federal University of Pernambuco; Recife Brazil
- Department of Immunology, Aggeu Magalhães Research Center; Oswaldo Cruz Foundation; Recife Brazil
| | - R. Almeida
- Department of Immunology, Aggeu Magalhães Research Center; Oswaldo Cruz Foundation; Recife Brazil
| | - Z. Mesquita
- Pediatric Rheumatology Unit; Institute of Integrative Medicine Professor Fernando Figueira; Recife Brazil
| | - A. L. B. P. Duarte
- Pediatric Rheumatology Unit; Federal University of Pernambuco; Recife Brazil
| | - E. A. Donadi
- Department of Clinical Medicine; São Paulo University; Ribeirão Preto Brazil
| | - N. Lucena-Silva
- Department of Immunology, Aggeu Magalhães Research Center; Oswaldo Cruz Foundation; Recife Brazil
| |
Collapse
|
43
|
HLA-G 3'UTR Polymorphisms Predict Drug-Induced G3-4 Toxicity Related to Folinic Acid/5-Fluorouracil/Oxaliplatin (FOLFOX4) Chemotherapy in Non-Metastatic Colorectal Cancer. Int J Mol Sci 2017; 18:ijms18071366. [PMID: 28653974 PMCID: PMC5535859 DOI: 10.3390/ijms18071366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/07/2017] [Accepted: 06/20/2017] [Indexed: 02/07/2023] Open
Abstract
Polymorphisms in drug-metabolizing enzymes might not completely explain inter-individual differences in toxicity profiles of patients with colorectal cancer (CRC) that receive folinic acid/5-fluorouracil/oxaliplatin (FOLFOX4). Recent data indicate that the immune system could contribute to FOLFOX4 outcomes. In light of the immune inhibitory nature of human leukocyte antigen-G (HLA-G), a non-classical major histocompatibility complex (MHC) class I molecule, we aimed to identify novel genomic markers of grades 3 and 4 (G3-4) toxicity related to FOLFOX4 therapy in patients with CRC. We retrospectively analyzed data for 144 patients with stages II-III CRC to identify HLA-G 3′ untranslated region (3′UTR) polymorphisms and related haplotypes and evaluate their impact on the risk of developing G3-4 toxicities (i.e., neutropenia, hematological/non-hematological toxicity, neurotoxicity) with logistic regression. The rs1610696-G/G polymorphism was associated with increased risk of G3-4 neutropenia (OR = 3.76, p = 0.015) and neurotoxicity (OR = 8.78, p = 0.016); rs371194629-Ins/Ins was associated with increased risk of neurotoxicity (OR = 5.49, p = 0.027). HLA-G 3′UTR-2, which contains rs1610696-G/G and rs371194629-Ins/Ins polymorphisms, was associated with increased risk of G3-4 neutropenia (OR = 3.92, p = 0.017) and neurotoxicity (OR = 11.29, p = 0.009). A bootstrap analysis confirmed the predictive value of rs1610696 and rs371194629, but the UTR-2 haplotype was validated only for neurotoxicity. This exploratory study identified new HLA-G 3′UTR polymorphisms/haplotypes as potential predictive markers of G3-4 toxicities in CRC.
Collapse
|
44
|
Guerini FR, Bolognesi E, Chiappedi M, Ghezzo A, Manca S, Zanette M, Sotgiu S, Mensi MM, Zanzottera M, Agliardi C, Costa AS, Balottin U, Clerici M. HLA-G∗14bp Insertion and the KIR2DS1-HLAC2 Complex Impact on Behavioral Impairment in Children with Autism Spectrum Disorders. Neuroscience 2017. [PMID: 28627421 DOI: 10.1016/j.neuroscience.2017.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Activating KIR-HLA-C ligand complexes and HLA-G∗14bp insertion/deletion (+/-) polymorphism were associated to Autism Spectrum Disorders (ASD) and were suggested to correlate with inflammation during fetal development. We evaluated whether HLA-G∗14bp(+/-) and KIR-HLA-C complexes are associated with cognitive and behavioral scores and EEG profile in 119 ASD children (58 from Sardinia, 61 from Peninsular Italy). KIR2DS1-C2; KIR2DS2-C1; KIR2DL1-C2; KIR2DL2-C1; KIR2DL3-C1 and HLA-G∗14bp(+/-) were molecularly genotyped by Single Specific Primer PCR and gel electrophoresis. Univariate linear model analysis adjusted for age, gender and provenience showed statistically higher scores of Childhood Autism Rating Scale (CARS) and Autistic Core Behavior in KIR2DS1-C2+/HLA-G∗14bp+ASD children (43.7±1.5, p=0.03; 3.3±0.1, p=0.03, respectively). These results suggested a synergistic polygenic association of KIR2DS1-HLAC2+/HLA-G∗14bp+ pattern with behavioral impairment in ASD children.
Collapse
Affiliation(s)
| | | | - Matteo Chiappedi
- Child Neurology and Psychiatry Unit, C. Mondino National Neurological Institute, Pavia, Italy
| | - Alessandro Ghezzo
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and Associazione Nazionale Famiglie di Persone con Disabilitá Intellettiva e/o Relazionale (ANFFAS), Macerata, Italy
| | - Salvatorica Manca
- Unità Operativa Neuropsichiatria Infanzia e Adolescenza (UONPIA), ASL n. 1, Sassari, Italy
| | | | - Stefano Sotgiu
- Section of Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Sassari, Italy
| | - Maria Martina Mensi
- Child Neurology and Psychiatry Unit, C. Mondino National Neurological Institute, Pavia, Italy
| | | | | | | | - Umberto Balottin
- Child Neurology and Psychiatry Unit, C. Mondino National Neurological Institute, Pavia, Italy; Department of Brain and Behavioral Sciences University of Pavia, Pavia, Italy
| | - Mario Clerici
- Don C. Gnocchi Foundation IRCCS, Milano, Italy; Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy
| |
Collapse
|
45
|
Amodio G, Gregori S. The discovery of HLA-G-bearing extracellular vesicles: new perspectives in HLA-G biology. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:148. [PMID: 28462228 DOI: 10.21037/atm.2017.01.46] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Giada Amodio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
46
|
Kametani Y, Ohshima S, Miyamoto A, Shigenari A, Takasu M, Imaeda N, Matsubara T, Tanaka M, Shiina T, Kamiguchi H, Suzuki R, Kitagawa H, Kulski JK, Hirayama N, Inoko H, Ando A. Production of a Locus- and Allele-Specific Monoclonal Antibody for the Characterization of SLA-1*0401 mRNA and Protein Expression Levels in MHC-Defined Microminipigs. PLoS One 2016; 11:e0164995. [PMID: 27760184 PMCID: PMC5070868 DOI: 10.1371/journal.pone.0164995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/04/2016] [Indexed: 12/17/2022] Open
Abstract
The class I major histocompatibility complex (MHC) presents self-developed peptides to specific T cells to induce cytotoxity against infection. The MHC proteins are encoded by multiple loci that express numerous alleles to preserve the variability of the antigen-presenting ability in each species. The mechanism regulating MHC mRNA and protein expression at each locus is difficult to analyze because of the structural and sequence similarities between alleles. In this study, we examined the correlation between the mRNA and surface protein expression of swine leukocyte antigen (SLA)-1*0401 after the stimulation of peripheral blood mononuclear cells (PBMCs) by Staphylococcus aureus superantigen toxic shock syndrome toxin-1 (TSST-1). We prepared a monoclonal antibody (mAb) against a domain composed of Y102, L103 and L109 in the α2 domain. The Hp-16.0 haplotype swine possess only SLA-1*0401, which has the mAb epitope, while other haplotypes possess 0 to 3 SLA classical class I loci with the mAb epitopes. When PBMCs from SLA-1*0401 homozygous pigs were stimulated, the SLA-1*0401 mRNA expression level increased until 24 hrs and decreased at 48 hrs. The kinetics of the interferon regulatory transcription factor-1 (IRF-1) mRNA level were similar to those of the SLA-1*0401 mRNA. However, the surface protein expression level continued to increase until 72 hrs. Similar results were observed in the Hp-10.0 pigs with three mAb epitopes. These results suggest that TSST-1 stimulation induced both mRNA and surface protein expression of class I SLA in the swine PBMCs differentially and that the surface protein level was sustained independently of mRNA regulation.
Collapse
Affiliation(s)
- Yoshie Kametani
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Institute of Advanced Biosciences, Tokai University, Kanagawa, Japan
- * E-mail:
| | - Shino Ohshima
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Asuka Miyamoto
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Atsuko Shigenari
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Masaki Takasu
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Noriaki Imaeda
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Tatsuya Matsubara
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Masafumi Tanaka
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hiroshi Kamiguchi
- Teaching and Research Support Center, Tokai University School of Medicine, Isehara, Japan
| | - Ryuji Suzuki
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Sagamihara, Kanagawa, Japan
| | - Hitoshi Kitagawa
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Jerzy K. Kulski
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Crawley WA, Australia
| | - Noriaki Hirayama
- Institute of Glycoscience, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Asako Ando
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
47
|
Nardi FDS, König L, Wagner B, Giebel B, Santos Manvailer LF, Rebmann V. Soluble monomers, dimers and HLA-G-expressing extracellular vesicles: the three dimensions of structural complexity to use HLA-G as a clinical biomarker. HLA 2016; 88:77-86. [PMID: 27440734 DOI: 10.1111/tan.12844] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022]
Abstract
The HLA-G molecule belongs to the family of nonclassical human leukocyte antigen (HLA) class I. At variance to classical HLA class I, HLA-G displays (i) a low number of nucleotide variations within the coding region, (ii) a high structural diversity, (iii) a restricted peptide repertoire, (iv) a limited tissue distribution and (v) strong immune-suppressive properties. The physiological HLA-G surface expression is restricted to the maternal-fetal interface and to immune-privileged adult tissues. Soluble forms of HLA-G (sHLA-G) are detectable in various body fluids. Cellular activation and pathological processes are associated with an aberrant or a neo-expression of HLA-G/sHLA-G. Functionally, HLA-G and its secreted forms are considered to be key players in the induction of short- and long-term tolerance. Thus, its unique expression profile and tolerance-inducing functions render HLA-G/sHLA-G an attractive biomarker to monitor the systemic health/disease status and disease activity/progression for clinical approaches in disease management and treatments. Here, we place emphasis on (i) the current status of the tolerance-inducing functions by HLA-G/sHLA-G, (ii) the current complexity to implement this molecule as a meaningful clinical biomarker regarding the three dimensions of structural diversity (monomers, dimers and HLA-G-expressing extracellular vesicles) with its functional implications, and (iii) novel and future approaches to detect and quantify sHLA-G structures and functions.
Collapse
Affiliation(s)
- F da Silva Nardi
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany.,Laboratory of Immunogenetics and Histocompatibility (LIGH), Federal University of Paraná, Genetics Department, Curitiba, Brazil.,Ministry of Education of Brazil, Capes Foundation, Brasília, Brazil
| | - L König
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany.,Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - B Wagner
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - B Giebel
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - L F Santos Manvailer
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany.,Ministry of Education of Brazil, Capes Foundation, Brasília, Brazil
| | - V Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| |
Collapse
|
48
|
Amodio G, Canti V, Maggio L, Rosa S, Castiglioni MT, Rovere-Querini P, Gregori S. Association of genetic variants in the 3'UTR of HLA-G with Recurrent Pregnancy Loss. Hum Immunol 2016; 77:886-891. [PMID: 27370685 PMCID: PMC5021086 DOI: 10.1016/j.humimm.2016.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 01/28/2023]
Abstract
Human Leukocyte Antigen (HLA)-G is involved in reprogramming immune responses at fetal-maternal interface during pregnancy. We evaluated the genetic diversity of the 3′ Un-Translated Region (UTR) of HLA-G, previously associated with HLA-G mRNA post-transcriptional regulation, in women with unexplained Recurrent Pregnancy Loss (RPL), with 2 pregnancy losses (RPL-2, n = 28), or 3 or more pregnancy losses (RPL-3, n = 24), and in 30 women with a history of successful pregnancy. Results showed in RPL-2, but not in RPL-3, women compared to controls: i) higher frequency of the 14 bp Ins allele, in single and in double copy; ii) significantly lower frequency of DelG/X genotype, iii) reduced frequency of the UTR-2, and UTR-3 haplotypes; iv) higher frequencies of the UTR-5, UTR-7, and UTR-8 haplotypes. This pilot study supports the relevance of performing 3′UTR HLA-G genetic screening, not limited to a specific polymorphism, but considering the extended haplotypes, as a possible predictor of pregnancy outcome.
Collapse
Affiliation(s)
- Giada Amodio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Valentina Canti
- Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Luana Maggio
- Obstetric and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Susanna Rosa
- Obstetric and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Patrizia Rovere-Querini
- Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy.
| |
Collapse
|
49
|
Diagnostic significance of soluble human leukocyte antigen-G for gastric cancer. Hum Immunol 2016; 77:317-24. [DOI: 10.1016/j.humimm.2016.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 11/01/2015] [Accepted: 01/07/2016] [Indexed: 01/16/2023]
|
50
|
Metabolism Is Central to Tolerogenic Dendritic Cell Function. Mediators Inflamm 2016; 2016:2636701. [PMID: 26980944 PMCID: PMC4766347 DOI: 10.1155/2016/2636701] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 12/31/2015] [Indexed: 12/13/2022] Open
Abstract
Immunological tolerance is a fundamental tenant of immune homeostasis and overall health. Self-tolerance is a critical component of the immune system that allows for the recognition of self, resulting in hyporeactivity instead of immunogenicity. Dendritic cells are central to the establishment of dominant immune tolerance through the secretion of immunosuppressive cytokines and regulatory polarization of T cells. Cellular metabolism holds the key to determining DC immunogenic or tolerogenic cell fate. Recent studies have demonstrated that dendritic cell maturation leads to a shift toward a glycolytic metabolic state and preferred use of glucose as a carbon source. In contrast, tolerogenic dendritic cells favor oxidative phosphorylation and fatty acid oxidation. This dichotomous metabolic reprogramming of dendritic cells drives differential cellular function and plays a role in pathologies, such as autoimmune disease. Pharmacological alterations in metabolism have promising therapeutic potential.
Collapse
|