1
|
Ke X, Liao Z, Luo X, Chen JQ, Deng M, Huang Y, Wang Z, Wei M. Endothelial colony-forming cell-derived exosomal miR-21-5p regulates autophagic flux to promote vascular endothelial repair by inhibiting SIPL1A2 in atherosclerosis. Cell Commun Signal 2022; 20:30. [PMID: 35279183 PMCID: PMC8917727 DOI: 10.1186/s12964-022-00828-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
Percutaneous transluminal coronary angioplasty (PTCA) represents an efficient therapeutic method for atherosclerosis but conveys a risk of causing restenosis. Endothelial colony-forming cell-derived exosomes (ECFC-exosomes) are important mediators during vascular repair. This study aimed to investigate the therapeutic effects of ECFC-exosomes in a rat model of atherosclerosis and to explore the molecular mechanisms underlying the ECFC-exosome-mediated effects on ox-LDL-induced endothelial injury.
Methods
The effect of ECFC-exosome-mediated autophagy on ox-LDL-induced human microvascular endothelial cell (HMEC) injury was examined by cell counting kit-8 assay, scratch wound assay, tube formation assay, western blot and the Ad-mCherry-GFP-LC3B system. RNA-sequencing assays, bioinformatic analysis and dual-luciferase reporter assays were performed to confirm the interaction between the miR-21-5p abundance of ECFC-exosomes and SIPA1L2 in HMECs. The role and underlying mechanism of ECFC-exosomes in endothelial repair were explored using a high-fat diet combined with balloon injury to establish an atherosclerotic rat model of vascular injury. Evans blue staining, haematoxylin and eosin staining and western blotting were used to evaluate vascular injury.
Results
ECFC-exosomes were incorporated into HMECs and promoted HMEC proliferation, migration and tube formation by repairing autophagic flux and enhancing autophagic activity. Subsequently, we demonstrated that miR-21-5p, which is abundant in ECFC-exosomes, binds to the 3’ untranslated region of SIPA1L2 to inhibit its expression, and knockout of miR-21-5p in ECFC-exosomes reversed ECFC-exosome-decreased SIPA1L2 expression in ox-LDL-induced HMEC injury. Knockdown of SIPA1L2 repaired autophagic flux and enhanced autophagic activity to promote cell proliferation in ox-LDL-treated HMECs. ECFC-exosome treatment attenuated vascular endothelial injury, regulated lipid balance and activated autophagy in an atherogenic rat model of vascular injury, whereas these effects were eliminated with ECFC-exosomes with knockdown of miR-21-5p.
Conclusions
Our study demonstrated that ECFC-exosomes protect against atherosclerosis- or PTCA-induced vascular injury by rescuing autophagic flux and inhibiting SIAP1L2 expression through delivery of miR-21-5p.
Collapse
|
2
|
Mesenchymal Stem Cells Based Treatment in Dental Medicine: A Narrative Review. Int J Mol Sci 2022; 23:ijms23031662. [PMID: 35163584 PMCID: PMC8836082 DOI: 10.3390/ijms23031662] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Application of mesenchymal stem cells (MSC) in regenerative therapeutic procedures is becoming an increasingly important topic in medicine. Since the first isolation of dental tissue-derived MSC, there has been an intense investigation on the characteristics and potentials of these cells in regenerative dentistry. Their multidifferentiation potential, self-renewal capacity, and easy accessibility give them a key role in stem cell-based therapy. So far, several different dental stem cell types have been discovered and their potential usage is found in most of the major dental medicine branches. These cells are also researched in multiple fields of medicine for the treatment of degenerative and inflammatory diseases. In this review, we summarized dental MSC sources and analyzed their treatment modalities with particular emphasis on temporomandibular joint osteoarthritis (TMJ OA).
Collapse
|
3
|
Engineered neural tissue made using clinical-grade human neural stem cells supports regeneration in a long gap peripheral nerve injury model. Acta Biomater 2021; 135:203-213. [PMID: 34455110 DOI: 10.1016/j.actbio.2021.08.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/08/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022]
Abstract
A surgical autograft remains the clinical gold-standard therapy for gap repair following peripheral nerve injury, however, challenges remain with achieving full recovery and reducing donor-site morbidity. Engineered Neural Tissue (EngNT) manufactured using differentiated CTX0E03 human stem cells (EngNT-CTX) has been developed as a potential 'off the shelf' allogeneic autograft replacement. Ensheathed within a collagen membrane developed to facilitate biomechanical integration, EngNT-CTX was used to bridge a critical-length (15 mm) sciatic nerve gap injury in athymic nude rats. The effectiveness of EngNT-CTX was compared to an autograft using outcome measures that assessed neuronal regeneration and functional recovery at 8 and 16 weeks. At both time points EngNT-CTX restored electrophysiological nerve conduction and functional reinnervation of downstream muscles to the same extent as the autograft. Histological analysis confirmed that more motor neurons had successfully regenerated through the repair in EngNT-CTX in comparison to the autograft at 8 weeks, which was consistent with the electrophysiology, with the number of motor neurons similar in both groups by 16 weeks. The total number of neurons (motor + sensory) was greater in autografts than EngNT-CTX at 8 weeks, indicating that more sensory fibres may have sprouted in those animals at this time point. In conclusion, this study provides evidence to support the effectiveness of EngNT-CTX as a replacement for the nerve autograft, as the functional regeneration assessed through histological and electrophysiological outcome measures demonstrated equivalent performance. STATEMENT OF SIGNIFICANCE: Following injury a peripheral nerve has the capacity to regenerate naturally, however, in the case of severe damage where there is a gap the current gold-standard microsurgical intervention is an autograft. This is associated with serious limitations including tissue availability and donor-site morbidity. Tissue engineering aims to overcome these limitations by building a construct from therapeutic cells and biomaterials as a means to mimic and replace the autograft. In this study engineered neural tissue (EngNT) was manufactured using human stem cells (CTX) to bridge a critical-length gap injury. When compared to the autograft in an animal model the EngNT-CTX construct restored function to an equivalent or greater extent.
Collapse
|
4
|
Refaie AF, Elbassiouny BL, Kloc M, Sabek OM, Khater SM, Ismail AM, Mohamed RH, Ghoneim MA. From Mesenchymal Stromal/Stem Cells to Insulin-Producing Cells: Immunological Considerations. Front Immunol 2021; 12:690623. [PMID: 34248981 PMCID: PMC8262452 DOI: 10.3389/fimmu.2021.690623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy for type 1 diabetes mellitus (T1DM) has been the subject matter of many studies over the past few decades. The wide availability, negligible teratogenic risks and differentiation potential of MSCs promise a therapeutic alternative to traditional exogenous insulin injections or pancreatic transplantation. However, conflicting arguments have been reported regarding the immunological profile of MSCs. While some studies support their immune-privileged, immunomodulatory status and successful use in the treatment of several immune-mediated diseases, others maintain that allogeneic MSCs trigger immune responses, especially following differentiation or in vivo transplantation. In this review, the intricate mechanisms by which MSCs exert their immunomodulatory functions and the influencing variables are critically addressed. Furthermore, proposed avenues to enhance these effects, including cytokine pretreatment, coadministration of mTOR inhibitors, the use of Tregs and gene manipulation, are presented. As an alternative, the selection of high-benefit, low-risk donors based on HLA matching, PD-L1 expression and the absence of donor-specific antibodies (DSAs) are also discussed. Finally, the necessity for the transplantation of human MSC (hMSC)-derived insulin-producing cells (IPCs) into humanized mice is highlighted since this strategy may provide further insights into future clinical applications.
Collapse
Affiliation(s)
- Ayman F Refaie
- Nephrology Department, Urology and Nephrology Center, Mansoura, Egypt
| | | | - Malgorzata Kloc
- Department of Immunobiology, The Houston Methodist Research Institute, Houston, TX, United States.,Department of Surgery, The Houston Methodist Hospital, Houston, TX, United States.,Department of Genetics, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Omaima M Sabek
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, United States.,Department of Cell and Microbiology Biology, Weill Cornell Medical Biology, New York, NY, United States
| | - Sherry M Khater
- Pathology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Amani M Ismail
- Immunology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Rania H Mohamed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
5
|
Ghoneim MA, Refaie AF, Elbassiouny BL, Gabr MM, Zakaria MM. From Mesenchymal Stromal/Stem Cells to Insulin-Producing Cells: Progress and Challenges. Stem Cell Rev Rep 2020; 16:1156-1172. [PMID: 32880857 PMCID: PMC7667138 DOI: 10.1007/s12015-020-10036-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal cells (MSCs) are an attractive option for cell therapy for type 1 diabetes mellitus (DM). These cells can be obtained from many sources, but bone marrow and adipose tissue are the most studied. MSCs have distinct advantages since they are nonteratogenic, nonimmunogenic and have immunomodulatory functions. Insulin-producing cells (IPCs) can be generated from MSCs by gene transfection, gene editing or directed differentiation. For directed differentiation, MSCs are usually cultured in a glucose-rich medium with various growth and activation factors. The resulting IPCs can control chemically-induced diabetes in immune-deficient mice. These findings are comparable to those obtained from pluripotent cells. PD-L1 and PD-L2 expression by MSCs is upregulated under inflammatory conditions. Immunomodulation occurs due to the interaction between these ligands and PD-1 receptors on T lymphocytes. If this function is maintained after differentiation, life-long immunosuppression or encapsulation could be avoided. In the clinical setting, two sites can be used for transplantation of IPCs: the subcutaneous tissue and the omentum. A 2-stage procedure is required for the former and a laparoscopic procedure for the latter. For either site, cells should be transplanted within a scaffold, preferably one from fibrin. Several questions remain unanswered. Will the transplanted cells be affected by the antibodies involved in the pathogenesis of type 1 DM? What is the functional longevity of these cells following their transplantation? These issues have to be addressed before clinical translation is attempted. Graphical Abstract Bone marrow MSCs are isolated from the long bone of SD rats. Then they are expanded and through directed differentiation insulin-producing cells are formed. The differentiated cells are loaded onto a collagen scaffold. If one-stage transplantation is planned, a drug delivery system must be incorporated to ensure immediate oxygenation, promote vascularization and provide some growth factors. Some mechanisms involved in the immunomodulatory function of MSCs. These are implemented either by cell to cell contact or by the release of soluble factors. Collectively, these pathways results in an increase in T-regulatory cells.
Collapse
|
6
|
Liu J, Qiu P, Qin J, Wu X, Wang X, Yang X, Li B, Zhang W, Ye K, Peng Z, Lu X. Allogeneic adipose-derived stem cells promote ischemic muscle repair by inducing M2 macrophage polarization via the HIF-1α/IL-10 pathway. Stem Cells 2020; 38:1307-1320. [PMID: 32627897 PMCID: PMC7590195 DOI: 10.1002/stem.3250] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/19/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
Abstract
Adipose-derived mesenchymal stem cells (ASCs) are multipotent stromal cells that possess considerable therapeutic potential for tissue remodeling. However, their protective mechanism in critical limb ischemia has not been fully defined. After the occlusion of blood vessels, hypoxia becomes a prominent feature of the ischemic limb. This study investigated the immunomodulatory effect of ASCs on ischemic muscle repair and explored the specific mechanism. We found that the ability of RAW264.7 cells to migrate was impaired in hypoxia, whereas coculturing with ASCs could enhance the migration capacity. In addition, under hypoxic conditions, the paracrine effect of ASCs was enhanced and ASCs could induce RAW264.7 macrophages toward the anti-inflammatory M2 phenotype. We further demonstrated that ASCs-derived interleukin 10 (IL-10), mediated by hypoxia inducible factor-1α (HIF-1α), played a crucial role in the induction of M2 macrophages by activating the signal transducer and activator of transcription 3 (STAT3)/Arginase (Arg-1) pathway. Our in vivo experiments revealed that transplanted ASCs exhibited an immunomodulatory effect by recruiting macrophages to ischemic muscle and increasing the density of M2 macrophages. The transplantation of ASCs into ischemic limbs induced increased blood flow reperfusion and limb salvage rate, whereas the depletion of tissue macrophages or transplanting HIF-1α-silenced ASCs inhibited the therapeutic effect. These findings elucidated the critical role of macrophages in ASCs-mediated ischemic muscle repair and proved that allogeneic ASCs could exert the protective effect by enhancing the recruitment of macrophages and inducing macrophages toward M2 phenotype through HIF-1α/IL-10 pathway.
Collapse
Affiliation(s)
- Junchao Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Peng Qiu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Jinbao Qin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Xin Wang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Xinrui Yang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Wenjie Zhang
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Kaichuang Ye
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Zhiyou Peng
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China.,Vascular Center of Shanghai JiaoTong University, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Allogeneic Cellular Therapy in a Mature Tooth with Apical Periodontitis and Accidental Root Perforation: A Case Report. J Endod 2020; 46:1920-1927.e1. [PMID: 32532626 DOI: 10.1016/j.joen.2020.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/23/2020] [Accepted: 04/16/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Cell therapy in regenerative endodontics introduces an alternative option to classic treatment strategies for complex endodontic cases. The aim of this case report was to describe cell-based therapy using allogeneic umbilical cord mesenchymal stem cells (UC-MSCs) encapsulated in a bioscaffold for a complex case of a mature permanent tooth with apical periodontitis and accidental root perforation. METHODS A healthy 19-year-old man undergoing orthodontic treatment was referred for endodontic treatment in tooth #7; he was diagnosed with apical periodontitis during a previously initiated treatment associated with accidental perforation of the radicular cervical third. The root perforation was sealed with glass ionomer and composite resin, and the root canal was instrumented, disinfected, and dressed with calcium hydroxide. After 3 weeks, allogeneic UC-MSCs were encapsulated in platelet-poor plasma and then implanted into the root canal, and Biodentine (Septodont, Saint-Maur-des-Fosses, France) was placed below the cementoenamel junction. Finally, the tooth was restored with composite resin. RESULTS Follow-up examinations were performed 6 months and 1 year later. The examinations included periapical radiography, cone-beam computed tomographic imaging, and sensitivity and vitality tests. Radiographic and cone-beam computed tomographic images indicated remission of the apical lesion. Clinical evaluations revealed normal responses to percussion and palpation tests; the tooth was responsive to the electric pulp test, and the vitality test indicated low blood perfusion units. CONCLUSIONS This case report reveals the potential use of allogeneic cellular therapy using encapsulated UC-MSCS in a platelet-poor plasma scaffold for a complex case of a permanent tooth with apical periodontitis and root perforation.
Collapse
|
8
|
Brizuela C, Meza G, Urrejola D, Quezada MA, Concha G, Ramírez V, Angelopoulos I, Cadiz MI, Tapia-Limonchi R, Khoury M. Cell-Based Regenerative Endodontics for Treatment of Periapical Lesions: A Randomized, Controlled Phase I/II Clinical Trial. J Dent Res 2020; 99:523-529. [PMID: 32202965 DOI: 10.1177/0022034520913242] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A randomized controlled phase I/II clinical trial was designed to evaluate the safety and efficacy of encapsulated human umbilical cord mesenchymal stem cells in a plasma-derived biomaterial for regenerative endodontic procedures (REPs) in mature permanent teeth with apical lesions. The trial included 36 patients with mature incisors, canines, or mandibular premolars showing pulp necrosis and apical periodontitis. Patients were randomly and equally allocated between experimental (REP) or conventional root canal treatment (ENDO) groups. On the first visit, cavity access and mechanical preparation of the root canal were performed. Calcium hydroxide medication was used, and the cavity was sealed. Three weeks later, patients were treated following their assigned protocol of ENDO or REP. Clinical follow-up examinations were performed at 6 and 12 mo. Categorical variables were evaluated by Fisher's exact test. Quantitative variables were compared using the Mann-Whitney test. The evolution over time of the percentage of perfusion units and the dimensions of lesion and cortical compromise were explored. After the 12-mo follow-up, no adverse events were reported, and the patients showed 100% clinical efficacy in both groups. Interestingly, in the REP group, the perfusion unit percentage measured by laser Doppler flowmetry revealed an increase from 60.6% to 78.1% between baseline and 12-mo follow-up. Sensitivity tests revealed an increase of the positive pulp response in the REP group at 12-mo follow-up (from 6% to 56% on the cold test, from 0% to 28% on the hot test, and from 17% to 50% on the electrical test). We present the first clinical safety and efficacy evidence of the endodontic use of allogenic umbilical cord mesenchymal stem cells encapsulated in a plasma-derived biomaterial. The innovative approach, based on biological principles that promote dentin-pulp regeneration, presents a promising alternative for the treatment of periapical pathology (ClinicalTrials.gov NCT03102879).
Collapse
Affiliation(s)
- C Brizuela
- Centro "Activa Biosilicate Technology™" de Investigación en Biología y Regeneración Oral (CIBRO), Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - G Meza
- Centro "Activa Biosilicate Technology™" de Investigación en Biología y Regeneración Oral (CIBRO), Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - D Urrejola
- Centro "Activa Biosilicate Technology™" de Investigación en Biología y Regeneración Oral (CIBRO), Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - M A Quezada
- Centro "Activa Biosilicate Technology™" de Investigación en Biología y Regeneración Oral (CIBRO), Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - G Concha
- Centro "Activa Biosilicate Technology™" de Investigación en Biología y Regeneración Oral (CIBRO), Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - V Ramírez
- Centro "Activa Biosilicate Technology™" de Investigación en Biología y Regeneración Oral (CIBRO), Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - I Angelopoulos
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - M I Cadiz
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - R Tapia-Limonchi
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - M Khoury
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile.,Cells for Cells, Santiago, Chile
| |
Collapse
|
9
|
Fernández-Avilés F, Sanz-Ruiz R, Bogaert J, Casado Plasencia A, Gilaberte I, Belmans A, Fernández-Santos ME, Charron D, Mulet M, Yotti R, Palacios I, Luque M, Sádaba R, San Román JA, Larman M, Sánchez PL, Sanchís J, Jiménez MF, Claus P, Al-Daccak R, Lombardo E, Abad JL, DelaRosa O, Corcóstegui L, Bermejo J, Janssens S. Safety and Efficacy of Intracoronary Infusion of Allogeneic Human Cardiac Stem Cells in Patients With ST-Segment Elevation Myocardial Infarction and Left Ventricular Dysfunction. Circ Res 2019; 123:579-589. [PMID: 29921651 DOI: 10.1161/circresaha.118.312823] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
RATIONALE Allogeneic cardiac stem cells (AlloCSC-01) have shown protective, immunoregulatory, and regenerative properties with a robust safety profile in large animal models of heart disease. OBJECTIVE To investigate the safety and feasibility of early administration of AlloCSC-01 in patients with ST-segment-elevation myocardial infarction. METHODS AND RESULTS CAREMI (Safety and Efficacy of Intracoronary Infusion of Allogeneic Human Cardiac Stem Cells in Patients With STEMI and Left Ventricular Dysfunction) was a phase I/II multicenter, randomized, double-blind, placebo-controlled trial in patients with ST-segment-elevation myocardial infarction, left ventricular ejection fraction ≤45%, and infarct size ≥25% of left ventricular mass by cardiac magnetic resonance, who were randomized (2:1) to receive AlloCSC-01 or placebo through the intracoronary route at days 5 to 7. The primary end point was safety and included all-cause death and major adverse cardiac events at 30 days (all-cause death, reinfarction, hospitalization because of heart failure, sustained ventricular tachycardia, ventricular fibrillation, and stroke). Secondary safety end points included major adverse cardiac events at 6 and 12 months, adverse events, and immunologic surveillance. Secondary exploratory efficacy end points were changes in infarct size (percentage of left ventricular mass) and indices of ventricular remodeling by magnetic resonance at 12 months. Forty-nine patients were included (92% male, 55±11 years), 33 randomized to AlloCSC-01 and 16 to placebo. No deaths or major adverse cardiac events were reported at 12 months. One severe adverse events in each group was considered possibly related to study treatment (allergic dermatitis and rash). AlloCSC-01 elicited low levels of donor-specific antibodies in 2 patients. No immune-related adverse events were found, and no differences between groups were observed in magnetic resonance-based efficacy parameters at 12 months. The estimated treatment effect of AlloCSC-01 on the absolute change from baseline in infarct size was -2.3% (95% confidence interval, -6.5% to 1.9%). CONCLUSIONS AlloCSC-01 can be safely administered in ST-segment-elevation myocardial infarction patients with left ventricular dysfunction early after revascularization. Low immunogenicity and absence of immune-mediated events will facilitate adequately powered studies to demonstrate their clinical efficacy in this setting. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov . Unique identifier: NCT02439398.
Collapse
Affiliation(s)
- Francisco Fernández-Avilés
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.)
| | - Ricardo Sanz-Ruiz
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, and Facultad de Medicina, Universidad Complutense, Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J.B.).,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.)
| | | | - Ana Casado Plasencia
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, and Facultad de Medicina, Universidad Complutense, Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J.B.).,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.)
| | - Inmaculada Gilaberte
- Coretherapix S.L.U./Tigenix Group Madrid, Spain (I.G., M.M., I.P., M.L., E.L., J.L.A., O.D., L.C.)
| | - Ann Belmans
- Department of Cardiovascular Medicine, University Hospitals and KU Leuven, Belgium (J.B., A.B., P.C., S.J.)
| | - Maria Eugenia Fernández-Santos
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, and Facultad de Medicina, Universidad Complutense, Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J.B.).,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.)
| | - Dominique Charron
- HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (D.C., R.A.-D.)
| | - Miguel Mulet
- Coretherapix S.L.U./Tigenix Group Madrid, Spain (I.G., M.M., I.P., M.L., E.L., J.L.A., O.D., L.C.)
| | - Raquel Yotti
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, and Facultad de Medicina, Universidad Complutense, Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J.B.).,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.)
| | - Itziar Palacios
- Coretherapix S.L.U./Tigenix Group Madrid, Spain (I.G., M.M., I.P., M.L., E.L., J.L.A., O.D., L.C.)
| | - Manuel Luque
- Coretherapix S.L.U./Tigenix Group Madrid, Spain (I.G., M.M., I.P., M.L., E.L., J.L.A., O.D., L.C.)
| | - Rafael Sádaba
- Department of Cardiac Surgery, Complejo Hospitalario de Navarra, Pamplona, Spain (R.S.)
| | - J Alberto San Román
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.).,Department of Cardiology, Instituto de Ciencias del Corazón (ICICOR), Valladolid, Spain (J.A.S.R.)
| | - Mariano Larman
- Department of Cardiology, Policlínia Guipuzcoa, San Sebastián, Spain (M.L.)
| | - Pedro L Sánchez
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.).,Department of Cardiology, Hospital Clínico Universitario, Salamanca, Spain (P.L.S.)
| | - Juan Sanchís
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.).,Department of Cardiology, Hospital Clínico Universitario, Valencia, Spain (J.S.)
| | - Manuel F Jiménez
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.).,Department of Cardiology, IBIMA, UMA, UGC Corazón Hospital Clínico Virgen de la Victoria, Málaga, Spain (M.F.J.)
| | - Piet Claus
- Department of Cardiovascular Medicine, University Hospitals and KU Leuven, Belgium (J.B., A.B., P.C., S.J.)
| | - Reem Al-Daccak
- HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (D.C., R.A.-D.)
| | - Eleuterio Lombardo
- Coretherapix S.L.U./Tigenix Group Madrid, Spain (I.G., M.M., I.P., M.L., E.L., J.L.A., O.D., L.C.)
| | - José Luis Abad
- Coretherapix S.L.U./Tigenix Group Madrid, Spain (I.G., M.M., I.P., M.L., E.L., J.L.A., O.D., L.C.)
| | - Olga DelaRosa
- Coretherapix S.L.U./Tigenix Group Madrid, Spain (I.G., M.M., I.P., M.L., E.L., J.L.A., O.D., L.C.)
| | - Lucia Corcóstegui
- Coretherapix S.L.U./Tigenix Group Madrid, Spain (I.G., M.M., I.P., M.L., E.L., J.L.A., O.D., L.C.)
| | - Javier Bermejo
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, and Facultad de Medicina, Universidad Complutense, Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J.B.).,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.).,Department of Cardiovascular Medicine, University Hospitals and KU Leuven, Belgium (J.B., A.B., P.C., S.J.)
| | - Stefan Janssens
- Department of Cardiovascular Medicine, University Hospitals and KU Leuven, Belgium (J.B., A.B., P.C., S.J.)
| |
Collapse
|
10
|
Diedrichs F, Stolk M, Jürchott K, Haag M, Sittinger M, Seifert M. Enhanced Immunomodulation in Inflammatory Environments Favors Human Cardiac Mesenchymal Stromal-Like Cells for Allogeneic Cell Therapies. Front Immunol 2019; 10:1716. [PMID: 31396228 PMCID: PMC6665953 DOI: 10.3389/fimmu.2019.01716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/09/2019] [Indexed: 12/29/2022] Open
Abstract
Rising numbers of patients with cardiovascular diseases and limited availability of donor hearts require new and improved therapy strategies. Human atrial appendage-derived cells (hAACs) are promising candidates for an allogeneic cell-based treatment. In this study, we evaluated their inductive and modulatory capacity regarding immune responses and underlying key mechanisms in vitro. For this, cryopreserved hAACs were either cultured in the presence of interferon-gamma (IFNγ) or left unstimulated. The expression of characteristic mesenchymal stromal cell markers (CD29, CD44, CD73, CD105, CD166) was revealed by flow cytometry that also highlighted a predominant negativity for CD90. A low immunogeneic phenotype in an inflammatory milieu was shown by lacking expression of co-stimulatory molecules and upregulation of the inhibitory ligands PD-L1 and PD-L2, despite de novo expression of HLA-DR. Co-cultures of hAACs with allogeneic peripheral blood mononuclear cells, proved their low immunogeneic state by absence of induced T cell proliferation and activation. Additionally, elevated levels of IL-1β, IL-33, and IL-10 were detectable in those cell culture supernatants. Furthermore, the immunomodulatory potential of hAACs was assessed in co-cultures with αCD3/αCD28-activated peripheral blood mononuclear cells. Here, a strong inhibition of T cell proliferation and reduction of pro-inflammatory cytokines (IFNγ, TNFα, TNFβ, IL-17A, IL-2) were observable after pre-stimulation of hAACs with IFNγ. Transwell experiments confirmed that mostly soluble factors are responsible for these suppressive effects. We were able to identify indolamin-2,3-dioxygenase (IDO) as a potential key player through a genome-wide gene expression analysis and could demonstrate its involvement in the observed immunological responses. While the application of blocking antibodies against both PD-1 ligands did not affect the immunomodulation by hAACs, 1-methyl-L-tryptophan as specific inhibitor of IDO was able to restore proliferation and to lower apoptosis of T cells. In conclusion, hAACs represent a cardiac-derived mesenchymal stromal-like cell type with a high potential for the application in an allogeneic setting, since they do not trigger T cell responses and even increase their immunomodulatory potential in inflammatory environments.
Collapse
Affiliation(s)
- Falk Diedrichs
- Berlin Institute of Health (BIH), Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Meaghan Stolk
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Karsten Jürchott
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marion Haag
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Tissue Engineering Laboratory, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Sittinger
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Tissue Engineering Laboratory, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Martina Seifert
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
11
|
Menasché P, Vanneaux V, Hagège A, Bel A, Cholley B, Parouchev A, Cacciapuoti I, Al-Daccak R, Benhamouda N, Blons H, Agbulut O, Tosca L, Trouvin JH, Fabreguettes JR, Bellamy V, Charron D, Tartour E, Tachdjian G, Desnos M, Larghero J. Transplantation of Human Embryonic Stem Cell-Derived Cardiovascular Progenitors for Severe Ischemic Left Ventricular Dysfunction. J Am Coll Cardiol 2019; 71:429-438. [PMID: 29389360 DOI: 10.1016/j.jacc.2017.11.047] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND In addition to scalability, human embryonic stem cells (hESCs) have the unique advantage of allowing their directed differentiation toward lineage-specific cells. OBJECTIVES This study tested the feasibility of leveraging the properties of hESCs to generate clinical-grade cardiovascular progenitor cells and assessed their safety in patients with severe ischemic left ventricular dysfunction. METHODS Six patients (median age 66.5 years [interquartile range (IQR): 60.5 to 74.7 years]; median left ventricular ejection fraction 26% [IQR: 22% to 32%]) received a median dose of 8.2 million (IQR: 5 to 10 million) hESC-derived cardiovascular progenitors embedded in a fibrin patch that was epicardially delivered during a coronary artery bypass procedure. The primary endpoint was safety at 1 year and focused on: 1) cardiac or off-target tumor, assessed by imaging (computed tomography and fluorine-18 fluorodeoxyglucose positron emission tomography scans); 2) arrhythmias, detected by serial interrogations of the cardioverter-defibrillators implanted in all patients; and 3) alloimmunization, assessed by the presence of donor-specific antibodies. Patients were followed up for a median of 18 months. RESULTS The protocol generated a highly purified (median 97.5% [IQR: 95.5% to 98.7%]) population of cardiovascular progenitors. One patient died early post-operatively from treatment-unrelated comorbidities. All others had uneventful recoveries. No tumor was detected during follow-up, and none of the patients presented with arrhythmias. Three patients developed clinically silent alloimmunization. All patients were symptomatically improved with an increased systolic motion of the cell-treated segments. One patient died of heart failure after 22 months. CONCLUSIONS This trial demonstrates the technical feasibility of producing clinical-grade hESC-derived cardiovascular progenitors and supports their short- and medium-term safety, thereby setting the grounds for adequately powered efficacy studies. (Transplantation of Human Embryonic Stem Cell-derived Progenitors in Severe Heart Failure [ESCORT]; NCT02057900).
Collapse
Affiliation(s)
- Philippe Menasché
- Department of Cardiovascular Surgery, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France; University Paris Descartes, Sorbonne Paris Cité, Paris, France; National Institute of Health and Medical Research (INSERM) U970, Hôpital Européen Georges Pompidou, Paris, France.
| | - Valérie Vanneaux
- Cell Therapy Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France; INSERM, Clinical Investigation Center in Biotherapies (CBT-501) and U1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Albert Hagège
- University Paris Descartes, Sorbonne Paris Cité, Paris, France; National Institute of Health and Medical Research (INSERM) U970, Hôpital Européen Georges Pompidou, Paris, France; Department of Cardiology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Alain Bel
- Department of Cardiovascular Surgery, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Bernard Cholley
- University Paris Descartes, Sorbonne Paris Cité, Paris, France; Department of Anesthesiology and Intensive Care, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Alexandre Parouchev
- Cell Therapy Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France; INSERM, Clinical Investigation Center in Biotherapies (CBT-501) and U1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Isabelle Cacciapuoti
- Cell Therapy Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France; INSERM, Clinical Investigation Center in Biotherapies (CBT-501) and U1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Reem Al-Daccak
- INSERM U976, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Nadine Benhamouda
- Department of Biological Immunology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Hélène Blons
- INSERM Mixed Research Units (UMR)-S1147, National Scientific Research Center (CNRS) Non CNRS Structure 5014, Sorbonne Paris Cité, Department of Biochemistry, Pharmacogenetic and Molecular Oncology Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Onnik Agbulut
- Sorbonne Universités, Université Pierre et Marie Curie, University Paris-6, Institut de Biologie Paris-Seine, UMR CNRS 8256, Biological Adaptation and Ageing, Paris, France
| | - Lucie Tosca
- Assistance Publique-Hôpitaux de Paris, University Paris Sud, Histology-Embryology-Cytogenetics, Hôpitaux Universitaires Paris Sud, Clamart, France
| | - Jean-Hugues Trouvin
- School of Pharmacy, University Paris Descartes, Paris, France; Central Pharmacy, Pharmaceutical Innovation Department, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Roch Fabreguettes
- Central Pharmacy, Clinical Trials Department, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Valérie Bellamy
- National Institute of Health and Medical Research (INSERM) U970, Hôpital Européen Georges Pompidou, Paris, France
| | - Dominique Charron
- Human Leukocyte Antigen and Médecine, Hôpital Saint-Louis, INSERM U976, Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Eric Tartour
- University Paris Descartes, Sorbonne Paris Cité, Paris, France; National Institute of Health and Medical Research (INSERM) U970, Hôpital Européen Georges Pompidou, Paris, France; Department of Biological Immunology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Gérard Tachdjian
- Assistance Publique-Hôpitaux de Paris, University Paris Sud, Histology-Embryology-Cytogenetics, Hôpitaux Universitaires Paris Sud, Clamart, France
| | - Michel Desnos
- University Paris Descartes, Sorbonne Paris Cité, Paris, France; National Institute of Health and Medical Research (INSERM) U970, Hôpital Européen Georges Pompidou, Paris, France; Department of Cardiology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Jérôme Larghero
- Cell Therapy Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France; INSERM, Clinical Investigation Center in Biotherapies (CBT-501) and U1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
12
|
Therapeutic Cell Protective Role of Histochrome under Oxidative Stress in Human Cardiac Progenitor Cells. Mar Drugs 2019; 17:md17060368. [PMID: 31234277 PMCID: PMC6628112 DOI: 10.3390/md17060368] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
Cardiac progenitor cells (CPCs) are resident stem cells present in a small portion of ischemic hearts and function in repairing the damaged heart tissue. Intense oxidative stress impairs cell metabolism thereby decreasing cell viability. Protecting CPCs from undergoing cellular apoptosis during oxidative stress is crucial in optimizing CPC-based therapy. Histochrome (sodium salt of echinochrome A—a common sea urchin pigment) is an antioxidant drug that has been clinically used as a pharmacologic agent for ischemia/reperfusion injury in Russia. However, the mechanistic effect of histochrome on CPCs has never been reported. We investigated the protective effect of histochrome pretreatment on human CPCs (hCPCs) against hydrogen peroxide (H2O2)-induced oxidative stress. Annexin V/7-aminoactinomycin D (7-AAD) assay revealed that histochrome-treated CPCs showed significant protective effects against H2O2-induced cell death. The anti-apoptotic proteins B-cell lymphoma 2 (Bcl-2) and Bcl-xL were significantly upregulated, whereas the pro-apoptotic proteins BCL2-associated X (Bax), H2O2-induced cleaved caspase-3, and the DNA damage marker, phosphorylated histone (γH2A.X) foci, were significantly downregulated upon histochrome treatment of hCPCs in vitro. Further, prolonged incubation with histochrome alleviated the replicative cellular senescence of hCPCs. In conclusion, we report the protective effect of histochrome against oxidative stress and present the use of a potent and bio-safe cell priming agent as a potential therapeutic strategy in patient-derived hCPCs to treat heart disease.
Collapse
|
13
|
Hocine HR, Brunel S, Chen Q, Giustiniani J, San Roman MJ, Ferrat YJ, Palacios I, de la Rosa O, Lombardo E, Bensussan A, Charron D, Jabrane-Ferrat N, Al-Daccak R. Extracellular Vesicles Released by Allogeneic Human Cardiac Stem/Progenitor Cells as Part of Their Therapeutic Benefit. Stem Cells Transl Med 2019; 8:911-924. [PMID: 30924311 PMCID: PMC6708067 DOI: 10.1002/sctm.18-0256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/18/2019] [Indexed: 12/28/2022] Open
Abstract
The positive effects of therapeutic human allogeneic cardiac stem/progenitor cells (hCPC) in terms of cardiac repair/regeneration are very likely mediated by paracrine effects. Our previous studies revealed the advantageous immune interactions of allogeneic hCPC and proposed them as part of the positive paracrine effects occurring upon their application postmyocardial infarction (MI). Currently, extracellular vesicles/exosomes (EV/Exs) released by stem/progenitor cells are also proposed as major mediators of paracrine effects of therapeutic cells. Along this line, we evaluated contribution of EV/Exs released by therapeutic hCPC to the benefit of their successful allogeneic clinical application. Through tailored allogeneic in vitro human assay models mimicking the clinical setting, we demonstrate that hCPC‐released EV/Exs were rapidly and efficiently up‐taken by chief cellular actors of cardiac repair/regeneration. This promoted MAPK/Erk1/2 activation, migration, and proliferation of human leukocyte antigens (HLA)‐mismatched hCPC, mimicking endogenous progenitor cells and cardiomyocytes, and enhanced endothelial cell migration, growth, and organization into tube‐like structures through activation of several signaling pathways. EV/Exs also acted as pro‐survival stimuli for HLA‐mismatched monocytes tuning their phenotype toward an intermediate anti‐inflammatory pro‐angiogenic phenotype. Thus, while positively impacting the intrinsic regenerative and angiogenic programs, EV/Exs released by therapeutic allogeneic hCPC can also actively contribute to shaping MI‐inflammatory environment, which could strengthen the benefits of hCPC allogeneic interactions. Collectively, our data might forecast the application of allogeneic hCPC followed by their cell‐free EV/Exs as a strategy that will not only elicit the cell‐contact mediated reparative/regenerative immune response but also have the desired long‐lasting effects through the EV/Exs. stem cells translational medicine2019;8:911&924
Collapse
Affiliation(s)
- Hocine Rachid Hocine
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-976, Université Paris-Diderot, Hôpital Saint-Louis, Paris, France.,HLA et Médecine, Labex Transplantex, Hôpital Saint Louis, Paris, France
| | - Simon Brunel
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-976, Université Paris-Diderot, Hôpital Saint-Louis, Paris, France
| | - Qian Chen
- Centre of Pathophysiology Toulouse Purpan, INSERM U1043, CNRS UMR5282, Toulouse III University, Toulouse, France
| | - Jerome Giustiniani
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-976, Université Paris-Diderot, Hôpital Saint-Louis, Paris, France.,Institut Jean Godinot, Unicancer, Reims, France
| | | | - Yann J Ferrat
- CERAG Laboratory, University of Grenoble Alpes, Grenoble, France
| | | | | | | | - Armand Bensussan
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-976, Université Paris-Diderot, Hôpital Saint-Louis, Paris, France
| | - Dominique Charron
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-976, Université Paris-Diderot, Hôpital Saint-Louis, Paris, France.,HLA et Médecine, Labex Transplantex, Hôpital Saint Louis, Paris, France
| | - Nabila Jabrane-Ferrat
- Centre of Pathophysiology Toulouse Purpan, INSERM U1043, CNRS UMR5282, Toulouse III University, Toulouse, France
| | - Reem Al-Daccak
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-976, Université Paris-Diderot, Hôpital Saint-Louis, Paris, France.,HLA et Médecine, Labex Transplantex, Hôpital Saint Louis, Paris, France
| |
Collapse
|
14
|
Al-Daccak R, Charron D. Editorial: Alloimmune Response From Regenerative Medicine. Front Immunol 2019; 9:3121. [PMID: 30713534 PMCID: PMC6345684 DOI: 10.3389/fimmu.2018.03121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/18/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Reem Al-Daccak
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-976, Université Paris-Diderot, Hôpital Saint-Louis, AP-HP, Paris and Labex Transplantex Unistra, Strasbourg, France
| | - Dominique Charron
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-976, Université Paris-Diderot, Hôpital Saint-Louis, AP-HP, Paris and Labex Transplantex Unistra, Strasbourg, France.,Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Marbán E. A mechanistic roadmap for the clinical application of cardiac cell therapies. Nat Biomed Eng 2018; 2:353-361. [PMID: 30740264 DOI: 10.1038/s41551-018-0216-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of cells for regenerative therapy has encountered many pitfalls on its path to clinical translation. In cardiology, clinical studies of heart-targeted cell therapies began two decades ago, yet progress towards reaching an approved product has been slow. In this Perspective, I provide an overview of recent cardiac cell therapies, with a focus on the hurdles limiting the translation of cell products from research laboratories to clinical practice. By focusing on heart failure as a target indication, I argue that strategies for overcoming limitations in clinical translation require an increasing emphasis on mechanism-supported efficacy, rather than on phenomenological observations. As research progresses from cells to paracrine mechanisms to defined factors, identifying those defined factors that are involved in achieving superior therapeutic efficacy will better inform the use of cells as therapeutic candidates. The next generation of cell-free biologics may provide the benefits of cell therapy without the intrinsic limitations of whole-cell products.
Collapse
Affiliation(s)
- Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Clinical application of cell, gene and tissue therapies in Spain. Rev Clin Esp 2018. [DOI: 10.1016/j.rceng.2017.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
O'Rourke C, Day AGE, Murray-Dunning C, Thanabalasundaram L, Cowan J, Stevanato L, Grace N, Cameron G, Drake RAL, Sinden J, Phillips JB. An allogeneic 'off the shelf' therapeutic strategy for peripheral nerve tissue engineering using clinical grade human neural stem cells. Sci Rep 2018; 8:2951. [PMID: 29440680 PMCID: PMC5811594 DOI: 10.1038/s41598-018-20927-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 01/23/2018] [Indexed: 02/07/2023] Open
Abstract
Artificial tissues constructed from therapeutic cells offer a promising approach for improving the treatment of severe peripheral nerve injuries. In this study the effectiveness of using CTX0E03, a conditionally immortalised human neural stem cell line, as a source of allogeneic cells for constructing living artificial nerve repair tissue was tested. CTX0E03 cells were differentiated then combined with collagen to form engineered neural tissue (EngNT-CTX), stable aligned sheets of cellular hydrogel. EngNT-CTX sheets were delivered within collagen tubes to repair a 12 mm sciatic nerve injury model in athymic nude rats. Autologous nerve grafts (autografts) and empty tubes were used for comparison. After 8 weeks functional repair was assessed using electrophysiology. Further, detailed histological and electron microscopic analysis of the repaired nerves was performed. Results indicated that EngNT-CTX supported growth of neurites and vasculature through the injury site and facilitated reinnervation of the target muscle. These findings indicate for the first time that a clinically validated allogeneic neural stem cell line can be used to construct EngNT. This provides a potential 'off the shelf' tissue engineering solution for the treatment of nerve injury, overcoming the limitations associated with nerve autografts or the reliance on autologous cells for populating repair constructs.
Collapse
Affiliation(s)
- C O'Rourke
- Department of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
- UCL Centre for Nerve Engineering, London, UK
| | - A G E Day
- Department of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
- UCL Centre for Nerve Engineering, London, UK
| | - C Murray-Dunning
- Department of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - L Thanabalasundaram
- UCL Centre for Nerve Engineering, London, UK
- ReNeuron, Pencoed, Bridgend, Wales, UK
| | - J Cowan
- Royal National Orthopaedic Hospital, Stanmore, UK
| | | | - N Grace
- Sartorius Stedim Biotech, Royston, UK
| | - G Cameron
- Sartorius Stedim Biotech, Royston, UK
| | | | - J Sinden
- UCL Centre for Nerve Engineering, London, UK
- ReNeuron, Pencoed, Bridgend, Wales, UK
| | - J B Phillips
- Department of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK.
- UCL Centre for Nerve Engineering, London, UK.
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, UK.
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Organ donation in the United States registered 9079 deceased organ donors in 2015. This high percentage of donations allowed organ transplantation in 29 851 recipients. Despite increasing numbers of transplants performed in comparison with previous years, the numbers of patients that are in need for a transplant increase every year at a higher rate. This reveals that the discrepancy between the demand and availability of organs remains fundamental problem in organ transplantation. RECENT FINDINGS Development of bioengineered organs represents a promising approach to increase the pool of organs for transplantation. The technology involves obtaining complex three-dimensional scaffolds that support cellular activity and functional remodeling though tissue recellularization protocols using progenitor cells. This innovative approach integrates cross-thematic approaches from specific areas of transplant immunology, tissue engineering and stem cell biology, to potentially manufacture an unlimited source of donor organs for transplantation. SUMMARY Although bioengineered organs are thought to escape immune recognition, the potential immune reactivity toward each of its components has not been studied in detail. Here, we summarize the host immune response toward different progenitor cells and discuss the potential implications of using nonself biological scaffolds to develop bioengineered organs.
Collapse
|
19
|
Dam N, Hocine HR, Palacios I, DelaRosa O, Menta R, Charron D, Bensussan A, El Costa H, Jabrane-Ferrat N, Dalemans W, Lombardo E, Al-Daccak R. Human Cardiac-Derived Stem/Progenitor Cells Fine-Tune Monocyte-Derived Descendants Activities toward Cardiac Repair. Front Immunol 2017; 8:1413. [PMID: 29123530 PMCID: PMC5662627 DOI: 10.3389/fimmu.2017.01413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/11/2017] [Indexed: 01/18/2023] Open
Abstract
Cardiac repair following MI relies on a finely regulated immune response involving sequential recruitment of monocytes to the injured tissue. Monocyte-derived cells are also critical for tissue homeostasis and healing process. Our previous findings demonstrated the interaction of T and natural killer cells with allogeneic human cardiac-derived stem/progenitor cells (hCPC) and suggested their beneficial effect in the context of cardiac repair. Therefore, we investigated here whether monocytes and their descendants could be also modulated by allogeneic hCPC toward a repair/anti-inflammatory phenotype. Through experimental in vitro assays, we assessed the impact of allogeneic hCPC on the recruitment, functions and differentiation of monocytes. We found that allogeneic hCPC at steady state or under inflammatory conditions can incite CCL-2/CCR2-dependent recruitment of circulating CD14+CD16− monocytes and fine-tune their activation toward an anti-inflammatory profile. Allogeneic hCPC also promoted CD14+CD16− monocyte polarization into anti-inflammatory/immune-regulatory macrophages with high phagocytic capacity and IL10 secretion. Moreover, hCPC bended the differentiation of CD14+CD16− monocytes to dendritic cells (DCs) toward anti-inflammatory macrophage-like features and impaired their antigen-presenting function in favor of immune-modulation. Collectively, our results demonstrate that allogeneic hCPC could reshape monocytes, macrophages as well as DCs responses by favoring their anti-inflammatory/tolerogenic activation/polarization. Thereby, therapeutic allogeneic hCPC might also contribute to post-infarct myocardial healing by modeling the activities of monocytes and their derived descendants.
Collapse
Affiliation(s)
- Noémie Dam
- Coretherapix SLU, Tigenix Group, Madrid, Spain.,Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-976, Université Paris-Diderot, Hôpital Saint-Louis, Paris, France
| | - Hocine Rachid Hocine
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-976, Université Paris-Diderot, Hôpital Saint-Louis, Paris, France
| | | | | | - Ramón Menta
- Coretherapix SLU, Tigenix Group, Madrid, Spain
| | - Dominique Charron
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-976, Université Paris-Diderot, Hôpital Saint-Louis, Paris, France.,HLA et Médecine, Hôpital Saint Louis, Paris, France
| | - Armand Bensussan
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-976, Université Paris-Diderot, Hôpital Saint-Louis, Paris, France
| | - Hicham El Costa
- Centre National de la Recherche Scientifique (CNRS), Centre of Pathophysiology Toulouse Purpan, INSERM, Université Toulouse III, CHU Purpan, Toulouse, France
| | - Nabila Jabrane-Ferrat
- Centre National de la Recherche Scientifique (CNRS), Centre of Pathophysiology Toulouse Purpan, INSERM, Université Toulouse III, CHU Purpan, Toulouse, France
| | | | | | - Reem Al-Daccak
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-976, Université Paris-Diderot, Hôpital Saint-Louis, Paris, France.,HLA et Médecine, Hôpital Saint Louis, Paris, France
| |
Collapse
|
20
|
Gálvez-Martín P, Ruiz A, Clares B. Clinical application of cell, gene and tissue therapies in Spain. Rev Clin Esp 2017; 218:199-206. [PMID: 29032959 DOI: 10.1016/j.rce.2017.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/26/2017] [Accepted: 08/13/2017] [Indexed: 11/30/2022]
Abstract
Scientific and technical advances in the areas of biomedicine and regenerative medicine have enabled the development of new treatments known as "advanced therapies", which encompass cell therapy, genetics and tissue engineering. The biologic products that can be manufactured from these elements are classified from the standpoint of the Spanish Agency of Medication and Health Products in advanced drug therapies, blood products and transplants. This review seeks to provide scientific and administrative information for clinicians on the use of these biologic resources.
Collapse
Affiliation(s)
- P Gálvez-Martín
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Granada, Granada, España.
| | - A Ruiz
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Granada, Granada, España
| | - B Clares
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Granada, Granada, España
| |
Collapse
|
21
|
Sanz-Ruiz R, Casado Plasencia A, Borlado LR, Fernández-Santos ME, Al-Daccak R, Claus P, Palacios I, Sádaba R, Charron D, Bogaert J, Mulet M, Yotti R, Gilaberte I, Bernad A, Bermejo J, Janssens S, Fernández-Avilés F. Rationale and Design of a Clinical Trial to Evaluate the Safety and Efficacy of Intracoronary Infusion of Allogeneic Human Cardiac Stem Cells in Patients With Acute Myocardial Infarction and Left Ventricular Dysfunction. Circ Res 2017; 121:71-80. [DOI: 10.1161/circresaha.117.310651] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 05/13/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023]
Abstract
Rationale:
Stem cell therapy has increased the therapeutic armamentarium in the fight against ischemic heart disease and heart failure. The administration of exogenous stem cells has been investigated in patients suffering an acute myocardial infarction, with the final aim of salvaging jeopardized myocardium and preventing left ventricular adverse remodeling and functional deterioration. However, phase I and II clinical trials with autologous and first-generation stem cells have yielded inconsistent benefits and mixed results.
Objective:
In the search for new and more efficient cellular regenerative products, interesting cardioprotective, immunoregulatory, and cardioregenerative properties have been demonstrated for human cardiac stem cells. On the other hand, allogeneic cells show several advantages over autologous sources: they can be produced in large quantities, easily administered off-the-shelf early after an acute myocardial infarction, comply with stringent criteria for product homogeneity, potency, and quality control, and may exhibit a distinctive immunologic behavior.
Methods and Results:
With a promising preclinical background, CAREMI (Cardiac Stem Cells in Patients With Acute Myocardial Infarction) has been designed as a double-blind, 2:1 randomized, controlled, and multicenter clinical trial that will evaluate the safety, feasibility, and efficacy of intracoronary delivery of allogeneic human cardiac stem cell in 55 patients with large acute myocardial infarction, left ventricular dysfunction, and at high risk of developing heart failure.
Conclusions:
This phase I/II clinical trial represents a novel experience in humans with allogeneic cardiac stem cell in a rigorously imaging-based selected group of acute myocardial infarction patients, with detailed safety immunologic assessments and magnetic resonance imaging–based efficacy end points.
Clinical Trial Registration:
URL:
http://www.clinicaltrials.gov
. Unique identifier: NCT02439398.
Collapse
Affiliation(s)
- Ricardo Sanz-Ruiz
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Ana Casado Plasencia
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Luis R. Borlado
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - María Eugenia Fernández-Santos
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Reem Al-Daccak
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Piet Claus
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Itziar Palacios
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Rafael Sádaba
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Dominique Charron
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Jan Bogaert
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Miguel Mulet
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Raquel Yotti
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Immaculada Gilaberte
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Antonio Bernad
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Javier Bermejo
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Stefan Janssens
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Franciso Fernández-Avilés
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| |
Collapse
|
22
|
Autologous and allogeneic cardiac stem cell therapy for cardiovascular diseases. Pharmacol Res 2017; 127:92-100. [PMID: 28554583 DOI: 10.1016/j.phrs.2017.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/14/2017] [Accepted: 05/25/2017] [Indexed: 12/27/2022]
Abstract
Stem cell therapy is one of the most promising therapeutic innovations to help restore cardiac structure and function after ischemic insults to the heart. However, phase I and II clinical trials with autologous "first-generation stem cells" have yielded inconsistent results in ischemic cardiomyopathy patients and have not produced the definitive evidence for their broad clinical application. Recently, new cell types such as cardiac stem cells (CSC) and new allogeneic sources have attracted the attention of researchers given their inherent biological, clinical and logistic advantages. Preclinical evidence and emerging clinical data show that exogenous CSC produce a range of protein-based factors that have a powerful cardioprotective effect in the ischemic myocardium, immunoregulatory properties that promote angiogenesis and reduce scar formation, and are able to activate endogenous CSC which multiply and differentiate into cardiomyocytes and microvasculature. Furthermore, allogeneic CSC can be produced in large quantities beforehand and can be administered "off-the-shelf" early during the acute phase of myocardial ischemia. The distinctive immunological behavior of allogeneic CSC and their interaction with the host immune system is supposed to produce immunomodulatory beneficial effects in the short-term, preventing long-term side-effects after their rejection. Preclinical studies have shown highly promising results with allogeneic CSC, and clinical trials are already ongoing. Finally, unraveling questions about the biology and physiology of CSC, the characterization of their secretome, the conduction of larger clinical trials with autologous CSC, the definitive evidence on the safety and efficacy of allogeneic CSC in humans and the possibility of repeated administrations or combinations with other cell types and soluble factors will pave the road for further developments with CSC, that will undoubtedly determine the future of cardiovascular regenerative medicine in human beings.
Collapse
|
23
|
Bahram S, Carapito R, Gourraud PA, Charron D. The TRANSPLANTEX initiative. Hum Immunol 2016; 77:1005-1007. [PMID: 27881245 DOI: 10.1016/j.humimm.2016.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
TRANSPLANTEX, a French "investment for the future" initiated consortium of leading transplant units and research laboratories across France and a number of European countries aims to unravel, through mainly high-throughput genomics (and other omics) analyses of donor and recipients, novel (a) non-HLA, histocompatibility antigens, whether inside, or outside the MHC; (b) pre/post transplantation biomarkers. This shall lead to our better understanding of the pathophysiology of (and eventually designing better therapeutics for) the graft-versus-host disease in hematopoietic cell transplants and that of chronic graft rejection after kidney transplant. Industrial developments as well as innovative teaching initiatives are also integral part of this program. The present issue of Human Immunology aims to present a first snapshot of some of the research performed by TRANPLANTEX partners.
Collapse
Affiliation(s)
- Seiamak Bahram
- LabEx TRANSPLANTEX; Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67085 Strasbourg Cedex, France; INSERM Franco-Japanese Nextgen HLA Laboratory (FJ-HLA), Laboratoire International Associé (LIA), 67000 Strasbourg, France; Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, 67085 Strasbourg Cedex, France; Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, 67091 Strasbourg Cedex, France.
| | - Raphael Carapito
- LabEx TRANSPLANTEX; Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67085 Strasbourg Cedex, France; INSERM Franco-Japanese Nextgen HLA Laboratory (FJ-HLA), Laboratoire International Associé (LIA), 67000 Strasbourg, France; Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, 67085 Strasbourg Cedex, France; Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, 67091 Strasbourg Cedex, France
| | - Pierre-Antoine Gourraud
- LabEx TRANSPLANTEX, CHU de Nantes, ATIP-Avenir Team, ITUN-CRTI-UMR Inserm 1064 - Hospital and University of Nantes, 44000, France; Department of Neurology, University of California, San Francisco, CA 94117, USA
| | - Dominique Charron
- LabEx TRANSPLANTEX; HLA & Médecine "Jean Dausset" Laboratory Network, Hôpital Saint-Louis AP-HP, Université Paris Diderot, 75013, France; JiaoTong University, Rujin Hospital Shanghai, China
| |
Collapse
|
24
|
Han Y, Kim KT. Neural Growth Factor Stimulates Proliferation of Spinal Cord Derived-Neural Precursor/Stem Cells. J Korean Neurosurg Soc 2016; 59:437-41. [PMID: 27651860 PMCID: PMC5028602 DOI: 10.3340/jkns.2016.59.5.437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/10/2016] [Accepted: 06/08/2016] [Indexed: 01/08/2023] Open
Abstract
Objective Recently, regenerative therapies have been used in clinical trials (heart, cartilage, skeletal). We don't make use of these treatments to spinal cord injury (SCI) patients yet, but regenerative therapies are rising interest in recent study about SCI. Neural precursor/stem cell (NPSC) proliferation is a significant event in functional recovery of the central nervous system (CNS). However, brain NPSCs and spinal cord NPSCs (SC-NPSCs) have many differences including gene expression and proliferation. The purpose of this study was to investigate the influence of neural growth factor (NGF) on the proliferation of SC-NPSCs. Methods NPSCs (2×104) were suspended in 100 µL of neurobasal medium containing NGF-7S (Sigma-Aldrich) and cultured in a 96-well plate for 12 days. NPSC proliferation was analyzed five times for either concentration of NGF (0.02 and 2 ng/mL). Sixteen rats after SCI were randomly allocated into two groups. In group 1 (SCI-vehicle group, n=8), animals received 1.0 mL of the saline vehicle solution. In group 2 (SCI-NGF group, n=8), the animals received single doses of NGF (Sigma-Aldrich). A dose of 0.02 ng/mL of NGF or normal saline as a vehicle control was intra-thecally injected daily at 24 hour intervals for 7 days. For Immunohistochemistry analysis, rats were sacrificed after one week and the spinal cords were obtained. Results The elevation of cell proliferation with 0.02 ng/mL NGF was significant (p<0.05) but was not significant for 2 ng/mL NGF. The optical density was increased in the NGF 0.02 ng/mL group compared to the control group and NGF 2 ng/mL groups. The density of nestin in the SCI-NGF group was significantly increased over the SCI-vehicle group (p<0.05). High power microscopy revealed that the density of nestin in the SCI-NGF group was significantly increased over the SCI-vehicle group. Conclusion SC-NPSC proliferation is an important pathway in the functional recovery of SCI. NGF enhances SC-NPSC proliferation in vitro and in vivo. NGF may be a useful option for treatment of SCI patients pending further studies to verify the clinical applicability.
Collapse
Affiliation(s)
- Youngmin Han
- Department of Neurosurgery, Kyungpook National University Hospital, Daegu, Korea
| | - Kyoung-Tae Kim
- Department of Neurosurgery, Kyungpook National University Hospital, Daegu, Korea
| |
Collapse
|
25
|
Joanne P, Kitsara M, Boitard SE, Naemetalla H, Vanneaux V, Pernot M, Larghero J, Forest P, Chen Y, Menasché P, Agbulut O. Nanofibrous clinical-grade collagen scaffolds seeded with human cardiomyocytes induces cardiac remodeling in dilated cardiomyopathy. Biomaterials 2016; 80:157-168. [DOI: 10.1016/j.biomaterials.2015.11.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 11/29/2015] [Indexed: 12/13/2022]
|
26
|
Pharmacological Therapy in the Heart as an Alternative to Cellular Therapy: A Place for the Brain Natriuretic Peptide? Stem Cells Int 2016; 2016:5961342. [PMID: 26880973 PMCID: PMC4735943 DOI: 10.1155/2016/5961342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/08/2015] [Accepted: 10/08/2015] [Indexed: 02/08/2023] Open
Abstract
The discovery that stem cells isolated from different organs have the ability to differentiate into mature beating cardiomyocytes has fostered considerable interest in developing cellular regenerative therapies to treat cardiac diseases associated with the loss of viable myocardium. Clinical studies evaluating the potential of stem cells (from heart, blood, bone marrow, skeletal muscle, and fat) to regenerate the myocardium and improve its functional status indicated that although the method appeared generally safe, its overall efficacy has remained modest. Several issues raised by these studies were notably related to the nature and number of injected cells, as well as the route and timing of their administration, to cite only a few. Besides the direct administration of cardiac precursor cells, a distinct approach to cardiac regeneration could be based upon the stimulation of the heart's natural ability to regenerate, using pharmacological approaches. Indeed, differentiation and/or proliferation of cardiac precursor cells is controlled by various endogenous mediators, such as growth factors and cytokines, which could thus be used as pharmacological agents to promote regeneration. To illustrate such approach, we present recent results showing that the exogenous administration of the natriuretic peptide BNP triggers “endogenous” cardiac regeneration, following experimental myocardial infarction.
Collapse
|
27
|
Kapelios CJ, Nanas JN, Malliaras K. Allogeneic cardiosphere-derived cells for myocardial regeneration: current progress and recent results. Future Cardiol 2016; 12:87-100. [DOI: 10.2217/fca.15.72] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Early-phase clinical testing of autologous cardiosphere-derived cells (CDCs) has yielded intriguing results, consistent with therapeutic myocardial regeneration. However, autologous therapy is associated with significant technical, timing, economic and logistic constraints, prompting researchers to explore the potential of allogeneic CDC therapy. CDCs exhibit a favorable immunologic antigenic profile and are hypoimmunogenic in vitro. Preclinical studies in immunologically mismatched animals demonstrate that allogeneic CDC transplantation without immunosuppression is safe and produces sustained functional and structural benefits through stimulation of endogenous regenerative pathways. Currently, allogeneic human CDCs are being tested clinically in the ALLSTAR and DYNAMIC trials. Potential establishment of clinical safety and efficacy of allogeneic CDCs combined with generation of highly standardized, ‘off-the-shelf’ allogeneic cellular products would facilitate broad clinical adoption of cell therapy.
Collapse
Affiliation(s)
- Chris J Kapelios
- 3rd Department of Cardiology, University of Athens School of Medicine, 67 Mikras Asias Street, 11 527, Athens, Greece
| | - John N Nanas
- 3rd Department of Cardiology, University of Athens School of Medicine, 67 Mikras Asias Street, 11 527, Athens, Greece
| | - Konstantinos Malliaras
- 3rd Department of Cardiology, University of Athens School of Medicine, 67 Mikras Asias Street, 11 527, Athens, Greece
| |
Collapse
|