1
|
Dagnaw M, Solomon A, Dagnew B. Serological prevalence of the Schmallenberg virus in domestic and wild hosts worldwide: a systematic review and meta-analysis. Front Vet Sci 2024; 11:1371495. [PMID: 38605927 PMCID: PMC11008530 DOI: 10.3389/fvets.2024.1371495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/29/2024] [Indexed: 04/13/2024] Open
Abstract
Schmallenberg virus (SBV) is an arthropod-borne virus that emerged recently in northwestern Europe in 2011 that affects domestic and wild ruminants and induces abortion, stillbirth, and newborns with congenital anomalies. Since its discovery, SBV has spread very rapidly to too many countries in the world. The overall serological investigation of SBV is needed to improve modeling predictions and assess the overall impact on ruminant animals, which helps to design interventions for control and prevention strategies. Thus, this study aimed to estimate the overall serological assay of SBV in both domestic and wild ruminants around the world. This systematic review was conducted as per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. International databases were employed To search for relevant articles. The pooled prevalence with a 95% confidence interval was calculated with a random effects model. The Cochran's Q test, τ2, and I2 were used to assess the sources of heterogeneity. In the current meta-analysis, a total of 41 articles were included. The overall pooled proportion of SBV in domestic and wild ruminants was 49 and 26%, respectively. Substantial heterogeneity was observed in studies on domestic ruminants (I2 = 99.7%; p < 0.01) and studies on wild ruminants (I2 = 97.9%; p < 0.01). The pooled prevalence of SBV was significantly associated with publication time, detection techniques, and species of animals. According to the subgroup analysis, the highest pooled prevalence of SBV was reported in cattle (59%), followed by sheep (37%) and goat (18%). In addition to the subgroup analysis based on publication year, the pooled prevalence of SBV infection has become endemic since 2013 (49%) among domestic animals in the world. Of the diagnostic tests used, the highest anti-SBV antibodies (66%) were detected by a virus neutralization test. In this meta-analysis, the major wild animals that were infected by SBV were red deer, roe deer, fallow deer, mouflon, and wild boar. The highest sub-pooled prevalence of SBV was found in roe deer (46%), followed by fallow deer (30%), red deer (27%), mouflon (22%), and wild boar (11%). In general, the prevalence of SBV was high in cattle among domestic ruminants and in roe deer among wild animals. According to the current information provided by this meta-analysis, evidence-based risk management measures should be established to restrict SBV spread in both domestic and wild ruminants.
Collapse
Affiliation(s)
- Melkie Dagnaw
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, Ethiopia
| | - Atsede Solomon
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, Ethiopia
| | - Binyam Dagnew
- Department of Microbiology, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
2
|
Ferrara G, Wernike K, Iovane G, Pagnini U, Montagnaro S. First evidence of schmallenberg virus infection in southern Italy. BMC Vet Res 2023; 19:95. [PMID: 37507724 PMCID: PMC10386761 DOI: 10.1186/s12917-023-03666-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Schmallenberg virus (SBV) is a vector-borne pathogen that mainly affects ruminants. Schmallenberg disease has never been described in southern Italy, although this geographic area displays climatic features suitable for Culicoides biting midges, which transmit the pathogen. An observational study was carried out in the Campania region in 2020 to evaluate the seroprevalence in cattle and water buffalo as well as to identify the risk factors involved in the distribution of SBV. RESULTS Relatively high seroprevalences of 38.2% (cattle) and 43% (water buffalo) were found by using a commercial SBV ELISA, which is comparable to the prevalence obtained in other countries under post-epidemic conditions. A virus neutralization assay performed on positive samples showed high titers in a large percentage of animals which is assumed to indicate recent exposure. Bivariate analysis of several variables revealed some environmental factors associated with higher seroprevalence, such as mean annual temperature, distance from the coast, and altitude. Multivariate logistic regression confirmed the statistical association only for mean annual temperature, that was found to be the main factor responsible for the distribution of the virus in southern Italy. In addition, molecular diagnosis attempts were performed on serum samples and resulted in the detection of SBV RNA in two herds and six animals. CONCLUSIONS In this work we have demonstrated the circulation of SBV in southern Italy using both molecular and serological assays. This study emphasized the essential role of monitoring in preventing the re-emergence of vector-borne diseases in ruminants.
Collapse
Affiliation(s)
- Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy.
| | - Kerstin Wernike
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy
| | - Ugo Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy
| |
Collapse
|
3
|
Clarke LL, Mead DG, Ruder MG, Howerth EW, Stallknecht D. North American Arboviruses and White-Tailed Deer ( Odocoileus virginianus): Associated Diseases and Role in Transmission. Vector Borne Zoonotic Dis 2022; 22:425-442. [PMID: 35867036 DOI: 10.1089/vbz.2022.0005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Arboviral disease is of increasing concern to human and animal health professionals as emerging and re-emerging arboviruses are more frequently recognized. Wildlife species are known to play a role in the transmission and maintenance of arboviruses and infections can result in morbidity and mortality in wildlife hosts. Materials and Methods: In this review, we detail existing evidence of white-tailed deer (Odocoileus virginianus) as an important host to a diverse collection of arboviruses and evaluate the utility of this species as a resource to better understand the epidemiology of related viral diseases. Results: Relevant veterinary and zoonotic viral pathogens endemic to North America include epizootic hemorrhagic disease virus, bluetongue virus, orthobunyaviruses, vesicular stomatitis virus, Eastern equine encephalitis virus, West Nile virus, and Powassan virus. Exotic viral pathogens that may infect white-tailed deer are also identified with an emphasis on zoonotic disease risks. The utility of this species is attributed to the high degree of contact with humans and domestic livestock and evidence of preferential feeding by various insect vectors. Conclusions: There is mounting evidence that white-tailed deer are a useful, widely available source of information regarding arboviral circulation, and that surveillance and monitoring of deer populations would be of value to the understanding of certain viral transmission dynamics, with implications for improving human and domestic animal health.
Collapse
Affiliation(s)
- Lorelei L Clarke
- Wisconsin Veterinary Diagnostic Laboratory, Madison, Wisconsin, USA
| | - Daniel G Mead
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Elizabeth W Howerth
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - David Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
4
|
Jiménez-Ruiz S, Risalde MA, Acevedo P, Arnal MC, Gómez-Guillamón F, Prieto P, Gens MJ, Cano-Terriza D, Fernández de Luco D, Vicente J, García-Bocanegra I. Serosurveillance of Schmallenberg virus in wild ruminants in Spain. Transbound Emerg Dis 2020; 68:347-354. [PMID: 32530115 DOI: 10.1111/tbed.13680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/26/2022]
Abstract
Schmallenberg disease (SBD) is an emerging vector-borne disease that affects domestic and wild ruminants. A long-term serosurvey was conducted to assess exposure to Schmallenberg virus (SBV) in all the wild ruminant species present in mainland Spain. Between 2010 and 2016, sera from 1,216 animals were tested for antibodies against SBV using a commercial blocking ELISA. The overall prevalence of antibodies was 27.1% (95%CI: 24.7-29.7). Statistically significant differences among species were observed, with significantly higher seropositivity found in fallow deer (Dama dama) (45.6%; 99/217), red deer (Cervus elaphus) (31.6%; 97/307) and mouflon (Ovis aries musimon) (28.0%; 33/118) compared to Barbary sheep (Ammotragus lervia) (22.2%; 8/36), Iberian wild goat (Capra pyrenaica) (19.9%; 49/246), roe deer (Capreolus capreolus) (17.5%; 34/194) and Southern chamois (Rupicapra pyrenaica) (10.2%; 10/98). Seropositive animals were detected in 81.4% (57/70; 95%CI: 70.8-88.8) of the sampled populations. SBV seroprevalence ranged from 18.8% (48/256) in bioregion (BR)2 (north-central, Mediterranean) to 32.3% (31/96) in BR1 (northeastern or Atlantic, Eurosiberian). Anti-SBV antibodies were not found before 2012, when the first outbreak of SBD was reported in Spain. In contrast, seropositivity was detected uninterruptedly during the period 2012-2016 and anti-SBV antibodies were found in yearling animals in each of these years. Our results provide evidence of widespread endemic circulation of SBV among wild ruminant populations in mainland Spain in recent years. Surveillance in these species could be a useful tool for monitoring SBV in Europe, particularly in areas where wild ruminants share habitats with livestock.
Collapse
Affiliation(s)
- Saúl Jiménez-Ruiz
- Departamento de Sanidad Animal. Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain.,Grupo Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Ciudad Real, Spain
| | - Maria A Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas. Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Pelayo Acevedo
- Grupo Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Ciudad Real, Spain
| | - Maria Cruz Arnal
- Departamento de Patología Animal. Facultad de Veterinaria, Universidad de Zaragoza (UNIZAR), Zaragoza, Spain
| | - Félix Gómez-Guillamón
- Consejería de Medio Ambiente y Ordenación del Territorio (CMAOT), Junta de Andalucía, Málaga, Spain
| | - Paloma Prieto
- Parque Natural Sierras de Cazorla, Segura y Las Villas. Junta de Andalucía, Cazorla (Jaén), Spain
| | - María José Gens
- Consejería de Turismo, Cultura y Medio Ambiente, Dirección General del Medio Natural de la Región de Murcia, Murcia, Spain
| | - David Cano-Terriza
- Departamento de Sanidad Animal. Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Daniel Fernández de Luco
- Departamento de Patología Animal. Facultad de Veterinaria, Universidad de Zaragoza (UNIZAR), Zaragoza, Spain
| | - Joaquín Vicente
- Grupo Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Ciudad Real, Spain
| | - Ignacio García-Bocanegra
- Departamento de Sanidad Animal. Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain
| |
Collapse
|
5
|
Vengušt G, Žele Vengušt D, Toplak I, Rihtarič D, Kuhar U. Post-epidemic investigation of Schmallenberg virus in wild ruminants in Slovenia. Transbound Emerg Dis 2020; 67:1708-1715. [PMID: 31991522 PMCID: PMC7383813 DOI: 10.1111/tbed.13495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/08/2019] [Accepted: 01/22/2020] [Indexed: 11/29/2022]
Abstract
Schmallenberg virus (SBV) is a vector-borne virus belonging to the genus Orthobunyavirus within the Bunyaviridae family. SBV emerged in Europe in 2011 and was characterized by epidemics of abortions, stillbirths and congenital malformations in domestic ruminants. The first evidence of SBV infection in Slovenia was from an ELISA-positive sample from a cow collected in August 2012; clinical manifestations of SBV disease in sheep and cattle were observed in 2013, with SBV RNA detected in samples collected from a total of 28 herds. A potential re-emergence of SBV in Europe is predicted to occur when population-level immunity declines. SBV is also capable of infecting several wild ruminant species, although clinical disease has not yet been described in these species. Data on SBV-positive wild ruminants suggest that these species might be possible sources for the re-emergence of SBV. The aim of this study was to investigate whether SBV was circulating among wild ruminants in Slovenia and whether these species can act as a virus reservoir. A total of 281 blood and spleen samples from wild ruminants, including roe deer, red deer, chamois and European mouflon, were collected during the 2017-2018 hunting season. Serum samples were tested for antibodies against SBV by ELISA; the overall seroprevalence was 18.1%. Seropositive samples were reported from all over the country in examined animal species from 1 to 15 years of age. Spleen samples from the seropositive animals and serum samples from the seronegative animals were tested for the presence of SBV RNA using real-time RT-PCR; all the samples tested negative. Based on the results of the seropositive animals, it was demonstrated that SBV was circulating in wild ruminant populations in Slovenia even after the epidemic, as almost half (23/51) of the seropositive animals were 1 or 2 years old.
Collapse
Affiliation(s)
- Gorazd Vengušt
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Diana Žele Vengušt
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ivan Toplak
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Danijela Rihtarič
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Kuhar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Collins ÁB, Doherty ML, Barrett DJ, Mee JF. Schmallenberg virus: a systematic international literature review (2011-2019) from an Irish perspective. Ir Vet J 2019; 72:9. [PMID: 31624588 PMCID: PMC6785879 DOI: 10.1186/s13620-019-0147-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/05/2019] [Indexed: 11/10/2022] Open
Abstract
In Autumn 2011, nonspecific clinical signs of pyrexia, diarrhoea, and drop in milk yield were observed in dairy cattle near the German town of Schmallenberg at the Dutch/German border. Targeted veterinary diagnostic investigations for classical endemic and emerging viruses could not identify a causal agent. Blood samples were collected from animals with clinical signs and subjected to metagenomic analysis; a novel orthobunyavirus was identified and named Schmallenberg virus (SBV). In late 2011/early 2012, an epidemic of abortions and congenital malformations in calves, lambs and goat kids, characterised by arthrogryposis and hydranencephaly were reported in continental Europe. Subsequently, SBV RNA was confirmed in both aborted and congenitally malformed foetuses and also in Culicoides species biting midges. It soon became evident that SBV was an arthropod-borne teratogenic virus affecting domestic ruminants. SBV rapidly achieved a pan-European distribution with most countries confirming SBV infection within a year or two of the initial emergence. The first Irish case of SBV was confirmed in the south of the country in late 2012 in a bovine foetus. Since SBV was first identified in 2011, a considerable body of scientific research has been conducted internationally describing this novel emerging virus. The aim of this systematic review is to provide a comprehensive synopsis of the most up-to-date scientific literature regarding the origin of SBV and the spread of the Schmallenberg epidemic, in addition to describing the species affected, clinical signs, pathogenesis, transmission, risk factors, impact, diagnostics, surveillance methods and control measures. This review also highlights current knowledge gaps in the scientific literature regarding SBV, most notably the requirement for further research to determine if, and to what extent, SBV circulation occurred in Europe and internationally during 2017 and 2018. Moreover, recommendations are also made regarding future arbovirus surveillance in Europe, specifically the establishment of a European-wide sentinel herd surveillance program, which incorporates bovine serology and Culicoides entomology and virology studies, at national and international level to monitor for the emergence and re-emergence of arboviruses such as SBV, bluetongue virus and other novel Culicoides-borne arboviruses.
Collapse
Affiliation(s)
- Áine B Collins
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co, Cork, Ireland.,2School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Michael L Doherty
- 2School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Damien J Barrett
- Department of Agriculture, Surveillance, Animal By-Products and TSE Division, Food and the Marine, Backweston, Celbridge, Co. Kildare Ireland
| | - John F Mee
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co, Cork, Ireland
| |
Collapse
|
7
|
Wernike K, Holsteg M, Szillat KP, Beer M. Development of within-herd immunity and long-term persistence of antibodies against Schmallenberg virus in naturally infected cattle. BMC Vet Res 2018; 14:368. [PMID: 30477532 PMCID: PMC6258403 DOI: 10.1186/s12917-018-1702-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/20/2018] [Indexed: 11/10/2022] Open
Abstract
Background In 2011, the teratogenic, insect-transmitted Schmallenberg virus (SBV) emerged at the German/Dutch border region and subsequently spread rapidly throughout the European continent. In cattle, one of the major target species of SBV, first antibodies are detectable between one and three weeks after infection, but the duration of humoral immunity is unknown. To assess the course of immunity in individual animals and the development of the within-herd seroprevalence, cattle kept in a German farm with a herd size of about 300 lactating animals were annually blood sampled between December 2011 and December 2017 and tested for the presence of SBV-specific antibodies. Results During the monitored period, the within-herd seroprevalence declined from 74.92% in 2011 to 39.93% in 2015 and, thereafter, slightly increased to 49.53% in 2016 and 48.44% in 2017. From the animals that were tested in 2014 and 2015 for the first time (between 24 and 35 months of age) only 14.77% and 7.45%, respectively, scored positive. Thereafter, the seropositivity rate of this age group rose markedly to 58.04% in 2016 and 48.10% in 2017 indicating a circulation of SBV. Twenty-three individual animals were consistently sampled once per year between 2011 and 2017 after the respective insect vector season, 17 of them tested positive at the first sampling. Fourteen animals were still seropositive in December 2017, while three cattle (17.65%) became seronegative. Conclusions The regular re-emergence of SBV in Central Europe is a result of decreasing herd immunity caused by the replacement of animals by seronegative youngstock rather than of a drop of antibody levels in previously infected individual animals. The consequences of the overall decline in herd seroprevalence may be increasing virus circulation and more cases of fetal malformation caused by infection of naïve dams during gestation.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| | - Mark Holsteg
- Chamber of Agriculture for North Rhine-Westphalia, Bovine Health Service, Haus Riswick, Kleve, Germany
| | - Kevin P Szillat
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
8
|
Abstract
In late 2011, unspecific clinical symptoms such as fever, diarrhea, and decreased milk production were observed in dairy cattle in the Dutch/German border region. After exclusion of classical endemic and emerging viruses by targeted diagnostic systems, blood samples from acutely diseased cows were subjected to metagenomics analysis. An insect-transmitted orthobunyavirus of the Simbu serogroup was identified as the causative agent and named Schmallenberg virus (SBV). It was one of the first detections of the introduction of a novel virus of veterinary importance to Europe using the new technology of next-generation sequencing. The virus was subsequently isolated from identical samples as used for metagenomics analysis in insect and mammalian cell lines and disease symptoms were reproduced in calves experimentally infected with both, this culture-grown virus and blood samples of diseased cattle. Since its emergence, SBV spread very rapidly throughout the European ruminant population causing mild unspecific disease in adult animals, but also premature birth or stillbirth and severe fetal malformation when naive dams were infected during a critical phase of gestation. In the following years, SBV recirculated regularly to a larger extend; in the 2014 and 2016 vector seasons the virus was again repeatedly detected in the blood of adult ruminants, and in the following winter and spring months, a number of malformed calves and lambs was born. The genome of viruses present in viremic adult animals showed a very high sequence stability; in sequences generated between 2012 and 2016, only a few amino acid substitutions in comparison to the initial SBV isolate could be detected. In contrast, a high sequence variability was identified in the aminoterminal part of the glycoprotein Gc-encoding region of viruses present in the brain of malformed newborns. This mutation hotspot is independent of the region or host species from which the samples originated and is potentially involved in immune evasion mechanisms.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
9
|
Talavera S, Muñoz-Muñoz F, Verdún M, Pujol N, Pagès N. Revealing potential bridge vectors for BTV and SBV: a study on Culicoides blood feeding preferences in natural ecosystems in Spain. MEDICAL AND VETERINARY ENTOMOLOGY 2018; 32:35-40. [PMID: 28857265 DOI: 10.1111/mve.12263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/28/2017] [Accepted: 06/09/2017] [Indexed: 05/26/2023]
Abstract
Several species of Culicoides (Diptera: Ceratopogonidae) are vectors of pathogens, such as the bluetongue (BTV) and Schmallenberg (SBV) viruses, which cause important diseases in domestic and wild ruminants. As wild ruminants can contribute to overwintering and epizootics of both diseases, knowledge of the host-feeding behaviour of Culicoides in natural ecosystems is important to better understand their epidemiology. Blood-engorged Culicoides females trapped in natural areas inhabited by different wild ruminant species were genetically analysed to identify host species. The origin of bloodmeals was identified in 114 females of 14 species of Culicoides. A total of 104 (91.1%) Culicoides fed on mammals and 10 (8.9%) on birds. The most abundant host identified was red deer (66.7%), followed by humans (13%) and fallow deer (6.1%). Eleven of the 14 species of Culicoides fed exclusively on mammalian hosts. Among them, five are mammalophilic species considered to be important BTV and/or SBV vectors. The results of the present study confirm that Culicoides imicola, Culicoides obsoletus, Culicoides scoticus, Culicoides pulicaris and Culicoides punctatus fed on wild ruminants, and therefore support the hypothesis that these species can act as bridge vectors by facilitating the circulation of pathogens between wild and domestic ruminant communities.
Collapse
Affiliation(s)
- S Talavera
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra, Spain
| | - F Muñoz-Muñoz
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - M Verdún
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra, Spain
| | - N Pujol
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra, Spain
| | - N Pagès
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra, Spain
| |
Collapse
|
10
|
Abstract
Schmallenberg virus (SBV), an emerging arbovirus in Europe, is an important pathogen in domestic ruminants; however, its impact on free-ranging wild ruminants is not well studied. Three hundred and forty-seven serum samples collected between 2011 and 2016 from 302 European bison ( Bison bonasus) from 12 different sites in Poland were tested for the presence of SBV antibodies. In addition, 86 sera were collected between 2013 and 2016 from three species of cervids for testing for SBV antibodies. After the first detection of the virus in Poland in October 2012, the proportion of SBV-seropositive European bison reached 81% (95% confidence interval [CI]: 77.1-85.8%), whereas in cervids seroprevalence was 34% (95% CI: 23.5-43.9%). There was an increase in seroprevalence in European bison from 2012 to 2014. Biting midges ( Culicoides spp.), the primary vectors of SBV, were monitored entomologically for the identification of the biting midge populations and virologically for SBV infections in the Białowieża Forest region, which contains the world's largest European bison population. We detected SBV by PCR in 3% of Culicoides pools from 2015. In addition, seven fetal brain samples from European bison or cervids were tested and were negative for SBV RNA. Our results indicate a high seroprevalence with reduced transmission of SBV in subsequent years in the European bison populations and lower seroprevalence in cervids.
Collapse
|
11
|
García-Bocanegra I, Cano-Terriza D, Vidal G, Rosell R, Paniagua J, Jiménez-Ruiz S, Expósito C, Rivero-Juarez A, Arenas A, Pujols J. Monitoring of Schmallenberg virus in Spanish wild artiodactyls, 2006-2015. PLoS One 2017; 12:e0182212. [PMID: 28813443 PMCID: PMC5559100 DOI: 10.1371/journal.pone.0182212] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 07/16/2017] [Indexed: 01/06/2023] Open
Abstract
Schmallenberg disease is an emerging disease that affects domestic and wild ruminants in Europe. An epidemiological survey was carried out to assess exposure to Schmallenberg virus (SBV) in wild artiodactyls in Spain between 2006 and 2015. A total of 1751 sera from wild artiodactyls, including 1066 red deer, 304 fallow deer, 192 mouflon, 109 wild boar, 49 roe deer and 31 Spanish ibex were tested for antibodies against SBV by ELISA and confirmed by virus neutralization test. SBV was not detected between the 2006/2007 and the 2010/2011 hunting seasons. Overall seroprevalence (including samples collected between the 2011/2012 and 2014/2015 hunting seasons) was 14.6% (160/1099; 95%CI: 12.7–16.6). Mean SBV seroprevalence was 13.3±2.6% in red deer, 23.9±4.2% in fallow deer, 16.4±6.1% in mouflon and 2.8±3.1% in wild boar. No antibodies against SBV were found in roe deer or Spanish ibex. The presence of SBV RNA was confirmed in three of 255 (1.2%) spleen samples from wild ruminants analysed by rRT-PCR. In a multivariate mixed-effects logistic regression model, the main risk factors associated with SBV seroprevalence were: species (fallow deer, red deer and mouflon), age (adults) and interactions between hunting areas of more than 1000 hectares and hunting season (2012/2013, 2013/2014 and 2014/2015). The hypothesis of endemic circulation of SBV in the last few years is supported by the detection of SBV RNA in animals sampled in 2011 and 2015, as well as antibodies detected at low level in juveniles in 2012, 2013 and 2014. The results indicate that SBV circulated in wild ruminant populations in Spain during the same period when the virus was first reported in northern Europe, and at least five months before the first case was officially reported in livestock in Spain.
Collapse
Affiliation(s)
- Ignacio García-Bocanegra
- Departamento de Sanidad Animal, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Córdoba, Spain
- * E-mail:
| | - David Cano-Terriza
- Departamento de Sanidad Animal, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Córdoba, Spain
| | - Gema Vidal
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Rosa Rosell
- Centre de Recerca en Sanitat Animal (CReSA)—Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Jorge Paniagua
- Departamento de Sanidad Animal, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Córdoba, Spain
| | - Saúl Jiménez-Ruiz
- Departamento de Sanidad Animal, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Córdoba, Spain
| | - Carlos Expósito
- Departamento de Sanidad Animal, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Córdoba, Spain
| | - Antonio Rivero-Juarez
- Infectious Diseases Unit. Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía de Córdoba, Universidad de Córdoba, Córdoba, Spain
| | - Antonio Arenas
- Departamento de Sanidad Animal, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Córdoba, Spain
| | - Joan Pujols
- Centre de Recerca en Sanitat Animal (CReSA)—Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
12
|
Ségard A, Gardès L, Jacquier E, Grillet C, Mathieu B, Rakotoarivony I, Setier-Rio ML, Chavernac D, Cêtre-Sossah C, Balenghien T, Garros C. Schmallenberg virus in Culicoides
Latreille (Diptera: Ceratopogonidae) populations in France during 2011-2012 outbreak. Transbound Emerg Dis 2017; 65:e94-e103. [DOI: 10.1111/tbed.12686] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Indexed: 01/26/2023]
Affiliation(s)
- A. Ségard
- UMR ASTRE; CIRAD; Montpellier France
| | - L. Gardès
- UMR ASTRE; CIRAD; Montpellier France
| | | | | | - B. Mathieu
- IPPTS, DHPI EA 7292; Université de Strasbourg; Strasbourg France
| | | | | | | | - C. Cêtre-Sossah
- UMR ASTRE; CIRAD; Montpellier France
- UMR ASTRE; CIRAD; Sainte-Clotilde La Réunion France
| | - T. Balenghien
- UMR ASTRE; CIRAD; Montpellier France
- CIRAD; UMR ASTRE; Rabat Maroc
- Institut Agronomique et Vétérinaire Hassan II; Rabat Maroc
| | - C. Garros
- UMR ASTRE; CIRAD; Montpellier France
- UMR ASTRE; CIRAD; Sainte-Clotilde La Réunion France
| |
Collapse
|
13
|
Talavera S, Muñoz-Muñoz F, Durán M, Verdún M, Soler-Membrives A, Oleaga Á, Arenas A, Ruiz-Fons F, Estrada R, Pagès N. Culicoides Species Communities Associated with Wild Ruminant Ecosystems in Spain: Tracking the Way to Determine Potential Bridge Vectors for Arboviruses. PLoS One 2015; 10:e0141667. [PMID: 26510136 PMCID: PMC4624870 DOI: 10.1371/journal.pone.0141667] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 10/11/2015] [Indexed: 01/04/2023] Open
Abstract
The genus Culicoides Latreille 1809 is a well-known vector for protozoa, filarial worms and, above all, numerous viruses. The Bluetongue virus (BTV) and the recently emerged Schmallenberg virus (SBV) are responsible for important infectious, non-contagious, insect-borne viral diseases found in domestic ruminants and transmitted by Culicoides spp. Both of these diseases have been detected in wild ruminants, but their role as reservoirs during the vector-free season still remains relatively unknown. In fact, we tend to ignore the possibility of wild ruminants acting as a source of disease (BTV, SBV) and permitting its reintroduction to domestic ruminants during the following vector season. In this context, a knowledge of the composition of the Culicoides species communities that inhabit areas where there are wild ruminants is of major importance as the presence of a vector species is a prerequisite for disease transmission. In this study, samplings were conducted in areas inhabited by different wild ruminant species; samples were taken in both 2009 and 2010, on a monthly basis, during the peak season for midge activity (in summer and autumn). A total of 102,693 specimens of 40 different species of the genus Culicoides were trapped; these included major BTV and SBV vector species. The most abundant vector species were C. imicola and species of the Obsoletus group, which represented 15% and 11% of total numbers of specimens, respectively. At the local scale, the presence of major BTV and SBV vector species in areas with wild ruminants coincided with that of the nearest sentinel farms included in the Spanish Bluetongue Entomological Surveillance Programme, although their relative abundance varied. The data suggest that such species do not exhibit strong host specificity towards either domestic or wild ruminants and that they could consequently play a prominent role as bridge vectors for different pathogens between both types of ruminants. This finding would support the hypothesis that wild ruminants could act as reservoirs for such pathogens, and subsequently be involved in the reintroduction of disease to livestock on neighbouring farms.
Collapse
Affiliation(s)
- Sandra Talavera
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA- UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
- * E-mail:
| | - Francesc Muñoz-Muñoz
- Departament de Biologia Animal, de Biologia Vegetal i d’Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Mauricio Durán
- Health and Biotechnology (SaBio) group, Instituto de Investigación en Recursos Cinegéticos (IREC), Ciudad Real, Castilla la Mancha, Spain
| | - Marta Verdún
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA- UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Anna Soler-Membrives
- Departament de Biologia Animal, de Biologia Vegetal i d’Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Álvaro Oleaga
- Health and Biotechnology (SaBio) group, Instituto de Investigación en Recursos Cinegéticos (IREC), Ciudad Real, Castilla la Mancha, Spain
- SERPA, Sociedad de Servicios del Principado de Asturias S.A., Gijón, Asturias, Spain
| | - Antonio Arenas
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Andalucía, Spain
| | - Francisco Ruiz-Fons
- Health and Biotechnology (SaBio) group, Instituto de Investigación en Recursos Cinegéticos (IREC), Ciudad Real, Castilla la Mancha, Spain
| | - Rosa Estrada
- Department of Animal Pathology, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
| | - Nitu Pagès
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA- UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| |
Collapse
|
14
|
Mouchantat S, Wernike K, Lutz W, Hoffmann B, Ulrich RG, Börner K, Wittstatt U, Beer M. A broad spectrum screening of Schmallenberg virus antibodies in wildlife animals in Germany. Vet Res 2015; 46:99. [PMID: 26394618 PMCID: PMC4579581 DOI: 10.1186/s13567-015-0232-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/28/2015] [Indexed: 11/10/2022] Open
Abstract
To identify native wildlife species possibly susceptible to infection with Schmallenberg virus (SBV), a midge-transmitted orthobunyavirus that predominantly infects domestic ruminants, samples from various free-living ruminants, but also carnivores, small mammals and wild boar were analyzed serologically. Before 2011, no SBV-specific antibodies were detectable in any of the tested species, thereafter, a large proportion of the ruminant population became seropositive, while every sample taken from carnivores or small mammals tested negative. Surprisingly, SBV-specific-antibodies were also present in a large number of blood samples from wild boar during the 2011/2012 and 2012/2013 hunting seasons. Hence, free-ranging artiodactyls may play a role as wildlife host.
Collapse
Affiliation(s)
- Susan Mouchantat
- Junior Research Group Wildlife Diseases, Friedrich-Loeffler-Institut (FLI), Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| | - Walburga Lutz
- Institute of Wildlife Research, Pützchens Chaussee 228, 53229, Bonn, Germany.
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| | - Rainer G Ulrich
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut (FLI), Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| | - Konstantin Börner
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, 10315, Berlin, Germany.
| | - Ulrich Wittstatt
- State Laboratory Berlin-Brandenburg (LLBB), Invalidenstr. 60, 10557, Berlin, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| |
Collapse
|
15
|
Schmallenberg virus infection in South American camelids: Field and experimental investigations. Vet Microbiol 2015; 180:171-9. [PMID: 26361966 DOI: 10.1016/j.vetmic.2015.08.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/21/2015] [Accepted: 08/27/2015] [Indexed: 11/24/2022]
Abstract
During the first epizootic wave of the novel, teratogenic Schmallenberg virus (SBV, Orthobunyavirus) in ruminants in Northern Europe, serological evidence of a previous SBV-infection demonstrated that South American camelids (SAC) are also susceptible to SBV. However, their potential role in SBV spread remains unknown. To investigate the prevalence and course of SBV-infection in SAC, a German field study and an animal trial with three llamas and three alpacas were conducted. From September 2012 to December 2013, 313 of 502 SAC (62.35%) were found SBV seropositive, but negative for SBV-RNA. The estimated between-district (94.23% of 52) and median within-district (71.43%) and herd (73.13%) SBV seroprevalence in German SAC was similar to the seroprevalence reported in cattle herds and sheep flocks at the time. An age of >1 year was found a statistically significant risk factor for SBV-infection, which could be explained by the spatio-temporal spread of SBV in Germany during the study period. No clinical signs or an increase of abortion and congenital malformation associated with SBV-infection in SAC were reported by the study participants. Similar to SBV-infected ruminants, SBV-RNAemia in experimentally SBV-infected SAC was detected for a short time between days 3 and 7 after infection (dpi), and seroconversion occurred between 9 and 21 dpi. Despite the similar virological and serological results, the lack of clinical signs and congenital malformation associated with SBV-infection suggests that SBV causes subclinical infection in SAC. However, their role as reservoirs in the spread of SBV has to be further investigated.
Collapse
|
16
|
Molenaar FM, La Rocca SA, Khatri M, Lopez J, Steinbach F, Dastjerdi A. Exposure of Asian Elephants and Other Exotic Ungulates to Schmallenberg Virus. PLoS One 2015; 10:e0135532. [PMID: 26274399 PMCID: PMC4537289 DOI: 10.1371/journal.pone.0135532] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/22/2015] [Indexed: 01/09/2023] Open
Abstract
Schmallenberg virus (SBV) is an emerging Orthobunyavirus, first described in 2011 in cattle in Germany and subsequently spread throughout Europe, affecting mainly ruminant livestock through the induction of foetal malformations. To gain a better understanding of the spectrum of susceptible species and to assess the value of current SBV serological assays, screening of serum samples from exotic artiodactyls and perissodactyls collected at the Living Collections from the Zoological Society of London (Whipsnade and London Zoos) and Chester Zoo was carried out. There was compelling evidence of SBV infection in both zoological collections. The competitive ELISA has proved to be applicable for the detection of SBV in exotic Bovidae, Cervidae, Suidae, Giraffidae and most notably in endangered Asian elephants (Elephas maximus), but unreliable for the screening of Camelidae, for which the plaque reduction neutralisation test was considered the assay of choice.
Collapse
Affiliation(s)
- Fieke M. Molenaar
- Zoological Society of London, ZSL Whipsnade Zoo, Bedfordshire, United Kingdom
| | - S. Anna La Rocca
- Virology department, Animal and Plant Health Agency (APHA)-Weybridge, Woodham Lane, Addlestone, Surrey, United Kingdom
| | - Meenakshi Khatri
- Virology department, Animal and Plant Health Agency (APHA)-Weybridge, Woodham Lane, Addlestone, Surrey, United Kingdom
| | - Javier Lopez
- Chester Zoo, Upton-by-Chester, Cheshire, United Kingdom
| | - Falko Steinbach
- Virology department, Animal and Plant Health Agency (APHA)-Weybridge, Woodham Lane, Addlestone, Surrey, United Kingdom
| | - Akbar Dastjerdi
- Virology department, Animal and Plant Health Agency (APHA)-Weybridge, Woodham Lane, Addlestone, Surrey, United Kingdom
| |
Collapse
|
17
|
Abstract
Schmallenberg disease has emerged in North-Western Europe in 2011 and has since spread widely, even across the European borders. It has the potency to infect many, mainly ruminant, species, but seems to lack zoonotic potential. Horizontal transmission occurs through various Culicoides biting midges and subsequent trans-placental transmission causes teratogenic effects. In some small ruminants, clinical signs, including fever, decreased milk production and diarrhea occur during the viraemic phase, but infection is mostly asymptomatic. However, fetal Schmallenberg virus infection in naïve ewes and goats can result in stillborn offspring, showing a congenital arthrogryposis-hydranencephaly syndrome. The economic impact of infection depends on the number of malformed lambs, but is generally limited. There is debate on whether Schmallenberg virus has newly emerged or is re-emerging, since it is likely one of the ancestors of Shamonda virus, both Orthobunyaviruses belonging to the species Sathuperi virus within the Simbu serogroup viruses. Depending on the vector-borne transmission and the serologic status, future outbreaks of Schmallenberg disease induced congenital disease are expected.
Collapse
|
18
|
Rossi S, Viarouge C, Faure E, Gilot-Fromont E, Gache K, Gibert P, Verheyden H, Hars J, Klein F, Maillard D, Gauthier D, Game Y, Pozet F, Sailleau C, Garnier A, Zientara S, Bréard E. Exposure of Wildlife to the Schmallenberg Virus in France (2011-2014): Higher, Faster, Stronger (than Bluetongue)! Transbound Emerg Dis 2015; 64:354-363. [DOI: 10.1111/tbed.12371] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Indexed: 01/22/2023]
Affiliation(s)
- S. Rossi
- French Agency for Wildlife and Hunting (ONCFS); Unité sanitaire de la faune; St Benoist France
| | - C. Viarouge
- French Agency for Food Environmental and Occupational Health and Safety (ANSES); Laboratoire de santé animale; Maisons-Alfort France
| | - E. Faure
- Fédération Nationale des Chasseurs; Issy-les-Moulineaux France
| | - E. Gilot-Fromont
- Université de Lyon; VetAgroSup; Marcy l'Etoile France
- UMR 5558 LBBE; Villeurbanne France
| | - K. Gache
- National animal health farmers'organisation (GDS France); Paris France
| | - P. Gibert
- French Agency for Wildlife and Hunting (ONCFS); Cnera faune de montagne; Montpellier France
| | - H. Verheyden
- INRA; Comportement et Ecologie de la Faune Sauvage; Castanet-Tolosan France
| | - J. Hars
- French Agency for Wildlife and Hunting (ONCFS); Unité sanitaire de la faune; St Benoist France
| | - F. Klein
- French Agency for Wildlife and Hunting (ONCFS); Cnera cervidés sanglier; St Benoist France
| | - D. Maillard
- French Agency for Wildlife and Hunting (ONCFS); Cnera faune de montagne; Montpellier France
| | - D. Gauthier
- Laboratoire vétérinaire départemental d'analyses et d'hygiène alimentaire des Hautes Alpes; Gap France
| | - Y. Game
- Laboratoire vétérinaire départemental d'analyses de la Savoie; Bassens France
| | - F. Pozet
- Laboratoire départemental d'analyses du Jura; Poligny France
| | - C. Sailleau
- French Agency for Food Environmental and Occupational Health and Safety (ANSES); Laboratoire de santé animale; Maisons-Alfort France
| | - A. Garnier
- French Agency for Food Environmental and Occupational Health and Safety (ANSES); Laboratoire de santé animale; Maisons-Alfort France
| | - S. Zientara
- French Agency for Food Environmental and Occupational Health and Safety (ANSES); Laboratoire de santé animale; Maisons-Alfort France
| | - E. Bréard
- French Agency for Food Environmental and Occupational Health and Safety (ANSES); Laboratoire de santé animale; Maisons-Alfort France
| |
Collapse
|
19
|
Cross-sectional study of Schmallenberg virus seroprevalence in wild ruminants in Poland at the end of the vector season of 2013. BMC Vet Res 2014; 10:967. [PMID: 25528665 PMCID: PMC4299547 DOI: 10.1186/s12917-014-0307-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In view of recurrent Schmallenberg virus (SBV) infections all over Europe between 2011 and 2013, a lively scientific debate over the importance of the sylvatic transmission cycle of the virus has emerged. The study presents results of serosurvey which included wild ruminants representing species of red deer (Cervus elaphus), roe deer (Capreolus capreolus), European bison (Bison bonasus), fallow deer (Dama dama), mouflon (Ovis orientalis musimon) hunted or immobilized at 34 different locations of Poland in the autumn/winter 2013. RESULTS Out of 580 sera, 145 (25%) were considered positive for SBV antibodies. The overall SBV seroprevalence calculated using district probability weights was estimated at 27.7% (95% CI: 24.0-31.4). The seroprevalences at the district level varied between 0 and 80.0% (95% CI: 24.5-135.0%) with the mean within-district prevalence of 24.0% (95% CI: 16.5-31.4). Significantly higher seroprevalence was observed in animals from the Eastern provinces (36.6%) compared to the Western provinces (22.8%). SBV infection impact varied significantly between different species (higher SBV seroprevalence in larger species such as European bison), population type (free-ranging; captive), age, body weight, percent of the district forest area, part of Poland, and the densities of wild and domestic ruminants at the district and province level. Using statistical multivariable logistic model, population type, age, part of Poland and domestic ruminant density were identified as the main risk factors for SBV infection in wild ruminants in Poland. CONCLUSIONS SBV seroprevalence in wild ruminants, similarly to the epizootic situation in domestic ruminants in the country, varied significantly between districts and provinces. Association between SBV seropositivity, species, animal body weight and age group expressed by a higher prevalence in larger ruminants may be explained by more frequent exposure to midge-vector bites of the latter, however it might also be related to the different species susceptibility to SBV infection. The positive effect of higher domestic ruminant density on the risk of SBV infection in wildlife and lower SBV seroprevalences in the latter suggested that the sylvatic cycle of SBV transmission is an effect of the pathogen spillover from the domestic animals.
Collapse
|
20
|
|
21
|
Bush RD, Young JR, Suon S, Ngim MS, Windsor PA. Forage growing as an incentive to improve smallholder beef production in Cambodia. ANIMAL PRODUCTION SCIENCE 2014. [DOI: 10.1071/an14136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A major challenge for large ruminant improvement projects in developing countries is smallholder farmer engagement that promotes the value of knowledge in informed decision making. Most large ruminant smallholder farmers in Cambodia are considered to be livestock keepers and will become livestock producers only if they recognise the production and financial benefits from improved health and management practices. The benefits of growing and feeding five introduced forage species was investigated as a potential entry point for smallholder farmer engagement in southern Cambodia. The mean chemical composition, digestibility and estimated metabolisable energy (ME; MJ/kg DM) of introduced forages at 30 days after first harvest were comparable to published values. An initial establishment of 52 fodder plots covering 2.6 ha in 2008 expanded to 1306 plots covering 45 ha, including non-project farmers from surrounding areas. The establishment of forage plots in high-intervention project villages provided an improvement in average daily liveweight gain of cattle and saved farmers up to 2 h labour per day. This strategy provided a platform for increased uptake and adoption of livestock health and production interventions.
Collapse
|