1
|
Gumbo R, Goosen WJ, Buss PE, de Klerk-Lorist LM, Lyashchenko K, Warren RM, van Helden PD, Miller MA, Kerr TJ. "Spotting" Mycobacterium bovis infection in leopards ( Panthera pardus) - novel application of diagnostic tools. Front Immunol 2023; 14:1216262. [PMID: 37727792 PMCID: PMC10505734 DOI: 10.3389/fimmu.2023.1216262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/14/2023] [Indexed: 09/21/2023] Open
Abstract
Background Mycobacterium bovis (M. bovis) is the causative agent of animal tuberculosis (TB) which poses a threat to many of South Africa's most iconic wildlife species, including leopards (Panthera pardus). Due to limited tests for wildlife, the development of accurate ante-mortem tests for TB diagnosis in African big cat populations is urgently required. The aim of this study was to evaluate currently available immunological assays for their ability to detect M. bovis infection in leopards. Methods Leopard whole blood (n=19) was stimulated using the QuantiFERON Gold Plus In-Tube System (QFT) to evaluate cytokine gene expression and protein production, along with serological assays. The GeneXpert® MTB/RIF Ultra (GXU®) qPCR assay, mycobacterial culture, and speciation by genomic regions of difference PCR, was used to confirm M. bovis infection in leopards. Results Mycobacterium bovis infection was confirmed in six leopards and individuals that were tuberculin skin test (TST) negative were used for comparison. The GXU® assay was positive using all available tissue homogenates (n=5) from M. bovis culture positive animals. Mycobacterium bovis culture-confirmed leopards had greater antigen-specific responses, in the QFT interferon gamma release assay, CXCL9 and CXCL10 gene expression assays, compared to TST-negative individuals. One M. bovis culture-confirmed leopard had detectable antibodies using the DPP® Vet TB assay. Conclusion Preliminary results demonstrated that immunoassays and TST may be potential tools to identify M. bovis-infected leopards. The GXU® assay provided rapid direct detection of infected leopards. Further studies should aim to improve TB diagnosis in wild felids, which will facilitate disease surveillance and screening.
Collapse
Affiliation(s)
- Rachiel Gumbo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Wynand J. Goosen
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Peter E. Buss
- South African National Parks, Veterinary Wildlife Services, Kruger National Park, Skukuza, South Africa
| | - Lin-Mari de Klerk-Lorist
- Skukuza State Veterinary Office, Department of Agriculture, Land Reform and Rural Development, Skukuza, South Africa
| | | | - Robin M. Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Paul D. van Helden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Michele A. Miller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tanya J. Kerr
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
2
|
Transbound Emerg DisTRANSBOUNDARY AND EMERGING DISEASES 2022; 69:4055. [PMID: 36057849 DOI: 10.1111/tbed.14689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
3
|
Gumbo R, Sylvester TT, Parsons SDC, Buss PE, Warren RM, van Helden PD, Miller MA, Kerr TJ. Comparison of interferon gamma release assay and CXCL9 gene expression assay for the detection of Mycobacterium bovis infection in African lions (Panthera leo). Front Cell Infect Microbiol 2022; 12:989209. [PMID: 36189358 PMCID: PMC9523132 DOI: 10.3389/fcimb.2022.989209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium bovis (M. bovis) infection has been identified in both domestic and wild animals and may threaten the conservation of vulnerable species including African lions (Panthera leo). There is a need to develop accurate ante-mortem tools for detection of M. bovis infection in African big cat populations for wildlife management and disease surveillance. The aim of this study was to compare the performances of two immunological assays, the QuantiFERON®-TB Gold Plus (QFT) Mabtech Cat interferon gamma release assay (IGRA) and QFT CXCL9 gene expression assay (GEA), which have both shown diagnostic potential for M. bovis detection in African lions. Lion whole blood (n=47), stimulated using the QFT platform, was used for measuring antigen-specific CXCL9 expression and IFN-γ production and to assign M. bovis infection status. A subset (n=12) of mycobacterial culture-confirmed M. bovis infected and uninfected African lions was used to compare the agreement between the immunological diagnostic assays. There was no statistical difference between the proportions of test positive African lions tested by the QFT Mabtech Cat IGRA compared to the QFT CXCL9 GEA. There was also a moderate association between immunological diagnostic assays when numerical results were compared. The majority of lions had the same diagnostic outcome using the paired assays. Although the QFT Mabtech Cat IGRA provides a more standardized, commercially available, and cost-effective test compared to QFT CXCL9 GEA, using both assays to categorize M. bovis infection status in lions will increase confidence in results.
Collapse
Affiliation(s)
- Rachiel Gumbo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Tashnica T. Sylvester
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Sven D. C. Parsons
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Afrivet Business Management, Newmark Estate Office Park, Pretoria, South Africa
| | - Peter E. Buss
- Veterinary Wildlife Services, Kruger National Park, Skukuza, South Africa
| | - Robin M. Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Paul D. van Helden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Michele A. Miller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- *Correspondence: Michele A. Miller,
| | - Tanya J. Kerr
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
4
|
Ncube P, Bagheri B, Goosen WJ, Miller MA, Sampson SL. Evidence, Challenges, and Knowledge Gaps Regarding Latent Tuberculosis in Animals. Microorganisms 2022; 10:1845. [PMID: 36144447 PMCID: PMC9503773 DOI: 10.3390/microorganisms10091845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 01/30/2023] Open
Abstract
Mycobacterium bovis and other Mycobacterium tuberculosis complex (MTBC) pathogens that cause domestic animal and wildlife tuberculosis have received considerably less attention than M. tuberculosis, the primary cause of human tuberculosis (TB). Human TB studies have shown that different stages of infection can exist, driven by host-pathogen interactions. This results in the emergence of heterogeneous subpopulations of mycobacteria in different phenotypic states, which range from actively replicating (AR) cells to viable but slowly or non-replicating (VBNR), viable but non-culturable (VBNC), and dormant mycobacteria. The VBNR, VBNC, and dormant subpopulations are believed to underlie latent tuberculosis (LTB) in humans; however, it is unclear if a similar phenomenon could be happening in animals. This review discusses the evidence, challenges, and knowledge gaps regarding LTB in animals, and possible host-pathogen differences in the MTBC strains M. tuberculosis and M. bovis during infection. We further consider models that might be adapted from human TB research to investigate how the different phenotypic states of bacteria could influence TB stages in animals. In addition, we explore potential host biomarkers and mycobacterial changes in the DosR regulon, transcriptional sigma factors, and resuscitation-promoting factors that may influence the development of LTB.
Collapse
Affiliation(s)
| | | | | | | | - Samantha Leigh Sampson
- DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie Van Zijl Dr, Parow, Cape Town 7505, South Africa
| |
Collapse
|
5
|
Adaptation and Diagnostic Potential of a Commercial Cat Interferon Gamma Release Assay for the Detection of Mycobacterium bovis Infection in African Lions (Panthera leo). Pathogens 2022; 11:pathogens11070765. [PMID: 35890010 PMCID: PMC9317741 DOI: 10.3390/pathogens11070765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
Mycobacterium bovis (M. bovis) infection in wildlife, including lions (Panthera leo), has implications for individual and population health. Tools for the detection of infected lions are needed for diagnosis and disease surveillance. This study aimed to evaluate the Mabtech Cat interferon gamma (IFN-γ) ELISABasic kit for detection of native lion IFN-γ in whole blood samples stimulated using the QuantiFERON® TB Gold Plus (QFT) platform as a potential diagnostic assay. The ELISA was able to detect lion IFN-γ in mitogen-stimulated samples, with good parallelism, linearity, and a working range of 15.6–500 pg/mL. Minimal matrix interference was observed in the recovery of domestic cat rIFN-γ in lion plasma. Both intra- and inter-assay reproducibility had a coefficient of variation less than 10%, while the limit of detection and quantification were 7.8 pg/mL and 31.2 pg/mL, respectively. The diagnostic performance of the QFT Mabtech Cat interferon gamma release assay (IGRA) was determined using mycobacterial antigen-stimulated samples from M. bovis culture-confirmed infected (n = 8) and uninfected (n = 4) lions. A lion-specific cut-off value (33 pg/mL) was calculated, and the sensitivity and specificity were determined to be 87.5% and 100%, respectively. Although additional samples should be tested, the QFT Mabtech Cat IGRA could identify M. bovis-infected African lions.
Collapse
|
6
|
Review of Methods Used for Diagnosing Tuberculosis in Captive and Free-Ranging Non-Bovid Species (2012-2020). Pathogens 2021; 10:pathogens10050584. [PMID: 34064571 PMCID: PMC8151627 DOI: 10.3390/pathogens10050584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) is a group of bacteria that cause tuberculosis (TB) in diverse hosts, including captive and free-ranging wildlife species. There is significant research interest in developing immunodiagnostic tests for TB that are both rapid and reliable, to underpin disease surveillance and control. The aim of this study was to carry out an updated review of diagnostics for TB in non-bovid species with a focus predominantly on those based on measurement of immunity. A search was carried out to identify relevant papers meeting a pre-defined set of inclusion criteria. Forty-one papers were identified from this search, from which only twenty papers contained data to measure and compare diagnostic performance using diagnostic odds ratio. The diagnostic tests from each study were ranked based on sensitivity, specificity, and diagnostic odds ratio to define high performing tests. High sensitivity and specificity values across a range of species were reported for a new antigenic target, P22 complex, demonstrating it to be a reliable and accurate antigenic target. Since the last review of this kind was undertaken, the immunodiagnosis of TB in meerkats and African wild dogs was reported for the first time. Suid species showed the most consistent immunological responses and highlight a potential dichotomy between humoral and cellular immune responses.
Collapse
|
7
|
Kerr TJ, Gumbo R, Goosen WJ, Rogers P, Last RD, Miller MA. Novel Techniques for Detection of Mycobacterium bovis Infection in a Cheetah. Emerg Infect Dis 2021; 26:630-631. [PMID: 32091381 PMCID: PMC7045837 DOI: 10.3201/eid2603.191542] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In South Africa, bovine tuberculosis threatens some of Africa's most iconic wildlife species, including the cheetah (Acinonyx jubatus). The lack of antemortem diagnostic tests for this species strongly hinders conservation efforts. We report use of antemortem and postmortem diagnostic assays to detect Mycobacterium bovis infection in a cheetah.
Collapse
|
8
|
Smith K, Kleynhans L, Warren RM, Goosen WJ, Miller MA. Cell-Mediated Immunological Biomarkers and Their Diagnostic Application in Livestock and Wildlife Infected With Mycobacterium bovis. Front Immunol 2021; 12:639605. [PMID: 33746980 PMCID: PMC7969648 DOI: 10.3389/fimmu.2021.639605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium bovis has the largest host range of the Mycobacterium tuberculosis complex and infects domestic animal species, wildlife, and humans. The presence of global wildlife maintenance hosts complicates bovine tuberculosis (bTB) control efforts and further threatens livestock and wildlife-related industries. Thus, it is imperative that early and accurate detection of M. bovis in all affected animal species is achieved. Further, an improved understanding of the complex species-specific host immune responses to M. bovis could enable the development of diagnostic tests that not only identify infected animals but distinguish between infection and active disease. The primary bTB screening standard worldwide remains the tuberculin skin test (TST) that presents several test performance and logistical limitations. Hence additional tests are used, most commonly an interferon-gamma (IFN-γ) release assay (IGRA) that, similar to the TST, measures a cell-mediated immune (CMI) response to M. bovis. There are various cytokines and chemokines, in addition to IFN-γ, involved in the CMI component of host adaptive immunity. Due to the dominance of CMI-based responses to mycobacterial infection, cytokine and chemokine biomarkers have become a focus for diagnostic tests in livestock and wildlife. Therefore, this review describes the current understanding of host immune responses to M. bovis as it pertains to the development of diagnostic tools using CMI-based biomarkers in both gene expression and protein release assays, and their limitations. Although the study of CMI biomarkers has advanced fundamental understanding of the complex host-M. bovis interplay and bTB progression, resulting in development of several promising diagnostic assays, most of this research remains limited to cattle. Considering differences in host susceptibility, transmission and immune responses, and the wide variety of M. bovis-affected animal species, knowledge gaps continue to pose some of the biggest challenges to the improvement of M. bovis and bTB diagnosis.
Collapse
Affiliation(s)
- Katrin Smith
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Léanie Kleynhans
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Robin M Warren
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Wynand J Goosen
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Michele A Miller
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
9
|
Thomas J, Balseiro A, Gortázar C, Risalde MA. Diagnosis of tuberculosis in wildlife: a systematic review. Vet Res 2021; 52:31. [PMID: 33627188 PMCID: PMC7905575 DOI: 10.1186/s13567-020-00881-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/14/2020] [Indexed: 11/10/2022] Open
Abstract
Animal tuberculosis (TB) is a multi-host disease caused by members of the Mycobacterium tuberculosis complex (MTC). Due to its impact on economy, sanitary standards of milk and meat industry, public health and conservation, TB control is an actively ongoing research subject. Several wildlife species are involved in the maintenance and transmission of TB, so that new approaches to wildlife TB diagnosis have gained relevance in recent years. Diagnosis is a paramount step for screening, epidemiological investigation, as well as for ensuring the success of control strategies such as vaccination trials. This is the first review that systematically addresses data available for the diagnosis of TB in wildlife following the Preferred Reporting Items of Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The article also gives an overview of the factors related to host, environment, sampling, and diagnostic techniques which can affect test performance. After three screenings, 124 articles were considered for systematic review. Literature indicates that post-mortem examination and culture are useful methods for disease surveillance, but immunological diagnostic tests based on cellular and humoral immune response detection are gaining importance in wildlife TB diagnosis. Among them, serological tests are especially useful in wildlife because they are relatively inexpensive and easy to perform, facilitate large-scale surveillance and can be used both ante- and post-mortem. Currently available studies assessed test performance mostly in cervids, European badgers, wild suids and wild bovids. Research to improve diagnostic tests for wildlife TB diagnosis is still needed in order to reach accurate, rapid and cost-effective diagnostic techniques adequate to a broad range of target species and consistent over space and time to allow proper disease monitoring.
Collapse
Affiliation(s)
- Jobin Thomas
- Sanidad Y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC), 13003, Ciudad Real, Spain.,Indian Council of Agricultural Research (ICAR), New Delhi, 110001, India
| | - Ana Balseiro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain. .,Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas, Grulleros, 24346, León, Spain.
| | - Christian Gortázar
- Sanidad Y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC), 13003, Ciudad Real, Spain
| | - María A Risalde
- Departamento de Anatomía Y Anatomía Patológica Comparadas Y Toxicología. Facultad de Veterinaria, Universidad de Córdoba (UCO), 14014, Córdoba, Spain.,Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica Y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), 14004, Córdoba, Spain
| |
Collapse
|
10
|
de Waal CR, Kleynhans L, Parsons SDC, Goosen WJ, Hausler G, Buss PE, Warren RM, van Helden PD, Landolfi JA, Miller MA, Kerr TJ. Development of a cytokine gene expression assay for the relative quantification of the African elephant (Loxodonta africana) cell-mediated immune responses. Cytokine 2021; 141:155453. [PMID: 33548797 DOI: 10.1016/j.cyto.2021.155453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 11/27/2022]
Abstract
Immunological assays are the basis for many diagnostic tests for infectious diseases in animals and humans. Application in wildlife species, including the African elephant (Loxodonta africana), is limited however due to lack of information on immune responses. Since many immunoassays require both identified biomarkers of immune activation as well as species-specific reagents, it is crucial to have knowledge of basic immunological responses in the species of interest. Cytokine gene expression assays (GEAs) used to measure specific immune responses in wildlife have frequently shown that targeted biomarkers are often species-specific. Therefore, the aim of this study was to identify elephant-specific cytokine biomarkers to detect immune activation and to develop a GEA, using pokeweed mitogen stimulated whole blood from African elephants. This assay will provide the foundation for the development of future cytokine GEAs that can be used to detect antigen specific immune responses and potentially lead to various diagnostic tests for this species.
Collapse
Affiliation(s)
- Candice R de Waal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Léanie Kleynhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sven D C Parsons
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Wynand J Goosen
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Guy Hausler
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Peter E Buss
- South African National Parks, Veterinary Wildlife Services, Kruger National Park, Skukuza, South Africa
| | - Robin M Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Paul D van Helden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jennifer A Landolfi
- University of Illinois Zoological Pathology Program, 3300 Golf Road, Brookfield, IL, 60153, USA
| | - Michele A Miller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tanya J Kerr
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
11
|
Bernitz N, Kerr TJ, Goosen WJ, Chileshe J, Higgitt RL, Roos EO, Meiring C, Gumbo R, de Waal C, Clarke C, Smith K, Goldswain S, Sylvester TT, Kleynhans L, Dippenaar A, Buss PE, Cooper DV, Lyashchenko KP, Warren RM, van Helden PD, Parsons SDC, Miller MA. Review of Diagnostic Tests for Detection of Mycobacterium bovis Infection in South African Wildlife. Front Vet Sci 2021; 8:588697. [PMID: 33585615 PMCID: PMC7876456 DOI: 10.3389/fvets.2021.588697] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022] Open
Abstract
Wildlife tuberculosis is a major economic and conservation concern globally. Bovine tuberculosis (bTB), caused by Mycobacterium bovis (M. bovis), is the most common form of wildlife tuberculosis. In South Africa, to date, M. bovis infection has been detected in 24 mammalian wildlife species. The identification of M. bovis infection in wildlife species is essential to limit the spread and to control the disease in these populations, sympatric wildlife species and neighboring livestock. The detection of M. bovis-infected individuals is challenging as only severely diseased animals show clinical disease manifestations and diagnostic tools to identify infection are limited. The emergence of novel reagents and technologies to identify M. bovis infection in wildlife species are instrumental in improving the diagnosis and control of bTB. This review provides an update on the diagnostic tools to detect M. bovis infection in South African wildlife but may be a useful guide for other wildlife species.
Collapse
Affiliation(s)
- Netanya Bernitz
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Tanya J. Kerr
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Wynand J. Goosen
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Josephine Chileshe
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Roxanne L. Higgitt
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Eduard O. Roos
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Christina Meiring
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Rachiel Gumbo
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Candice de Waal
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Charlene Clarke
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Katrin Smith
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Samantha Goldswain
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Taschnica T. Sylvester
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Léanie Kleynhans
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Anzaan Dippenaar
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Peter E. Buss
- Veterinary Wildlife Services, South African National Parks, Kruger National Park, Skukuza, South Africa
| | | | | | - Robin M. Warren
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Paul D. van Helden
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Sven D. C. Parsons
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Michele A. Miller
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
12
|
Cytokine biomarker discovery in the white rhinoceros (Ceratotherium simum). Vet Immunol Immunopathol 2020; 232:110168. [PMID: 33373875 DOI: 10.1016/j.vetimm.2020.110168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/21/2022]
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis (M. bovis) infection, disrupts conservation programs of threatened species such as the white rhinoceros (Ceratotherium simum). Interferon gamma release assays have been developed for the diagnosis of M. bovis infection in rhinoceros, however, the discovery of additional diagnostic biomarkers might improve the accuracy of case detection. The aim of this pilot study was therefore to evaluate a novel unbiased approach to candidate biomarker discovery and preliminary validation. Whole blood samples from twelve white rhinoceros were incubated in Nil and TB antigen tubes of the QuantiFERON® TB Gold (In-Tube) system after which RNA was extracted and reverse transcribed. Using the equine RT2 profiler PCR array, relative gene expression analysis of samples from two immune sensitized rhinoceros identified CCL4, CCL8, IL23A, LTA, NODAL, TNF, CSF3, CXCL10 and GPI as upregulated in response to antigen stimulation. Novel gene expression assays (GEAs) were designed for selected candidates, i.e. CCL4, CXCL10 and IFNG, and analysis of QFT-processed samples showed the CXCL10 GEA could distinguish between five M. bovis-infected and five uninfected rhinoceros. These findings confirm the value of the equine RT2 profiler PCR array as a useful tool for screening biomarkers for the diagnosis of M. bovis infection in rhinoceros.
Collapse
|
13
|
Green J, Jakins C, Asfaw E, Bruschi N, Parker A, de Waal L, D’Cruze N. African Lions and Zoonotic Diseases: Implications for Commercial Lion Farms in South Africa. Animals (Basel) 2020; 10:ani10091692. [PMID: 32962130 PMCID: PMC7552683 DOI: 10.3390/ani10091692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary In South Africa, thousands of African lions are bred on farms for commercial purposes, such as tourism, trophy hunting, and traditional medicine. Lions on farms often have direct contact with people, such as farm workers and tourists. Such close contact between wild animals and humans creates opportunities for the spread of zoonotic diseases (diseases that can be passed between animals and people). To help understand the health risks associated with lion farms, our study compiled a list of pathogens (bacteria, viruses, parasites, and fungi) known to affect African lions. We reviewed 148 scientific papers and identified a total of 63 pathogens recorded in both wild and captive lions, most of which were parasites (35, 56%), followed by viruses (17, 27%) and bacteria (11, 17%). This included pathogens that can be passed from lions to other animals and to humans. We also found a total of 83 diseases and clinical symptoms associated with these pathogens. Given that pathogens and their associated infectious diseases can cause harm to both animals and public health, we recommend that the lion farming industry in South Africa takes action to prevent and manage potential disease outbreaks. Abstract African lions (Panthera leo) are bred in captivity on commercial farms across South Africa and often have close contact with farm staff, tourists, and other industry workers. As transmission of zoonotic diseases occurs through close proximity between wildlife and humans, these commercial captive breeding operations pose a potential risk to thousands of captive lions and to public health. An understanding of pathogens known to affect lions is needed to effectively assess the risk of disease emergence and transmission within the industry. Here, we conduct a systematic search of the academic literature, identifying 148 peer-reviewed studies, to summarize the range of pathogens and parasites known to affect African lions. A total of 63 pathogenic organisms were recorded, belonging to 35 genera across 30 taxonomic families. Over half were parasites (35, 56%), followed by viruses (17, 27%) and bacteria (11, 17%). A number of novel pathogens representing unidentified and undescribed species were also reported. Among the pathogenic inventory are species that can be transmitted from lions to other species, including humans. In addition, 83 clinical symptoms and diseases associated with these pathogens were identified. Given the risks posed by infectious diseases, this research highlights the potential public health risks associated with the captive breeding industry. We recommend that relevant authorities take imminent action to help prevent and manage the risks posed by zoonotic pathogens on lion farms.
Collapse
Affiliation(s)
- Jennah Green
- World Animal Protection 222 Gray’s Inn Rd., London WC1X 8HB, UK; (J.G.); (E.A.); (N.B.); (A.P.)
| | - Catherine Jakins
- Blood Lion NPC, P.O. Box 1548, Kloof 3640, South Africa; (C.J.); (L.d.W.)
| | - Eyob Asfaw
- World Animal Protection 222 Gray’s Inn Rd., London WC1X 8HB, UK; (J.G.); (E.A.); (N.B.); (A.P.)
| | - Nicholas Bruschi
- World Animal Protection 222 Gray’s Inn Rd., London WC1X 8HB, UK; (J.G.); (E.A.); (N.B.); (A.P.)
| | - Abbie Parker
- World Animal Protection 222 Gray’s Inn Rd., London WC1X 8HB, UK; (J.G.); (E.A.); (N.B.); (A.P.)
| | - Louise de Waal
- Blood Lion NPC, P.O. Box 1548, Kloof 3640, South Africa; (C.J.); (L.d.W.)
| | - Neil D’Cruze
- World Animal Protection 222 Gray’s Inn Rd., London WC1X 8HB, UK; (J.G.); (E.A.); (N.B.); (A.P.)
- Correspondence:
| |
Collapse
|
14
|
CONSERVATION CHALLENGES: THE LIMITATIONS OF ANTEMORTEM TUBERCULOSIS TESTING IN CAPTIVE ASIATIC LIONS ( PANTHERA LEO PERSICA). J Zoo Wildl Med 2020; 51:426-432. [PMID: 32549574 DOI: 10.1638/2019-0084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2020] [Indexed: 11/21/2022] Open
Abstract
Genetic diversity of captive wild animals can be enhanced by moving those individuals with valuable genes between collections and through introduction of a new pair from a range country. This requires movement of animals, which is inherent with disease risks, such as the introduction of pathogenic Mycobacterium sp. (MTBC) into a zoological collection. Decisions need to be made based on the outcome of perimovement disease screening using an array of tests, the majority of which are unvalidated in the species. A pair of endangered Asiatic lions (Panthera leo persica) imported from India to the United Kingdom were screened for MTBC using the comparative intradermal tuberculosis (TB) test, the feline interferon-γ blood test, and the experimental bacteriophage assay. Reactions on all three tests prompted screening of the three resident Asiatic lions using the same tests, all of which were negative for MTBC. Based on these test results, the decision had to be made to exclude the genetically valuable pair from the current collection. MTBC could not be identified using further tests, including culture and PCR on a bronchoalveolar lavage, on feces, or on postmortem tissues. This case series highlights the usefulness of a control group when interpreting unvalidated test results for detection of MTBC, the value of training big cats for conscious blood sampling, and the practical implications of placing the comparative intradermal TB test in the eyelids, when dealing with a species that requires a general anesthetic for most hands-on interventions.
Collapse
|
15
|
Palmer MV, Thacker TC, Rabideau MM, Jones GJ, Kanipe C, Vordermeier HM, Ray Waters W. Biomarkers of cell-mediated immunity to bovine tuberculosis. Vet Immunol Immunopathol 2019; 220:109988. [PMID: 31846797 DOI: 10.1016/j.vetimm.2019.109988] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/15/2019] [Accepted: 11/28/2019] [Indexed: 10/25/2022]
Abstract
Whole blood based assays, particularly interferon gamma (IFN-γ) release assays (IGRAs), are used for the diagnosis of both bovine and human tuberculosis (TB). The aim of the current study was to evaluate a panel of cytokines and chemokines for potential use as diagnostic readouts indicative of Mycobacterium bovis (M. bovis) infection in cattle. A gene expression assay was used to determine the kinetics of the response to M. bovis purified protein derivative and a fusion protein consisting of ESAT-6, CFP10, and Rv3615c upon aerosol infection with ∼104 cfu of M. bovis. The panel of biomarkers included: IFN-γ, CXCL9, CXCL10, CCL2, CCL3, TNF-α, IL-1α, IL-1β, IL-1Ra, IL-22, IL-21 and IL-13. Protein levels of IFN-γ, CXCL9, and CXCL10 were determined by ELISA. Findings suggest that CXCL9, CXCL10, IL-21, IL-13, and several acute phase cytokines may be worth pursuing as diagnostic biomarkers of M. bovis infection in cattle.
Collapse
Affiliation(s)
- Mitchell V Palmer
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture (USDA), Ames, Iowa, USA.
| | - Tyler C Thacker
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture (USDA), Ames, Iowa, USA
| | - Meaghan M Rabideau
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture (USDA), Ames, Iowa, USA
| | - Gareth J Jones
- TB Immunology and Vaccinology, Department of Bacteriology, Animal and Plant Health Agency, New Haw, Addlestone, Surry UK
| | - Carly Kanipe
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture (USDA), Ames, Iowa, USA; Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - H Martin Vordermeier
- TB Immunology and Vaccinology, Department of Bacteriology, Animal and Plant Health Agency, New Haw, Addlestone, Surry UK
| | - W Ray Waters
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture (USDA), Ames, Iowa, USA
| |
Collapse
|
16
|
Cytokine gene expression assay as a diagnostic tool for detection of Mycobacterium bovis infection in warthogs (Phacochoerus africanus). Sci Rep 2019; 9:16525. [PMID: 31712604 PMCID: PMC6848127 DOI: 10.1038/s41598-019-53045-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/28/2019] [Indexed: 11/23/2022] Open
Abstract
Mycobacterium bovis infection has been described in many wildlife species across Africa. However, diagnostic tests are lacking for many of these, including warthogs (Phacochoerus africanus). Most literature on suids has focused on using serological tools, with few studies investigating the use of cell-mediated immune response (CMI) assays. A recent study showed that warthogs develop measurable CMI responses, which suggests that cytokine gene expression assays (GEAs) may be valuable for detecting M. bovis-infection, as shown in numerous African wildlife species. Therefore, the aim of the study was to develop GEAs capable of distinguishing between M. bovis-infected and uninfected warthogs. Whole blood was stimulated using the QuantiFERON-TB Gold (In-Tube) system, using ESAT-6 and CFP-10 peptides, before determining the relative gene expression of five reference (B2M, H3F3A, LDHA, PPIA and YWHAZ) and five target (CXCL9, CXCL10, CXCL11, IFNG and TNFA) genes through qPCR. The reference gene H3F3A was the most stably expressed, while all target genes were significantly upregulated in M. bovis-infected warthogs with the greatest upregulation observed for CXCL10. Consequently, the CXCL10 GEA shows promise as an ante-mortem diagnostic tool for the detection of M. bovis-infected warthogs.
Collapse
|
17
|
Bernitz N, Kerr TJ, Goosen WJ, Clarke C, Higgitt R, Roos EO, Cooper DV, Warren RM, van Helden PD, Parsons SDC, Miller MA. Parallel measurement of IFN-γ and IP-10 in QuantiFERON®-TB Gold (QFT) plasma improves the detection of Mycobacterium bovis infection in African buffaloes (Syncerus caffer). Prev Vet Med 2019; 169:104700. [PMID: 31311648 DOI: 10.1016/j.prevetmed.2019.104700] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 11/24/2022]
Abstract
The QuantiFERON®-TB Gold (QFT) stimulation platform for cytokine release is a novel approach for diagnosis of bovine tuberculosis in wildlife species. Plasma interferon gamma (IFN-γ) is routinely measured to detect immune sensitization to Mycobacterium bovis. However, the cytokine interferon gamma-inducible protein 10 (IP-10) has been proposed as an alternative, more sensitive, diagnostic biomarker. In this study, we investigated the use of the QFT system with measurement of IFN-γ and IP-10 in parallel to identify M. bovis-infected African buffaloes. The test results of either biomarker in a cohort of M. bovis-unexposed buffaloes (n = 70) led to calculation of 100% test specificity. Furthermore, in cohorts of M. bovis culture-positive (n = 51) and M. bovis-suspect (n = 22) buffaloes, the IP-10 test results were positive in a greater number of animals than the number based on the IFN-γ test results. Most notably, when the biomarkers were measured in parallel, the tests identified all M. bovis culture-positive buffaloes, a result neither the single comparative intradermal tuberculin test (SCITT) nor Bovigam® IFN-γ release assay (IGRA) achieved, individually or in parallel. These findings demonstrate the diagnostic potential of this blood-based assay to identify M. bovis-infected African buffaloes and a strategy to maximise the detection of infected animals while maintaining diagnostic specificity and simplifying test procedures.
Collapse
Affiliation(s)
- Netanya Bernitz
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Tanya J Kerr
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Wynand J Goosen
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Charlene Clarke
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Roxanne Higgitt
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Eduard O Roos
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - David V Cooper
- Ezemvelo KwaZulu-Natal Wildlife, PO Box 25, Mtubatuba, 3935, South Africa.
| | - Robin M Warren
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Paul D van Helden
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Sven D C Parsons
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Michele A Miller
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
18
|
Gormley E, Corner LAL. Wild Animal Tuberculosis: Stakeholder Value Systems and Management of Disease. Front Vet Sci 2018; 5:327. [PMID: 30622951 PMCID: PMC6308382 DOI: 10.3389/fvets.2018.00327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/10/2018] [Indexed: 11/13/2022] Open
Abstract
When human health is put at risk from the transmission of animal diseases, the options for intervention often require input from stakeholders whose differing values systems contribute to decisions on disease management. Animal tuberculosis (TB), caused principally by Mycobacterium bovis is an archetypical zoonotic pathogen in that it can be transmitted from animals to humans and vice versa. Although elimination of zoonotic transmission of TB to humans is frequently promoted as the raison d'être for TB management in livestock, in many countries the control strategies are more likely based on minimizing the impact of sustained infection on the agricultural industry. Where wild animals are implicated in the epidemiology of the disease, the options for control and eradication can require involvement of additional stakeholder groups. Conflict can arise when different monetary and/or societal values are assigned to the affected animals. This may impose practical and ethical dilemmas for decision makers where one or more species of wild animal is seen by some stakeholders to have a greater value than the affected livestock. Here we assess the role of stakeholder values in influencing TB eradication strategies in a number of countries including Ireland, the UK, the USA, Spain, France, Australia, New Zealand and South Africa. What it reveals is that the level of stakeholder involvement increases with the complexity of the epidemiology, and that similar groups of stakeholders may agree to a set of control and eradication measures in one region only to disagree with applying the same measures in another. The level of consensus depends on the considerations of the reservoir status of the infected host, the societal values assigned to each species, the type of interventions proposed, ethical issues raised by culling of sentient wild animals, and the economic cost benefit effectiveness of dealing with the problem in one or more species over a long time frame. While there is a societal benefit from controlling TB, the means to achieve this requires identification and long-term engagement with all key stakeholders in order to reach agreement on ethical frameworks that prioritize and justify control options, particularly where culling of wild animals is concerned.
Collapse
Affiliation(s)
- Eamonn Gormley
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Leigh A L Corner
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
AN INTERFERON GAMMA RELEASE ASSAY FOR THE DETECTION OF IMMUNE SENSITIZATION TO MYCOBACTERIUM BOVIS IN AFRICAN WILD DOGS ( LYCAON PICTUS). J Wildl Dis 2018; 55:529-536. [PMID: 30557121 DOI: 10.7589/2018-03-089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In South Africa, the largest proportion of the African wild dog (Lycaon pictus) population resides in regions where buffaloes have a high prevalence of Mycobacterium bovis, the causative agent of bovine tuberculosis (bTB). Recent reports of deaths of wild dogs associated with bTB have raised concerns regarding the threat this disease might pose for this species. In order to understand the potential impact of the disease in wild dogs, diagnostic tools are required to identify infected individuals. The interferon gamma (IFN-γ) release assay (IGRA) is commonly used for tuberculosis (TB) screening of humans, cattle, and other species, and the aim of this study was to develop an IGRA for wild dogs to detect immune sensitization. Blood was collected from immobilized wild dogs from the Ann van Dyk Cheetah Centre (AvDCC; n=9) and Kruger National Park (KNP; n=31). Heparinized whole blood was incubated overnight in QuantiFERON®-TB Gold (QFT) blood collection tubes and with selected mitogens, after which the plasma fraction was harvested. Three canine IFN-γ enzymelinked immunosorbent assays (ELISAs) were compared for detection of wild dog IFN-γ in plasma and the R&D Quantikine canine IFN-γ ELISA was selected for measurement of M. bovis-specific IFN-γ release in plasma samples. An IGRA result was calculated as the concentration in plasma derived from the QFT TB Antigen tubes minus that in the QFT Nil tube. An IGRA cut-off value was calculated using the IGRA results of M. bovis-unexposed individuals from AvDCC. Using this cut-off value, 74% (23/31) of M. bovis-exposed KNP wild dogs were IGRA positive, indicating immune sensitization to TB antigens in these animals. Three M. bovis culture-positive wild dogs from KNP had IFN-γ concentrations between 758 and 1,445 pg/mL, supporting this interpretation. This warrants further investigation into the prevalence of M. bovis infection in the KNP population.
Collapse
|
20
|
PERFORMANCE OF THE TUBERCULIN SKIN TEST IN MYCOBACTERIUM BOVIS-EXPOSED AND -UNEXPOSED AFRICAN LIONS ( PANTHERA LEO). J Wildl Dis 2018; 55:537-543. [PMID: 30485165 DOI: 10.7589/2018-06-163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lion (Panthera leo) populations, classified as vulnerable under the International Union for Conservation of Nature red list of threatened species, are facing a variety of threats, including tuberculosis (TB) caused by Mycobacterium bovis. The lack of knowledge on pathogenesis and diagnosis of TB, the prolonged course of the disease, the existence of subclinical infection, and nonspecific clinical signs hamper management of TB in both free-ranging and captive lion populations. Early and accurate antemortem diagnosis of M. bovis infections is important for disease management. In this study, we investigate the suitability of the single intradermal cervical test (SICT), developed with free-ranging Kruger National Park (KNP) lions exposed to M. bovis, for use in other lion populations. Using the recommended interpretation, the specificity of the SICT was low in disease-free captive lions, leading to false-positive diagnoses in 54% of individuals in the present study. Alternative interpretations of the tuberculin skin test are proposed that significantly reduce false-positive diagnosis in the sampled captive lions without significantly affecting diagnoses in the KNP lions; these changes may facilitate screening for M. bovis infection regardless of the exposure status of the lion population being investigated.
Collapse
|
21
|
Bernitz N, Clarke C, Roos EO, Goosen WJ, Cooper D, van Helden PD, Parsons SD, Miller MA. Detection of Mycobacterium bovis infection in African buffaloes ( Syncerus caffer ) using QuantiFERON ® -TB Gold (QFT) tubes and the Qiagen cattletype ® IFN-gamma ELISA. Vet Immunol Immunopathol 2018; 196:48-52. [DOI: 10.1016/j.vetimm.2017.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/04/2017] [Accepted: 12/20/2017] [Indexed: 11/29/2022]
|
22
|
Higgitt RL, Buss PE, van Helden PD, Miller MA, Parsons SDC. Development of gene expression assays measuring immune responses in the spotted hyena (Crocuta crocuta). AFRICAN ZOOLOGY 2017. [DOI: 10.1080/15627020.2017.1309300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Roxanne L Higgitt
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for TB Research/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Peter E Buss
- Veterinary Wildlife Services, South African National Parks, Kruger National Park, Skukuza, South Africa
| | - Paul D van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for TB Research/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Michele A Miller
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for TB Research/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Sven DC Parsons
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for TB Research/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
23
|
Prevalence and Risk Factors for Mycobacterium bovis Infection in African Lions ( Panthera leo ) in the Kruger National Park. J Wildl Dis 2017; 53:372-376. [PMID: 28122192 DOI: 10.7589/2016-07-159] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycobacterium bovis, the causative agent of bovine tuberculosis (BTB), is endemic in the Kruger National Park (KNP), South Africa. African lions ( Panthera leo ) are susceptible to BTB, but the impact of the disease on lion populations is unknown. In this study, we used a novel gene expression assay for chemokine (C-X-C motif) ligand 9 (CXCL9) to measure the prevalence of M. bovis infection in 70 free-ranging lions that were opportunistically sampled in the southern and central regions of the KNP. In the southern region of the KNP, the apparent prevalence of M. bovis infection was 54% (95% confidence interval [CI]=36.9-70.5%), compared with 33% (95% CI=18.0-51.8%) in the central region, an important difference (P=0.08). Prevalence of M. bovis infection in lions showed similar patterns to estimated BTB prevalence in African buffaloes ( Syncerus caffer ) in the same areas. Investigation of other risk factors showed a trend for older lions, males, or lions with concurrent feline immunodeficiency virus infection to have a higher M. bovis prevalence. Our findings demonstrate that the CXCL9 gene expression assay is a useful tool for the determination of M. bovis status in free-ranging lions and identifies important epidemiologic trends for future studies.
Collapse
|
24
|
Thirunavukkarasu S, Plain KM, de Silva K, Marais BJ, Whittington RJ. Applying the One Health Concept to Mycobacterial Research - Overcoming Parochialism. Zoonoses Public Health 2017; 64:401-422. [PMID: 28084673 DOI: 10.1111/zph.12334] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 12/27/2022]
Abstract
Mycobacterial infections remain a public health problem. Historically important, globally ubiquitous and with a wide host range, we are still struggling to control mycobacterial infections in humans and animals. While previous reviews have focused on individual mycobacterial infections in either humans or animals, a comprehensive review of the zoonotic aspect of mycobacteria in the context of the One Health initiative is lacking. With the purpose of providing a concise and comprehensive resource, we have collated literature to address the zoonotic potential of different mycobacterial species and elaborate on the necessity for an inter-sectorial approach to attain a new vision to combat mycobacterial infections.
Collapse
Affiliation(s)
- S Thirunavukkarasu
- Faculty of Veterinary Science, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia.,Boise Veterans Affairs Medical Center, Boise, ID, USA
| | - K M Plain
- Faculty of Veterinary Science, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - K de Silva
- Faculty of Veterinary Science, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - B J Marais
- Marie Bashir Institute for Infectious Diseases and Biosecurity and the Centre for Research Excellence in Emerging Infections, University of Sydney, Sydney, NSW, Australia
| | - R J Whittington
- Faculty of Veterinary Science, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
25
|
Goosen WJ, van Helden PD, Warren RM, Miller MA, Parsons SDC. The stability of plasma IP-10 enhances its utility for the diagnosis of Mycobacterium bovis infection in African buffaloes (Syncerus caffer). Vet Immunol Immunopathol 2016; 173:17-20. [PMID: 27090621 DOI: 10.1016/j.vetimm.2016.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 02/02/2023]
Abstract
The measurement of interferon gamma-induced protein 10 (IP-10) in antigen-stimulated whole blood is a sensitive biomarker of Mycobacterium bovis infection in African buffaloes (Syncerus caffer). However, this species often occurs in remote locations and diagnostic samples must be transported to centralised laboratories for processing. In humans, plasma IP-10 is highly stable and this feature contributes to its diagnostic utility; for this reason we aimed to characterize the stability of this molecule in buffaloes. Blood from M. bovis-infected and -uninfected animals was incubated with pathogen-specific peptides, saline and phytohaemagglutinin, respectively. Plasma fractions were harvested and aliquots of selected samples were: (i) stored at different temperatures for various times; (ii) heat treated before storage at RT, and (iii) stored on Protein Saver Cards (PSCs) at RT for either 2 or 8 weeks before measurement of IP-10. Incubation of plasma at 65°C for 20 min caused no loss of IP-10 and this protein could be quantified in plasma stored on PSCs for 2 and 8 weeks. Moreover, for all storage conditions, IP-10 retained its excellent diagnostic characteristics. These features of IP-10 might allow for the heat inactivation of potentially infectious plasma which would facilitate the safe and simple transport of samples.
Collapse
Affiliation(s)
- Wynand J Goosen
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Paul D van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Robin M Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Michele A Miller
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Sven D C Parsons
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| |
Collapse
|