1
|
Staff AC, Fjeldstad HE, Olsen MB, Øgaard J, Viken MK, Kramer CSM, Eikmans M, Kroneis T, Sallinger K, Kanaan SB, Sugulle M, Jacobsen DP. Foetal Microchimerism Correlates With Foetal-Maternal Histocompatibility Both During Pregnancy and Postpartum. HLA 2024; 104:e15717. [PMID: 39435899 DOI: 10.1111/tan.15717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024]
Abstract
Foetal cells are detectable in women decades postpartum, a state termed foetal microchimerism. The interplay between these semi-allogeneic foetal cells and the mother could be affected by genetic mismatches in the HLA loci. Here, we relate HLA allele and molecular mismatch values to the presence and quantity of foetal microchimerism in the maternal circulation during pregnancy and postpartum. A total of 76 pregnant women were included, of which 59 were followed up 1-8 years postpartum. Maternal and foetal DNA was genotyped for HLA class I and II loci. Foetal cells in maternal buffy coat were detected by qPCR, targeting inherited paternal alleles. Antibody-verified eplet mismatch and Predicted Indirectly Recognisable HLA Epitopes (PIRCHE) scores were calculated to quantify foetal-maternal histocompatibility from the mother's perspective. Circulating foetal cells were detected in 50.0% (38/76) of women during pregnancy, and 25.4% (15/59) postpartum. During pregnancy, HLA class II antibody-verified eplet mismatch load and PIRCHE scores correlated negatively with the presence and quantity of foetal cells in the maternal circulation. Postpartum, HLA class I allele mismatches correlated negatively with foetal microchimerism presence, while HLA class II allele mismatches, HLA class I and II antibody-verified eplet mismatch load, and PIRCHE-I and PIRCHE-II scores correlated negatively with both microchimerism presence and quantity. The correlation between mismatch parameters aimed at evaluating the risk of humoral and T cell-mediated allorecognition and foetal microchimerism was more evident postpartum than during pregnancy. The observed predictive effect of foetal-maternal histocompatibility on foetal microchimerism suggests that circulating foetal cells are subject to clearance by the maternal immune system. We propose that allorecognition of foetal cells in the maternal circulation and tissues influences any long-term effect that foetal microchimerism may have on maternal health.
Collapse
Affiliation(s)
- Anne Cathrine Staff
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Heidi E Fjeldstad
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Maria B Olsen
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Jonas Øgaard
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Norwegian PSC Research Center, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marte K Viken
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Cynthia S M Kramer
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Eikmans
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Kroneis
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Katja Sallinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | | | - Meryam Sugulle
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Daniel P Jacobsen
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Killian JT, Glenn King R, Lucander ACK, Kizziah JL, Fucile CF, Diaz-Avalos R, Qiu S, Silva-Sanchez A, Mousseau BJ, Macon KJ, Callahan AR, Yang G, Emon Hossain M, Akther J, Good DB, Kelso S, Houp JA, Rosenblum F, Porrett PM, Ong SC, Kumar V, Saphire EO, Kearney JF, Randall TD, Rosenberg AF, Green TJ, Lund FE. HLA topography enforces shared and convergent immunodominant B cell and antibody alloresponses in transplant recipients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.31.534734. [PMID: 37034637 PMCID: PMC10081326 DOI: 10.1101/2023.03.31.534734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Donor-specific antibody (DSA) responses against human leukocyte antigen (HLA) proteins mismatched between kidney transplant donors and recipients cause allograft loss. The rules governing the immunogenicity of non-self donor HLA are poorly understood. Using single-cell, molecular, structural, and proteomic techniques, we profiled the HLA-specific B cell response in the kidney and blood of a transplant recipient with antibody-mediated rejection (AMR). We observed an immunodominant B cell antibody response focused on topographically exposed, solvent-accessible mismatched HLA residues along the peptide-binding groove - a subregion comprising only 20% of the HLA molecule. We further demonstrated that, even within a diverse cohort of transplant recipients, the B cell alloresponse consistently converges on this same immunodominant subregion on the crown of the HLA molecule. Based on these findings, we propose that B cell immunodominance in transplant rejection relies on antigenic topography, and we suggest that this link could be exploited for organ matching and therapeutics.
Collapse
|
3
|
He H, Huang J, Zuo Y, Wang Y, Jiang M, Jin Y, Tang L, Wang M. Establishment and clinical application of the HLA genotype database of platelet-apheresis donors in Suzhou. Heliyon 2024; 10:e29268. [PMID: 38638976 PMCID: PMC11024603 DOI: 10.1016/j.heliyon.2024.e29268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024] Open
Abstract
The establishment of a platelet-apheresis donor database may provide a feasible solution to improve the efficacy of platelet transfusion in patients with immune platelet transfusion refractoriness (PTR). This study aimed to establish HLA genotype database in Suzhou, to provide HLA-I compatible platelets for PTR patients to ensure the safety and effectiveness of platelet transfusions. We used a polymerase chain reaction sequence-based typing (PCR-SBT) method to establish the database by performing high-resolution HLA-A, -B, and -C genotyping on 900 platelet-apheresis donors. HLA-I antibody was detected in patients using a Luminex device, and HLA-I gene matching was performed by an HLA-Matchmaker. We found that the highest frequency of the HLA-A allele was A*11:01 (17.06 %), followed by A*24:02 (14.67 %) and A*02:01 (13.61 %). The highest frequency of the HLA-B allele was B*46:01 (9.78 %), followed by B*40:01 (8.39 %) and B*13:02 (33 %). After the detection of platelet antibodies in 74 patients with immune PTR, we found 30 HLA-A antibodies and 48 HLA-B antibodies, and there were a variety of high frequency antibodies whose alleles were low in the donor database, such as HLA-A*68:02, and B*57:01. After avoiding donor-specific antibodies (DSA) matching, 102 of 209 platelet-compatible transfusions were effective, resulting in an effective rate of 48.8 %, which significantly improved the efficacy of platelet transfusion. The establishment of a platelet donor database is of great significance to improve the therapeutic effect of platelet transfusion in patients with hematologic disorder, and save blood resources, and it is also the premise and guarantee of precise platelet transfusion.
Collapse
Affiliation(s)
- Honghong He
- Department of Blood Screening, Suzhou Blood Center, 215006 Suzhou, China
| | - Jingjing Huang
- Department of Blood Screening, Suzhou Blood Center, 215006 Suzhou, China
| | - Yuanling Zuo
- Department of Blood Transfusion, the First Affiliated Hospital of Soochow University, 215000 Suzhou, China
| | - Yihan Wang
- Department of Blood Screening, Suzhou Blood Center, 215006 Suzhou, China
| | - Min Jiang
- Department of Blood Transfusion, the First Affiliated Hospital of Soochow University, 215000 Suzhou, China
| | - Yiming Jin
- Department of Blood Screening, Suzhou Blood Center, 215006 Suzhou, China
| | - Longhai Tang
- Department of Transfusion Research Laboratory, Suzhou Blood Center, 215006 Suzhou, China
| | - Mingyuan Wang
- Department of Transfusion Research Laboratory, Suzhou Blood Center, 215006 Suzhou, China
| |
Collapse
|
4
|
Kramer CSM, Bezstarosti S, Franke-van Dijk MEI, Vergunst M, Roelen DL, Uyar-Mercankaya M, Voogt-Bakker KH, Heidt S. Antibody verification of HLA class I and class II eplets by human monoclonal HLA antibodies. HLA 2024; 103:e15345. [PMID: 38239050 DOI: 10.1111/tan.15345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/11/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
In solid organ transplantation, formation of de novo donor-specific HLA antibodies is induced by mismatched eplets on donor HLA molecules. While several studies have shown a strong correlation between the number of eplet mismatches and inferior outcomes, not every eplet mismatch is immunogenic. Eplets are theoretically defined entities, necessitating formal proof that they can be recognised and bound by antibodies. This antibody verification is pivotal to ensure that clinically relevant eplets are considered in studies on molecular matching. Recombinant human HLA-specific monoclonal antibodies (mAbs) were generated from HLA-reactive B cell clones isolated from HLA immunised individuals using recombinant HLA molecules. Subsequently, the reactivity patterns of the mAbs obtained from single antigen bead assay were analysed using HLA-EMMA software to identify single or configurations of solvent accessible amino acids uniquely present on the reactive HLA alleles and were mapped to eplets. Two HLA class I and seven HLA class II-specific human mAbs were generated from four individuals. Extensive mAb reactivity analysis, led to antibody verification of three HLA-DR-specific eplets, and conversion of five eplets (one HLA-A, one HLA-B, two HLA-DR, and one HLA-DP), from provisionally verified to truly antibody-verified. Finally, one HLA-DQ-specific eplet was upgraded from level A2 to level A1 verification evidence. The generation of recombinant human HLA-specific mAbs with different specificities contributes significantly to the antibody verification of eplets and therefore is instrumental for implementation of eplet matching in the clinical setting.
Collapse
Affiliation(s)
- Cynthia S M Kramer
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne Bezstarosti
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Manon Vergunst
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dave L Roelen
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Kim H Voogt-Bakker
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Ho QY, Phang CY, Liew IT, Lai ML, Tien CSY, Thangaraju S, Chan M, Kee T. Unrepresented human leucocyte antigen alleles in single-antigen bead assays: A single-centre cohort study. Int J Immunogenet 2023; 50:306-315. [PMID: 37776087 DOI: 10.1111/iji.12639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/25/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Human leucocyte antigen (HLA) alleles may generate antibodies that are undetectable by routine single-antigen beads (SABs) assays if their unique epitopes are unrepresented. We aimed to describe the prevalence and explore the potential impact of unrepresented HLA alleles in standard SAB kits in our cohort. All individuals who had undergone two-field HLA typing (HLA-A/B/C/DRB1/DQA1/-DQB1/-DPA1/-DPB1) from February 2021 to July 2023 were included. Two-field HLA-DRB3/4/5 typing was imputed. Each unrepresented allele was compared with the most similar represented allele in the standard LABScreen, LABScreen ExPlex (One Lambda) and the LIFECODES (Immucor) SAB kits. Differences in eplet expression (HLA Eplet Registry) were identified. Differences in three-dimensional molecular structures were visualized using generated models (SWISS-MODEL). Two-field HLA typing was performed for 116 individuals. Overall, 16.7% of all HLA alleles, found in 36.2% of individuals, were unrepresented by all SAB test kits. Four eplets, found in 12.9% of individuals, were unrepresented in at least 1 SAB kit. Non-Chinese individuals were more likely to have unrepresented HLA alleles and eplets than Chinese individuals. There were differences in HLA allele and eplet representation amongst the different SAB test kits. Use of supplementary SAB test kits may improve HLA allele and eplet representation. Although some HLA alleles were unrepresented, most epitopes were represented in current SAB kits. However, some unrepresented alleles may contain epitopes which may generate undetectable antibodies. Further studies may be needed to investigate the potential clinical impact of these unrepresented alleles and eplets, especially in certain ethnic populations or at-risk individuals.
Collapse
Affiliation(s)
- Quan Yao Ho
- Department of Renal Medicine, Singapore General Hospital, Singapore, Singapore
- SingHealth Duke-NUS Transplant Centre, Singapore, Singapore
| | - Chew Yen Phang
- Blood Services Group, Health Sciences Authority, Singapore, Singapore
| | - Ian Tatt Liew
- Department of Renal Medicine, Singapore General Hospital, Singapore, Singapore
- SingHealth Duke-NUS Transplant Centre, Singapore, Singapore
| | - May Ling Lai
- Blood Services Group, Health Sciences Authority, Singapore, Singapore
| | - Carolyn Shan-Yeu Tien
- Department of Renal Medicine, Singapore General Hospital, Singapore, Singapore
- SingHealth Duke-NUS Transplant Centre, Singapore, Singapore
| | - Sobhana Thangaraju
- Department of Renal Medicine, Singapore General Hospital, Singapore, Singapore
- SingHealth Duke-NUS Transplant Centre, Singapore, Singapore
| | - Marieta Chan
- Blood Services Group, Health Sciences Authority, Singapore, Singapore
| | - Terence Kee
- Department of Renal Medicine, Singapore General Hospital, Singapore, Singapore
- SingHealth Duke-NUS Transplant Centre, Singapore, Singapore
| |
Collapse
|
6
|
Stefańska K, Kurkowiak M, Piekarska K, Chruściel E, Zamkowska D, Jassem-Bobowicz J, Adamski P, Świątkowska-Stodulska R, Abacjew-Chmyłko A, Leszczyńska K, Zieliński M, Preis K, Zielińska H, Tymoniuk B, Trzonkowski P, Marek-Trzonkowska NM. High maternal-fetal HLA eplet compatibility is associated with severe manifestation of preeclampsia. Front Immunol 2023; 14:1272021. [PMID: 38022600 PMCID: PMC10655094 DOI: 10.3389/fimmu.2023.1272021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Preeclampsia is responsible for more than 70 000 and 500 000 maternal and fetal deaths, respectively each year. Incomplete remodelling of the spiral arteries in placenta is the most accepted theory of preeclampsia pathogenesis. However, the process is complexed with immunological background, as pregnancy resembles allograft transplantation. Fetus expresses human leukocyte antigens (HLA) inherited from both parents, thus is semiallogeneic to the maternal immune system. Therefore, induction of fetal tolerance is crucial for physiological outcome of pregnancy. Noteworthy, the immunogenicity of discordant HLA antigens is determined by functional epitopes called eplets, which are continuous and discontinuous short sequences of amino acids. This way various HLA molecules may express the same eplet and some HLA incompatibilities can be more immunogenic due to different eplet combination. Therefore, we hypothesized that maternal- fetal HLA incompatibility may be involved in the pathogenesis of gestational hypertension and its progression to preeclampsia. We also aimed to test if particular maternal-fetal eplet mismatches are more prone for induction of anti- fetal HLA antibodies in gestational hypertension and preeclampsia. Methods High resolution next-generation sequencing of HLA-A, -B, -C, -DQB1 and -DRB1 antigens was performed in mothers and children from physiological pregnancies (12 pairs) and from pregnancies complicated with gestational hypertension (22 pairs) and preeclampsia (27 pairs). In the next step HLA eplet identification and analysis of HLA eplet incompatibilities was performed with in silico approach HLAMatchmaker algorithm. Simultaneously maternal sera were screened for anti-fetal HLA class I, class II and anti-MICA antibodies with Luminex, and data were analyzed with HLA-Fusion software. Results We observed that high HLA-C, -B, and DQB1 maternal-fetal eplet compatibility was associated with severe preeclampsia (PE) manifestation. Both quantity and quality of HLA epletmismatches affected the severity of PE. Mismatches in HLA-B eplets: 65QIA+76ESN, 70IAO, 180E, HLA-C eplets: 193PL3, 267QE, and HLA-DRB1 eplet: 16Y were associated with a mild outcome of preeclampsia if the complication occurred. Conclusions High HLA-C, HLA-DQB1 and HLA-B eplet compatibility between mother and child is associated with severe manifestation of preeclampsia. Both quantity and quality of maternal-fetal HLA eplet mismatches affects severity of preeclampsia.
Collapse
Affiliation(s)
- Katarzyna Stefańska
- Department of Gynecology and Obstetrics Medical University of Gdansk, Gdańsk, Poland
| | - Małgorzata Kurkowiak
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Gdańsk, Poland
| | - Karolina Piekarska
- Laboratory of Immunology and Clinical Transplantology, University Clinical Centre in Gdańsk, Gdańsk, Poland
- Department of Medical Immunology, Medical University of Gdansk, Gdańsk, Poland
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdansk, Gdańsk, Poland
| | - Elżbieta Chruściel
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Gdańsk, Poland
| | - Dorota Zamkowska
- Department of Gynecology and Obstetrics Medical University of Gdansk, Gdańsk, Poland
| | | | - Przemysław Adamski
- Department of Gynecology and Obstetrics Medical University of Gdansk, Gdańsk, Poland
| | | | - Anna Abacjew-Chmyłko
- Department of Gynecology and Obstetrics Medical University of Gdansk, Gdańsk, Poland
| | - Katarzyna Leszczyńska
- Department of Gynecology and Obstetrics Medical University of Gdansk, Gdańsk, Poland
| | - Maciej Zieliński
- Department of Medical Immunology, Medical University of Gdansk, Gdańsk, Poland
| | - Krzysztof Preis
- Department of Gynecology and Obstetrics Medical University of Gdansk, Gdańsk, Poland
| | - Hanna Zielińska
- Laboratory of Immunology and Clinical Transplantology, University Clinical Centre in Gdańsk, Gdańsk, Poland
- Department of Medical Immunology, Medical University of Gdansk, Gdańsk, Poland
| | - Bogusław Tymoniuk
- Department of Immunology and Allergy, Medical University of Łódź, Łódź, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdansk, Gdańsk, Poland
| | - Natalia Maria Marek-Trzonkowska
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Gdańsk, Poland
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
7
|
Hug MN, Keller S, Marty T, Gygax D, Meinel D, Spies P, Handschin J, Kleiser M, Vazquez N, Linnik J, Buchli R, Claas F, Heidt S, Kramer CSM, Bezstarosti S, Lee JH, Schaub S, Hönger G. HLA antibody affinity determination: From HLA-specific monoclonal antibodies to donor HLA specific antibodies (DSA) in patient serum. HLA 2023. [PMID: 37191252 DOI: 10.1111/tan.15047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
Organs transplanted across donor-specific HLA antibodies (DSA) are associated with a variety of clinical outcomes, including a high risk of acute kidney graft rejection. Unfortunately, the currently available assays to determine DSA characteristics are insufficient to clearly discriminate between potentially harmless and harmful DSA. To further explore the hazard potential of DSA, their concentration and binding strength to their natural target, using soluble HLA, may be informative. There are currently a number of biophysical technologies available that allow the assessment of antibody binding strength. However, these methods require prior knowledge of antibody concentrations. Our objective within this study was to develop a novel approach that combines the determination of DSA-affinity as well as DSA-concentration for patient sample evaluation within one assay. We initially tested the reproducibility of previously reported affinities of human HLA-specific monoclonal antibodies and assessed the technology-specific precision of the obtained results on multiple platforms, including surface plasmon resonance (SPR), bio-layer interferometry (BLI), Luminex (single antigen beads; SAB), and flow-induced dispersion analysis (FIDA). While the first three (solid-phase) technologies revealed comparable high binding-strengths, suggesting measurement of avidity, the latter (in-solution) approach revealed slightly lower binding-strengths, presumably indicating measurement of affinity. We believe that our newly developed in-solution FIDA-assay is particularly suitable to provide useful clinical information by not just measuring DSA-affinities in patient serum samples but simultaneously delivering a particular DSA-concentration. Here, we investigated DSA from 20 pre-transplant patients, all of whom showed negative CDC-crossmatch results with donor cells and SAB signals ranging between 571 and 14899 mean fluorescence intensity (MFI). DSA-concentrations were found in the range between 11.2 and 1223 nM (median 81.1 nM), and their measured affinities fall between 0.055 and 24.7 nM (median 5.34 nM; 449-fold difference). In 13 of 20 sera (65%), DSA accounted for more than 0.1% of total serum antibodies, and 4/20 sera (20%) revealed a proportion of DSA even higher than 1%. To conclude, this study strengthens the presumption that pre-transplant patient DSA consists of various concentrations and different net affinities. Validation of these results in a larger patient cohort with clinical outcomes will be essential in a further step to assess the clinical relevance of DSA-concentration and DSA-affinity.
Collapse
Affiliation(s)
- Melanie N Hug
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences Muttenz, Muttenz, Switzerland
| | - Sabrina Keller
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences Muttenz, Muttenz, Switzerland
| | - Talea Marty
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences Muttenz, Muttenz, Switzerland
| | - Daniel Gygax
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences Muttenz, Muttenz, Switzerland
| | - Dominik Meinel
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences Muttenz, Muttenz, Switzerland
| | - Peter Spies
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences Muttenz, Muttenz, Switzerland
| | - Joëlle Handschin
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marc Kleiser
- Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Noemi Vazquez
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Janina Linnik
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Rico Buchli
- Department of Research and Development, PureProtein LLC, Oklahoma City, Oklahoma, USA
| | - Frans Claas
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cynthia S M Kramer
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne Bezstarosti
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jar-How Lee
- Research Department, Terasaki Innovation Center (TIC), Glendale, California, USA
| | - Stefan Schaub
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Gideon Hönger
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
8
|
Johnson AC, Silva JAF, Kim SC, Larsen CP. Progress in kidney transplantation: The role for systems immunology. Front Med (Lausanne) 2022; 9:1070385. [PMID: 36590970 PMCID: PMC9800623 DOI: 10.3389/fmed.2022.1070385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
The development of systems biology represents an immense breakthrough in our ability to perform translational research and deliver personalized and precision medicine. A multidisciplinary approach in combination with use of novel techniques allows for the extraction and analysis of vast quantities of data even from the volume and source limited samples that can be obtained from human subjects. Continued advances in microfluidics, scalability and affordability of sequencing technologies, and development of data analysis tools have made the application of a multi-omics, or systems, approach more accessible for use outside of specialized centers. The study of alloimmune and protective immune responses after solid organ transplant offers innumerable opportunities for a multi-omics approach, however, transplant immunology labs are only just beginning to adopt the systems methodology. In this review, we focus on advances in biological techniques and how they are improving our understanding of the immune system and its interactions, highlighting potential applications in transplant immunology. First, we describe the techniques that are available, with emphasis on major advances that allow for increased scalability. Then, we review initial applications in the field of transplantation with a focus on topics that are nearing clinical integration. Finally, we examine major barriers to adapting these methods and discuss potential future developments.
Collapse
|
9
|
Niemann M, Strehler Y, Lachmann N, Halleck F, Budde K, Hönger G, Schaub S, Matern BM, Spierings E. Snowflake epitope matching correlates with child-specific antibodies during pregnancy and donor-specific antibodies after kidney transplantation. Front Immunol 2022; 13:1005601. [PMID: 36389845 PMCID: PMC9649433 DOI: 10.3389/fimmu.2022.1005601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 10/01/2023] Open
Abstract
Development of donor-specific human leukocyte antigen (HLA) antibodies (DSA) remains a major risk factor for graft loss following organ transplantation, where DSA are directed towards patches on the three-dimensional structure of the respective organ donor's HLA proteins. Matching donors and recipients based on HLA epitopes appears beneficial for the avoidance of DSA. Defining surface epitopes however remains challenging and the concepts underlying their characterization are not fully understood. Based on our recently implemented computational deep learning pipeline to define HLA Class I protein-specific surface residues, we hypothesized a correlation between the number of HLA protein-specific solvent-accessible interlocus amino acid mismatches (arbitrarily called Snowflake) and the incidence of DSA. To validate our hypothesis, we considered two cohorts simultaneously. The kidney transplant cohort (KTC) considers 305 kidney-transplanted patients without DSA prior to transplantation. During the follow-up, HLA antibody screening was performed regularly to identify DSA. The pregnancy cohort (PC) considers 231 women without major sensitization events prior to pregnancy who gave live birth. Post-delivery serum was screened for HLA antibodies directed against the child's inherited paternal haplotype (CSA). Based on the involved individuals' HLA typings, the numbers of interlocus-mismatched antibody-verified eplets (AbvEPS), the T cell epitope PIRCHE-II model and Snowflake were calculated locus-specific (HLA-A, -B and -C), normalized and pooled. In both cohorts, Snowflake numbers were significantly elevated in recipients/mothers that developed DSA/CSA. Univariable regression revealed significant positive correlation between DSA/CSA and AbvEPS, PIRCHE-II and Snowflake. Snowflake numbers showed stronger correlation with numbers of AbvEPS compared to Snowflake numbers with PIRCHE-II. Our data shows correlation between Snowflake scores and the incidence of DSA after allo-immunization. Given both AbvEPS and Snowflake are B cell epitope models, their stronger correlation compared to PIRCHE-II and Snowflake appears plausible. Our data confirms that exploring solvent accessibility is a valuable approach for refining B cell epitope definitions.
Collapse
Affiliation(s)
| | - Yara Strehler
- Center for Tumor Medicine, H&I Laboratory, Charité University Medicine Berlin, Berlin, Germany
| | - Nils Lachmann
- Center for Tumor Medicine, H&I Laboratory, Charité University Medicine Berlin, Berlin, Germany
| | - Fabian Halleck
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gideon Hönger
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
- Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- HLA-Diagnostics and Immunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Stefan Schaub
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
- Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- HLA-Diagnostics and Immunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Benedict M. Matern
- Center for Translational Immunology, University Medical Center, Utrecht, Netherlands
| | - Eric Spierings
- Center for Translational Immunology, University Medical Center, Utrecht, Netherlands
- Central Diagnostic Laboratory, University Medical Center, Utrecht, Netherlands
| |
Collapse
|
10
|
Abstract
In 2016, the European Hematology Association (EHA) published the EHA Roadmap for European Hematology Research1 aiming to highlight achievements in the diagnostics and treatment of blood disorders, and to better inform European policy makers and other stakeholders about the urgent clinical and scientific needs and priorities in the field of hematology. Each section was coordinated by 1–2 section editors who were leading international experts in the field. In the 5 years that have followed, advances in the field of hematology have been plentiful. As such, EHA is pleased to present an updated Research Roadmap, now including eleven sections, each of which will be published separately. The updated EHA Research Roadmap identifies the most urgent priorities in hematology research and clinical science, therefore supporting a more informed, focused, and ideally a more funded future for European hematology research. The 11 EHA Research Roadmap sections include Normal Hematopoiesis; Malignant Lymphoid Diseases; Malignant Myeloid Diseases; Anemias and Related Diseases; Platelet Disorders; Blood Coagulation and Hemostatic Disorders; Transfusion Medicine; Infections in Hematology; Hematopoietic Stem Cell Transplantation; CAR-T and Other Cell-based Immune Therapies; and Gene Therapy.
Collapse
|
11
|
Bezstarosti S, Bakker KH, Kramer CSM, de Fijter JW, Reinders MEJ, Mulder A, Claas FHJ, Heidt S. A Comprehensive Evaluation of the Antibody-Verified Status of Eplets Listed in the HLA Epitope Registry. Front Immunol 2022; 12:800946. [PMID: 35154076 PMCID: PMC8831796 DOI: 10.3389/fimmu.2021.800946] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/30/2021] [Indexed: 01/09/2023] Open
Abstract
Matching strategies based on HLA eplets instead of HLA antigens in solid organ transplantation may not only increase the donor pool for highly sensitized patients, but also decrease the incidence of de novo donor-specific antibody formation. However, since not all eplets are equally capable of inducing an immune response, antibody verification is needed to confirm their ability to be bound by antibodies, such that only clinically relevant eplets are considered. The HLA Epitope Registry has documented all theoretically defined HLA eplets along with their antibody verification status and has been the foundation for many clinical studies investigating eplet mismatch in transplantation. The verification methods for eplets in the Registry range from polyclonal sera from multi- and uni-parous women to murine and human monoclonal antibodies (mAbs), and antibodies purified by adsorption and elution from sera of HLA immunized individuals. The classification of antibody verification based on different methods for validation is problematic, since not all approaches represent the same level of evidence. In this study, we introduce a classification system to evaluate the level of evidence for the antibody-verified status of all eplets in the HLA Epitope Registry. We demonstrate that for a considerable number of eplets, the antibody-verified status is solely based on polyclonal serum reactivity of multiparous women or on reactivity of murine mAbs. Furthermore, we noted that a substantial proportion of patient sera analyses and human mAb data presented in the HLA Epitope Registry Database has never been published in a peer-reviewed journal. Therefore, we tested several unpublished human HLA-specific mAbs by luminex single antigen beads assay to analyze their HLA reactivity for eplet antibody verification. Although the majority of analyzed mAbs indeed verified their assigned eplets, this was not the case for a number of eplets. This comprehensive overview of evidence for antibody verification of eplets in the HLA Epitope Registry is instrumental for future investigations towards eplet immunogenicity and clinical studies considering antibody-verified eplet mismatch in transplantation and warrants further standardization of antibody verification using high quality data.
Collapse
Affiliation(s)
- Suzanne Bezstarosti
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, Netherlands
| | - Kim H. Bakker
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Johan W. de Fijter
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, Netherlands
| | - Marlies E. J. Reinders
- Department of Internal Medicine, Erasmus Medical Center Transplantation Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Arend Mulder
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Frans H. J. Claas
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Eurotransplant Reference Laboratory, Leiden, Netherlands
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Eurotransplant Reference Laboratory, Leiden, Netherlands
| |
Collapse
|
12
|
Sherwood K, Tran J, Günther O, Lan J, Aiyegbusi O, Liwski R, Sapir-Pichhadze R, Bryan S, Caulfield T, Keown P. Genome Canada precision medicine strategy for structured national implementation of epitope matching in renal transplantation. Hum Immunol 2022; 83:264-269. [DOI: 10.1016/j.humimm.2022.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/12/2021] [Accepted: 01/05/2022] [Indexed: 02/08/2023]
|
13
|
Implementation of molecular matching in transplantation requires further characterization of both immunogenicity and antigenicity of individual HLA epitopes. Hum Immunol 2021; 83:256-263. [PMID: 34963506 DOI: 10.1016/j.humimm.2021.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 02/08/2023]
Abstract
Over the past decade, high HLA epitope mismatch scores have been associated with inferior transplant outcomes using several tools, of which HLAMatchmaker is most well-known. This software uses theoretically defined polymorphic amino acid configurations, called eplets, for HLA compatibility analysis. Although consideration of eplet mismatch loads has potential for immunological risk stratification of transplant patients, the use of eplet matching in organ allocation algorithms is hindered by lacking knowledge of the immunogenicity of individual eplets, and the possibility that single mismatched amino acids, rather than complete eplets, are responsible for HLA antibody induction. There are several approaches to define eplet immunogenicity, such as antibody verification of individual eplets, and data-driven approaches using large datasets that correlate specific eplet mismatches to donor specific antibody formation or inferior transplant outcomes. Data-driven approaches can also be used to define whether single amino acid mismatches may be more informative than eplet mismatches for predicting HLA antibody induction. When using epitope knowledge for the assignment of unacceptable antigens, it important to realize that alleles sharing an eplet to which antibodies have formed are not automatically all unacceptable since multiple contact sites determine the binding strength and thus biological function and pathogenicity of an antibody, which may differ between reactive alleles. While the future looks bright for using HLA epitopes in clinical decision making, major steps need to be taken to make this a clinical reality.
Collapse
|
14
|
Niemann M, Matern BM, Spierings E, Schaub S, Hönger G. Peptides Derived From Mismatched Paternal Human Leukocyte Antigen Predicted to Be Presented by HLA-DRB1, -DRB3/4/5, -DQ, and -DP Induce Child-Specific Antibodies in Pregnant Women. Front Immunol 2021; 12:797360. [PMID: 34992608 PMCID: PMC8725048 DOI: 10.3389/fimmu.2021.797360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Predicted Indirectly ReCognizable Human Leukocyte Antigen (HLA) Epitopes (PIRCHE) are known to be a significant risk factor for the development of donor HLA-specific antibodies after organ transplantation. Most previous studies on PIRCHE limited their analyses on the presentation of the HLA-DRB1 locus, although HLA-DRB3/4/5, -DQ, and -DP are also known for presenting allopeptides to CD4+ T cells. In this study, we analyzed the impact of predicted allopeptides presented by these additional loci on the incidence of HLA-specific antibodies after an immunization event. We considered pregnancy as a model system of an HLA immunization and observed child-specific HLA antibody (CSA) development of 231 mothers during pregnancy by samples being taken at delivery. Our data confirm that PIRCHE presented by HLA-DRB1 along with HLA-DRB3/4/5, -DQ, and -DP are significant predictors for the development of CSA. Although there was limited peptidome overlap observed within the mothers’ presenting HLA proteins, combining multiple presenting loci in a single predictor improved the model only marginally. Prediction performance of PIRCHE further improved when normalizing scores by the respective presenters’ binding promiscuity. Immunogenicity analysis of specific allopeptides could not identify significant drivers of an immune response in this small cohort, suggesting confirmatory studies.
Collapse
Affiliation(s)
- Matthias Niemann
- Research and Development, PIRCHE AG, Berlin, Germany
- *Correspondence: Matthias Niemann,
| | - Benedict M. Matern
- Center for Translational Immunology, University Medical Center, Utrecht, Netherlands
| | - Eric Spierings
- Center for Translational Immunology, University Medical Center, Utrecht, Netherlands
| | - Stefan Schaub
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
- Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- HLA-Diagnostics and Immunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Gideon Hönger
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
- Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- HLA-Diagnostics and Immunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
15
|
Bedford A, Jervis S, Worthington J, Lowe M, Poulton K. Human leukocyte antigen epitope mismatch loads and the development of de novo donor-specific antibodies in cardiothoracic organ transplantation. Int J Immunogenet 2021; 49:30-38. [PMID: 34904369 DOI: 10.1111/iji.12563] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/18/2021] [Accepted: 11/04/2021] [Indexed: 12/30/2022]
Abstract
De novo donor-specific human leucocyte antigen (HLA) antibodies (dnDSA) are associated with increased risk of rejection and mortality in solid organ transplantation. Such dnDSA is produced in some recipients upon allorecognition of mismatched HLA post-transplant. HLA matching is not currently considered in the allocation of deceased donor hearts and lungs and pre-transplant immunological risk stratification is based entirely on the mean fluorescence intensity (MFI) of circulating donor-directed HLA antibodies. HLA epitope-based matching tools predict B-cell or T-cell HLA epitopes that are present in the donor's HLA but absent in the recipient's HLA. We hypothesized that patients with higher epitope mismatch loads would be at increased risk of dnDSA development. We retrospectively analysed 73 heart and/or lung transplant recipients who were tested for DSA between 2015 and 2020. HLAMatchmaker, PIRCHE-II and HLA epitope mismatch algorithm (HLA-EMMA) were used to calculate eplet mismatch (EpMM) loads, T-cell epitope mismatch (TEpMM) loads and solvent accessible amino acid mismatch (SAMM) loads, respectively. Multivariate analyses showed that HLA-EMMA was the only tool with a significant association between the total score for all HLA loci and dnDSA production [odds ratio (OR) 1.021, 95% confidence interval (CI) 1.003-1.042, p = .0225] though this increased risk was marginal. The majority of dnDSA were directed against HLA-DQ and patients with higher HLA-DQ TEpMM loads (OR = 1.008, CI = 1.002-1.014, p = .007), and HLA-DR+DQ SAMM loads (OR = 1.035, CI = 1.010-1.064, p = .0077) were most at risk of producing dnDSA. We also showed that patients with a risk epitope within the HLA molecule encoded for by HLA-DQA1*05 + HLA-DQB1*02/03:01 were significantly more likely to produce dnDSA. The use of HLA epitope-based matching tools could be used for cardiothoracic transplant risk stratification to enable early intervention and monitoring of patients at increased risk of producing dnDSA.
Collapse
Affiliation(s)
- Amy Bedford
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK.,Faculty of Biology, Medicine and Health, Division of Medical Education, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Steven Jervis
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Judith Worthington
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Marcus Lowe
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Kay Poulton
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
16
|
Geffard E, Boussamet L, Walencik A, Delbos F, Limou S, Gourraud PA, Vince N. HLA-EPI: A new EPIsode in exploring donor/recipient epitopic compatibilities. HLA 2021; 99:79-92. [PMID: 34862850 PMCID: PMC9545700 DOI: 10.1111/tan.14505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022]
Abstract
The HLA system plays a pivotal role both in transplantation and immunology. While classical HLA genotypes matching is made at the allelic level, recent progresses were developed to explore antibody–antigen recognition by studying epitopes. Donor to recipient matching at the epitopic level is becoming a trending topic in the transplantation research field because anti‐HLA antibodies are epitope‐specific rather than allele‐specific. Indeed, different HLA alleles often share common epitopes. We present the HLA‐Epi tool (hla.univ-nantes.fr) to study an HLA genotype at the epitope level. Using the international HLA epitope registry (Epregistry.com.br) as a reference, we developed HLA‐Epi to easily determine epitopic and allelic compatibility levels between several HLA genotypes. The epitope database covers the most common HLA alleles (N = 2976 HLA alleles), representing more than 99% of the total observed frequency of HLA alleles. The freely accessible web tool HLA‐Epi calculates an epitopic mismatch load between different sets of potential recipient‐donor pairs at different resolution levels. We have characterized the epitopic mismatches distribution in a cohort of more than 10,000 kidney transplanted pairs from European ancestry, which showed low number of epitopic mismatches: 56.9 incompatibilities on average. HLA‐Epi allows the exploration of epitope pairing matching to better understand epitopes contribution to immune responses regulation, particularly during transplantation. This free and ready‐to‐use bioinformatics tool not only addresses limitations of other related tools, but also offers a cost‐efficient and reproducible strategy to analyze HLA epitopes as an alternative to HLA allele compatibility. In the future, this could improve sensitization prevention for allograft allocation decisions and reduce the risk of alloreactivity.
Collapse
Affiliation(s)
- Estelle Geffard
- Centre de Recherche en Transplantation et Immunologie, Université de Nantes, CHU Nantes, Inserm, Nantes, France
| | - Léo Boussamet
- Centre de Recherche en Transplantation et Immunologie, Université de Nantes, CHU Nantes, Inserm, Nantes, France
| | - Alexandre Walencik
- Centre de Recherche en Transplantation et Immunologie, Université de Nantes, CHU Nantes, Inserm, Nantes, France.,Laboratoire d'Histocompatibilité et d'Immunogénétique, EFS Centre - Pays de la Loire, Nantes, France
| | - Florent Delbos
- Laboratoire d'Histocompatibilité et d'Immunogénétique, EFS Centre - Pays de la Loire, Nantes, France
| | - Sophie Limou
- Centre de Recherche en Transplantation et Immunologie, Université de Nantes, CHU Nantes, Inserm, Nantes, France.,Département Informatique et Mathématiques, Ecole Centrale de Nantes, Nantes, France
| | - Pierre-Antoine Gourraud
- Centre de Recherche en Transplantation et Immunologie, Université de Nantes, CHU Nantes, Inserm, Nantes, France
| | - Nicolas Vince
- Centre de Recherche en Transplantation et Immunologie, Université de Nantes, CHU Nantes, Inserm, Nantes, France
| |
Collapse
|
17
|
Epitope-Level Matching—A Review of the Novel Concept of Eplets in Transplant Histocompatibility. TRANSPLANTOLOGY 2021. [DOI: 10.3390/transplantology2030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The development of de novo donor-specific antibodies is related to the poor matching of the human leukocyte antigen (HLA) between donor and recipient, which leads to dismal clinical outcomes and graft loss. However, new approaches that stratify the risks of long-term graft failure in solid organ transplantation have emerged, changing the paradigm of HLA compatibility. In addition, advances in software development have given rise to a new structurally based algorithm known as HLA Matchmaker, which determines compatibility at the epitope rather than the antigen level. Although this technique still has limitations, plenty of research maintains that this assessment represents a more complete and detailed definition of HLA compatibility. This review summarizes recent aspects of eplet mismatches, highlighting the most recent advances and future research directions.
Collapse
|
18
|
Senn L, Wehmeier C, Hönger G, Geiger I, Amico P, Hirt-Minkowski P, Steiger J, Dickenmann M, Schaub S. Outcome of Husband-to-Wife Kidney Transplantation With Mutual Children: Single Center Experience Using T Cell-Depleting Induction and Review of the Literature. Front Med (Lausanne) 2021; 8:724851. [PMID: 34409057 PMCID: PMC8365247 DOI: 10.3389/fmed.2021.724851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Few data on husband-to-wife transplantations with mutual children (H2W) exist in the current era. We investigated the outcome of H2W transplantations (n = 25) treated with T cell-depleting induction compared to women with prior pregnancies also receiving their first HLA-mismatched kidney transplant, but from a different donor source: (i) other living donor (n = 52) and (ii) deceased donor (n = 120). Seventy-four percent of the women had ≥2 pregnancies; median follow-up time was 5 years. Death-censored allograft survival was significantly lower in the H2W group compared to the other two groups (p = 0.03). Three of four graft losses in the H2W group were due to rejection. 5-year patient survival in the H2W group was high and similar compared to the other living donor group (100 vs. 98%; p = 0.28). The incidence of (sub)clinical antibody-mediated rejection was higher in the H2W group (36 vs. 20 vs. 18%) (p = 0.10). The frequency of infections was similar among the three groups. No immunological parameter was predictive for rejection or graft loss in H2W transplantations. In conclusion, H2W transplantation is a valuable option, but associated with a higher risk for allograft loss due to rejection despite T cell-depleting induction. Further research is required for better risk prediction on an individual patient level.
Collapse
Affiliation(s)
- Lisa Senn
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Caroline Wehmeier
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Gideon Hönger
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland.,HLA-Diagnostics and Immungenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland.,Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Irene Geiger
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Patrizia Amico
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Patricia Hirt-Minkowski
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Jürg Steiger
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Michael Dickenmann
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Stefan Schaub
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland.,HLA-Diagnostics and Immungenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland.,Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
19
|
Hirsiger JR, Tamborrini G, Harder D, Bantug GR, Hoenger G, Recher M, Marx C, Li QZ, Martin I, Hess C, Scherberich A, Daikeler T, Berger CT. Chronic inflammation and extracellular matrix-specific autoimmunity following inadvertent periarticular influenza vaccination. J Autoimmun 2021; 124:102714. [PMID: 34403915 DOI: 10.1016/j.jaut.2021.102714] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Viral infections may trigger autoimmunity in genetically predisposed individuals. Immunizations mimic viral infections immunologically, but only in rare instances vaccinations coincide with the onset of autoimmunity. Inadvertent vaccine injection into periarticular shoulder tissue can cause inflammatory tissue damage ('shoulder injury related to vaccine administration, SIRVA). Thus, this accident provides a model to study if vaccine-induced pathogen-specific immunity accompanied by a robust inflammatory insult may trigger autoimmunity in specific genetic backgrounds. METHODS We studied 16 otherwise healthy adults with suspected SIRVA occurring following a single work-related influenza immunization campaign in 2017. We performed ultrasound, immunophenotypic analyses, HLA typing, and influenza- and self-reactivity functional immunoassays. Vaccine-related bone toxicity and T cell/osteoclast interactions were assessed in vitro. FINDINGS Twelve of the 16 subjects had evidence of inflammatory tissue damage on imaging, including bone erosions in six. Tissue damage was associated with a robust peripheral blood T and B cell activation signature and extracellular matrix-reactive autoantibodies. All subjects with erosions were HLA-DRB1*04 positive and showed extracellular matrix-reactive HLA-DRB1*04 restricted T cell responses targeting heparan sulfate proteoglycan (HSPG). Antigen-specific T cells potently activated osteoclasts via RANK/RANK-L, and the osteoclast activation marker Trap5b was high in sera of patients with an erosive shoulder injury. In vitro, the vaccine component alpha-tocopheryl succinate recapitulated bone toxicity and stimulated osteoclasts. Auto-reactivity was transient, with no evidence of progression to rheumatoid arthritis or overt autoimmune disease. CONCLUSION Vaccine misapplication, potentially a genetic predisposition, and vaccine components contribute to SIRVA. The association with autoimmunity risk allele HLA-DRB1*04 needs to be further investigated. Despite transient autoimmunity, SIRVA was not associated with progression to autoimmune disease during two years of follow-up.
Collapse
Affiliation(s)
- Julia R Hirsiger
- Translational Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Giorgio Tamborrini
- Ultrasound Center for Rheumatology (UZR), Basel, Switzerland; Rheumatology Clinic, University Hospital Basel, Basel, Switzerland
| | - Dorothee Harder
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Glenn R Bantug
- Immunobiology Lab, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Gideon Hoenger
- HLA-Diagnostics and Immunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Mike Recher
- Immunodeficiency Lab, Department Biomedicine, University of Basel, Basel, Switzerland
| | | | - Quan-Zhen Li
- Department of Immunology & Internal Medicine, IIMT Microarray Core Facility, University of Texas Southwestern Medical Center, USA
| | - Ivan Martin
- Laboratory of Tissue Engineering, Departments of Surgery and Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Christoph Hess
- Immunobiology Lab, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Arnaud Scherberich
- Laboratory of Tissue Engineering, Departments of Surgery and Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Thomas Daikeler
- Rheumatology Clinic, University Hospital Basel, Basel, Switzerland
| | - Christoph T Berger
- Translational Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland; Interdisciplinary Center for Immunology, Departments of Dermatology, Internal Medicine, and Rheumatology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
20
|
Rosser C, Sage D. Approaches for the characterization of clinically relevant pre-transplant human leucocyte antigen (HLA) antibodies in solid organ transplant patients. Int J Immunogenet 2021; 48:385-402. [PMID: 34346180 DOI: 10.1111/iji.12552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/30/2021] [Accepted: 07/22/2021] [Indexed: 11/27/2022]
Abstract
The avoidance of antibody-mediated rejection (AMR) attributed to human leucocyte antigen (HLA) antibody incompatibility remains an essential function of clinical Histocompatibility and Immunogenetics (H&I) laboratories who are supporting solid organ transplantation. Developments in HLA antibody identification assays over the past thirty years have greatly reduced unexpected positive cellular crossmatches and improved solid organ transplant outcomes. For sensitized patients, the decision to register unacceptable HLA antigen mismatches is often heavily influenced by results from solid phase antibody assays, particularly the Luminex® Single Antigen Bead (SAB) assays, although the clinical relevance of antibodies identified solely by these assays remains unclear. As such, the identification of non-clinically relevant antibodies may proportionally increase the number of unacceptable transplant mismatches registered, with an associated increase in waiting time for a compatible organ. We reflect on the clinical relevance of antibodies identified solely by the Luminex SAB® assays and consider whether the application of additional assays and/or tools could further develop our ability to define the clinical relevance of antibodies identified in patient sera. Improvements in this area would assist equity of access to a compatible transplant for highly sensitized patients awaiting a solid organ transplant.
Collapse
Affiliation(s)
- Carla Rosser
- NHS Blood and Transplant (Tooting), Histocompatibility and Immunogenetics, London, UK
| | - Deborah Sage
- NHS Blood and Transplant (Tooting), Histocompatibility and Immunogenetics, London, UK
| |
Collapse
|
21
|
Nellore A, Killian JT, Porrett PM. Memory B Cells in Pregnancy Sensitization. Front Immunol 2021; 12:688987. [PMID: 34276679 PMCID: PMC8278195 DOI: 10.3389/fimmu.2021.688987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Memory B cells play an important role in immunity to pathogens as these cells are poised to rapidly differentiate into antibody-secreting cells upon antigen re-encounter. Memory B cells also develop over the course of HLA-sensitization during pregnancy and transplantation. In this review, we discuss the potential contribution of memory B cells to pregnancy sensitization as well as the impact of these cells on transplant candidacy and outcomes. We start by summarizing how B cell subsets are altered in pregnancy and discuss what is known about HLA-specific B cell responses given our current understanding of fetal antigen availability in maternal secondary lymphoid tissues. We then review the molecular mechanisms governing the generation and maintenance of memory B cells during infection - including the role of T follicular helper cells - and discuss the experimental evidence for the development of these cells during pregnancy. Finally, we discuss how memory B cells impact access to transplantation and transplant outcomes for a range of transplant recipients.
Collapse
Affiliation(s)
- Anoma Nellore
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - John T. Killian
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Paige M. Porrett
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| |
Collapse
|
22
|
Lemieux W, Mohammadhassanzadeh H, Klement W, Daniel C, Sapir-Pichhadze R. Matchmaker, matchmaker make me a match: Opportunities and challenges in optimizing compatibility of HLA eplets in transplantation. Int J Immunogenet 2021; 48:135-144. [PMID: 33426788 DOI: 10.1111/iji.12525] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/12/2020] [Accepted: 12/20/2020] [Indexed: 12/20/2022]
Abstract
The development of donor-specific antibodies (DSAs) is a major complication in transplantation, which is associated with inferior graft survival, impaired quality of life, and increased healthcare costs. DSA develop upon recognition of nonself HLA by the recipient's immune system. HLA molecules contain epitopes, which are the surface regions of HLA molecules recognized by antibodies. HLAMatchmaker is an algorithm for assessing donor:recipient HLA compatibility at the level of structurally defined HLA targets called eplets. The consideration of eplets, rather than the whole HLA molecule, could offer some advantages when classifying the immune risk associated with particular donor:recipient pairs. Assessing compatibility at the level of HLA eplets could decrease misclassification of post-transplant immune risk by improving specificity, when antibodies are confirmed to be directed against donor eplets missing from the recipient's repertoire of eplets. Consideration of eplets may also increase the sensitivity of immune risk assessment, when identifying mismatched eplets that could give rise to new, not previously detected, donor-specific antibodies post-transplant. Eplet matching can serve as a rational strategy for immune risk mitigation. Herein, we review the evolution of HLA (in) compatibility assessment for organ allocation. We outline challenges in the implementation of eplet-based donor:recipient matching, including unavailability of allele-level donor genotypes for 11 HLA loci at the time of organ allocation and difficulty in assessing the hierarchy of immune risk associated with particular HLA eplet mismatches. Opportunities to address some of the current shortcomings of donor genotyping and HLAMatchmaker are also discussed. While there is a demonstrated benefit in the application of HLAMatchmaker for donor: recipient HLA (in)compatibility assessment, evolving long-read genotyping methods, compilation of large data sets with allele-level genotypes, and standardization of methods to verify eplets as determinants of immune-mediated injuries are required before HLA eplet matching is implemented in organ allocation to improve upon transplant outcomes.
Collapse
Affiliation(s)
- William Lemieux
- Centre for Outcomes Research and Evaluation (CORE), Research Institute of McGill University Health Centre, Montréal, QC, Canada
| | - Hossein Mohammadhassanzadeh
- Centre for Outcomes Research and Evaluation (CORE), Research Institute of McGill University Health Centre, Montréal, QC, Canada
| | - William Klement
- Centre for Outcomes Research and Evaluation (CORE), Research Institute of McGill University Health Centre, Montréal, QC, Canada.,Canadian Blood Services, Ottawa, Ontario, Canada
| | - Claude Daniel
- Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
| | - Ruth Sapir-Pichhadze
- Centre for Outcomes Research and Evaluation (CORE), Research Institute of McGill University Health Centre, Montréal, QC, Canada.,Division of Nephrology and the Multi-Organ Transplant Program, Royal Victoria Hospital, McGill University Health Centre, Montréal, QC, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada
| |
Collapse
|
23
|
Schawalder L, Hönger G, Kleiser M, van Heck MR, van de Pasch LAL, Vendelbosch S, Rozemuller EH, Schaub S. Development of an immunogenicity score for HLA-DQ eplets: A conceptual study. HLA 2020; 97:30-43. [PMID: 33068062 PMCID: PMC7756751 DOI: 10.1111/tan.14110] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/01/2020] [Accepted: 10/10/2020] [Indexed: 12/27/2022]
Abstract
Eplets are defined as distinct amino acid configurations on the surface of HLA molecules. The aim of this study was to estimate the immunogenicity of HLA‐DQ eplets in a cohort of 221 pregnancies with HLA‐DQ mismatches. We defined the immunogenicity of an eplet by the frequency of antibody responses against it. Around 90% of all listed DQB1 or DQA1 eplets were at least five times mismatched and thus included for the calculation of their immunogenicity. The DQB1 eplets with the five highest immunogenicity scores were 55PP, 52PR, 52PQ, 85VG and 45EV; 25% of all DQB1 eplets were not reacting. The DQA1 eplets with the five highest immunogenicity scores were 25YS, 47QL, 55RR, 187T and 18S; 17% of all DQA1 eplets were not reacting. The immunogenicity score had a slightly higher area under the curve to predict development of child‐specific antibodies than various molecular mismatch scores (eg, eplet mismatch load, amino acid mismatch load). Overlapping eplets were identified as a barrier to unambiguously assign the immunogenicity score based on HLA antibody reaction patterns. In this conceptual study, we explored the immunogenicity of HLA‐DQ eplets and created a map of potentially immunogenic regions on HLA‐DQ molecules, which requires validation in clinical transplant cohorts.
Collapse
Affiliation(s)
- Lara Schawalder
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Gideon Hönger
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland.,Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland.,HLA-Diagnostics and Immungenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Marc Kleiser
- HLA-Diagnostics and Immungenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | | | | | | | | | - Stefan Schaub
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland.,Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland.,HLA-Diagnostics and Immungenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|