1
|
Portanti O, Ciarrocchi E, Irelli R, Palombieri A, Salini R, Melegari I, Pisciella M, Pulsoni S, Di Sabatino D, Spedicato M, Savini G, Lorusso A. Validation of a molecular multiplex assay for the simultaneous detection and differentiation of bluetongue virus and epizootic haemorrhagic disease virus in biological samples. J Virol Methods 2024:115064. [PMID: 39542043 DOI: 10.1016/j.jviromet.2024.115064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/01/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Bluetongue virus (BTV) and epizootic haemorrhagic disease virus (EHDV) are Culicoides-transmitted viruses, circulating in multiple serotypes, that cause two relevant WOAH-listed diseases of ruminants. Following its first identification in Tunisia in 2021, a novel EHDV strain belonging to serotype 8 has been detected in cattle showing BTV-like symptoms in Italy and Andalusia, Spain in 2022, and soon after in Portugal, and France. These are European regions with recurrent circulations of different BTV serotypes. Hence, in this study we describe the validation of a TaqMan RT-qPCR pan-BTV/pan-EHDV assay, based on well-established primers and probes sets, able to simultaneously detect and distinguish between BTV and EHDV. The implemented assay, characterized by high sensitivity and specificity and good reproducibility, can be successfully applied for the rapid and affordable diagnosis needed in the current epidemiological situation, and can be a powerful tool to be employed in surveillance and control strategies with a significant reduction of costs.
Collapse
Affiliation(s)
- Ottavio Portanti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise; Campo Boario, 64100, Teramo-Italy
| | - Eugenia Ciarrocchi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise; Campo Boario, 64100, Teramo-Italy
| | - Roberta Irelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise; Campo Boario, 64100, Teramo-Italy
| | - Andrea Palombieri
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise; Campo Boario, 64100, Teramo-Italy
| | - Romolo Salini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise; Campo Boario, 64100, Teramo-Italy
| | - Irene Melegari
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise; Campo Boario, 64100, Teramo-Italy
| | - Maura Pisciella
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise; Campo Boario, 64100, Teramo-Italy
| | - Simone Pulsoni
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise; Campo Boario, 64100, Teramo-Italy
| | - Daria Di Sabatino
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise; Campo Boario, 64100, Teramo-Italy
| | - Massimo Spedicato
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise; Campo Boario, 64100, Teramo-Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise; Campo Boario, 64100, Teramo-Italy
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise; Campo Boario, 64100, Teramo-Italy.
| |
Collapse
|
2
|
Jiménez-Cabello L, Utrilla-Trigo S, Rodríguez-Sabando K, Carra-Valenzuela A, Illescas-Amo M, Calvo-Pinilla E, Ortego J. Vaccine candidates based on MVA viral vectors expressing VP2 or VP7 confer full protection against Epizootic hemorrhagic disease virus in IFNAR(-/-) mice. J Virol 2024:e0168724. [PMID: 39508577 DOI: 10.1128/jvi.01687-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 11/15/2024] Open
Abstract
Epizootic hemorrhagic disease (EHD), caused by Epizootic hemorrhagic disease virus (EHDV), is an emerging and severe livestock disease. Recent incursion and distribution of EHDV in Europe have outlined the need for vaccine research against this viral disease. In this work, we report modified vaccinia virus Ankara (MVA)-vectored vaccines designed to express protein VP2 of EHDV-8 or protein VP7 of EHDV-2. Prime boost immunization of adult IFNAR(-/-) mice with the MVA-VP2 vaccine candidate induced high titers of EHDV-8-specific neutralizing antibodies (NAbs) and conferred full protection against homologous lethal challenge with EHDV-8. However, no heterologous protection was observed after lethal challenge with EHDV-6. In contrast, the MVA-VP7 vaccine candidate elicited strong cytotoxic CD8+ T-cell responses against VP7 and conferred complete protection against lethal challenge with either EHDV-8 or EHDV-6 in IFNAR(-/-) mice in the absence of NAbs, being the first multiserotype vaccine candidate against EHDV. Moreover, we expressed recombinant proteins VP2 and VP7 of EHDV in the baculovirus expression system, which were used to analyze the potential DIVA (differentiating infected from vaccinated animals) character of these vaccine candidates.IMPORTANCEEmergence and re-emergence of arthropod-borne viruses are major concerns for both human and animal health. The most recent example is the fast expansion of EHDV-8 through Europe. Besides, EHDV-8 relates with a high prevalence of pathologic cases in cattle populations. No vaccine is currently available in Europe, and vaccine research against this arboviral disease is negligible. In this work, we present novel DIVA vaccine candidates against EHDV, and most importantly, we identified the protein VP7 of EHDV as an antigen capable of inducing multiserotype protection, one of the major challenges in vaccine research against orbiviruses.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Karen Rodríguez-Sabando
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Alejandro Carra-Valenzuela
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Miguel Illescas-Amo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| |
Collapse
|
3
|
Spedicato M, Ronchi GF, Profeta F, Traini S, Capista S, Leone A, Iorio M, Portanti O, Palucci C, Pulsoni S, Testa L, Serroni A, Rossi E, Armillotta G, Laguardia C, D'Alterio N, Savini G, Di Ventura M, Lorusso A, Mercante MT. Efficacy of an inactivated EHDV-8 vaccine in preventing viraemia and clinical signs in experimentally infected cattle. Virus Res 2024; 347:199416. [PMID: 38897236 PMCID: PMC11261067 DOI: 10.1016/j.virusres.2024.199416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
Epizootic haemorrhagic disease (EHD), caused by the EHD virus (EHDV), is a vector-borne viral disease transmitted through Culicoides biting midges. EHDV comprises seven serotypes (1, 2, and 4-8), with EHDV-8 having recently emerged and spread in Europe over the last two years. Such event has raised concerns about the significant threat posed by EHDV-8 to livestock industry. In this study, an inactivated vaccine against EHDV-8 (vEHDV8-IZSAM) was developed. Safety and efficacy of the vaccine were evaluated in calves through clinical, serological, and virological monitoring following experimental challenge. The vaccine was proven safe, with only transient fever and localized reactions observed in a few animals, consistent with adjuvanted vaccine side effects. vEHDV8-IZSAM elicited a robust humoral response, as evidenced by the presence of neutralizing antibodies. After challenge with a virulent isolate, viraemia and clinical signs were evidenced in control animals but in none of the vaccinated animals. This study highlights the potential of vEHDV8-IZSAM as a safe and highly effective vaccine against EHDV-8 in cattle. It offers protection from clinical disease and effectively prevents viraemia. With the recent spread of EHDV-8 in European livestock, the use of an inactivated vaccine could be key in protecting animals from clinical disease and thus to mitigate the economic impact of the disease. Further investigations are warranted to assess the duration of the induced immunity and the applicability of this vaccine in real-world settings. Accordingly, joint efforts between public veterinary institutions and pharmaceutical companies are recommended to scale up vaccine production.
Collapse
Affiliation(s)
- Massimo Spedicato
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy.
| | | | - Francesca Profeta
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Sara Traini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Sara Capista
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Alessandra Leone
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Mariangela Iorio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Ottavio Portanti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Cristiano Palucci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Simone Pulsoni
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Lilia Testa
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Anna Serroni
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Emanuela Rossi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Gisella Armillotta
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Caterina Laguardia
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Nicola D'Alterio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Mauro Di Ventura
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Maria Teresa Mercante
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| |
Collapse
|
4
|
Jiménez-Cabello L, Utrilla-Trigo S, Benavides-Silván J, Anguita J, Calvo-Pinilla E, Ortego J. IFNAR(-/-) Mice Constitute a Suitable Animal Model for Epizootic Hemorrhagic Disease Virus Study and Vaccine Evaluation. Int J Biol Sci 2024; 20:3076-3093. [PMID: 38904031 PMCID: PMC11186350 DOI: 10.7150/ijbs.95275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/24/2024] [Indexed: 06/22/2024] Open
Abstract
Epizootic hemorrhagic disease (EHD), caused by Epizootic hemorrhagic disease virus (EHDV), is an emerging and severe livestock disease. Recent incursion and distribution of EHDV in Europe have outlined the emerging character of EHD. Despite its worldwide impact, numerous knowledge gaps exist. A range of inconveniences restricts utilization of natural hosts of EHDV. Here, we show that adult mice deficient in type I IFN receptor (IFNAR(-/-)) are highly susceptible to EHDV-6 and EHDV-8 infection when the virus is administered subcutaneously. Disease was characterized by ruffled hair, reluctance to move, dehydration and conjunctivitis, with viraemia detected from day 5 post-infection. A deeper characterization of EHDV-8 infection showed viral replication in the lung, liver, spleen, kidney, testis and ovaries. Importantly, increased expression levels of pro-inflammatory cytokines IL-1β, IL-6 and CXCL2 were observed in spleen after EHDV-8 infection. Furthermore, IFNAR(-/-) adult mice immunized with a EHDV-8 inactivated vaccine elicited neutralizing antibodies specific of EHDV-8 and full protection against challenge with a lethal dose of this virus. This study also explores the possibilities of this animal model for study of BTV and EHDV coinfection. In summary, the IFNAR(-/-) mouse model faithfully recapitulates EHD and can be applied for vaccine testing, which can facilitate progress in addressing the animal health challenge posed by this virus.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| | - Julio Benavides-Silván
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), 24346 Grulleros, León, Spain
| | - Juan Anguita
- Centro de Investigación Cooperativa en Biociencias (CIC bioGUNE), 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48012 Bilbao, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| |
Collapse
|
5
|
Villalba R, Tena-Tomás C, Ruano MJ, Valero-Lorenzo M, López-Herranz A, Cano-Gómez C, Agüero M. Development and Validation of Three Triplex Real-Time RT-PCR Assays for Typing African Horse Sickness Virus: Utility for Disease Control and Other Laboratory Applications. Viruses 2024; 16:470. [PMID: 38543834 PMCID: PMC10974454 DOI: 10.3390/v16030470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 05/23/2024] Open
Abstract
The African horse sickness virus (AHSV) belongs to the Genus Orbivirus, family Sedoreoviridae, and nine serotypes of the virus have been described to date. The AHSV genome is composed of ten linear segments of double-stranded (ds) RNA, numbered in decreasing size order (Seg-1 to Seg-10). Genome segment 2 (Seg-2) encodes outer-capsid protein VP2, the most variable AHSV protein and the primary target for neutralizing antibodies. Consequently, Seg-2 determines the identity of the virus serotype. An African horse sickness (AHS) outbreak in an AHS-free status country requires identifying the serotype as soon as possible to implement a serotype-specific vaccination program. Considering that nowadays 'polyvalent live attenuated' is the only commercially available vaccination strategy to control the disease, field and vaccine strains of different serotypes could co-circulate. Additionally, in AHS-endemic countries, more than one serotype is often circulating at the same time. Therefore, a strategy to rapidly determine the virus serotype in an AHS-positive sample is strongly recommended in both epidemiological situations. The main objective of this study is to describe the development and validation of three triplex real-time RT-PCR (rRT-PCR) methods for rapid AHSV serotype detection. Samples from recent AHS outbreaks in Kenia (2015-2017), Thailand (2020), and Nigeria (2023), and from the AHS outbreak in Spain (1987-1990), were included in the study for the validation of these methods.
Collapse
Affiliation(s)
- Rubén Villalba
- Laboratorio Central de Veterinaria, Ministry of Agriculture, Fisheries and Food, 28110 Algete, Spain; (R.V.); (M.J.R.); (M.V.-L.); (A.L.-H.); (C.C.-G.)
| | | | - María José Ruano
- Laboratorio Central de Veterinaria, Ministry of Agriculture, Fisheries and Food, 28110 Algete, Spain; (R.V.); (M.J.R.); (M.V.-L.); (A.L.-H.); (C.C.-G.)
| | - Marta Valero-Lorenzo
- Laboratorio Central de Veterinaria, Ministry of Agriculture, Fisheries and Food, 28110 Algete, Spain; (R.V.); (M.J.R.); (M.V.-L.); (A.L.-H.); (C.C.-G.)
| | - Ana López-Herranz
- Laboratorio Central de Veterinaria, Ministry of Agriculture, Fisheries and Food, 28110 Algete, Spain; (R.V.); (M.J.R.); (M.V.-L.); (A.L.-H.); (C.C.-G.)
| | - Cristina Cano-Gómez
- Laboratorio Central de Veterinaria, Ministry of Agriculture, Fisheries and Food, 28110 Algete, Spain; (R.V.); (M.J.R.); (M.V.-L.); (A.L.-H.); (C.C.-G.)
| | - Montserrat Agüero
- Laboratorio Central de Veterinaria, Ministry of Agriculture, Fisheries and Food, 28110 Algete, Spain; (R.V.); (M.J.R.); (M.V.-L.); (A.L.-H.); (C.C.-G.)
| |
Collapse
|
6
|
Sailleau C, Zientara S, Bréard E. Real-Time RT-PCR Assays for Typing of Epizootic Hemorrhagic Disease Virus. Methods Mol Biol 2024; 2838:163-170. [PMID: 39126631 DOI: 10.1007/978-1-0716-4035-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Real-time RT-PCR for the detection of epizootic hemorrhagic disease virus (EHDV) in clinical samples is a fast and sensitive tool for the diagnosis and confirmation of disease. Several real-time RT-PCR methods have been reported over the last 10 years. In this chapter, we describe seven duplex real-time RT-PCR assays to amplify part of genome segment 2 of EHDV to enable serotype identification. The assay includes the detection of an endogenous control gene-beta-actin.
Collapse
|
7
|
Newbrook K. Epizootic Hemorrhagic Disease Virus Titration. Methods Mol Biol 2024; 2838:101-121. [PMID: 39126626 DOI: 10.1007/978-1-0716-4035-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
The titration of viruses onto susceptible cell lines is an important virological technique used to quantify infectious viral titers. It forms an integral component of epizootic hemorrhagic disease virus (EHDV) research, including estimating infectivity, calculating multiplicity of infection, and confirming virus propagation in cell culture. However, the ability to quantify infectious EHDV is also critical for disease control, particularly in the event of an outbreak. Routine EHD diagnostics do not accurately quantify infectious virus, which would allow accurate prediction of the onward transmission risk, but instead are typically more qualitative in nature (e.g., virus isolation) or only quantify viral genome copies (e.g., real-time PCR) which often remain detectable long after infectious virus is cleared from the host.Infectious EHDV titers are typically quantified through the detection of visible cytopathic effect (CPE) in the monolayer of susceptible mammalian cell cultures. However, not all susceptible cell lines demonstrate visible CPE upon EHDV infection, including cell lines such as KC cells, which are derived from the EHDV biological insect vector, Culicoides sonorensis. This chapter presents a comprehensive method for the titration of EHDV-positive samples onto relevant, susceptible mammalian (Vero) and insect (KC) cell lines and describes alternative methods that can be used to visualize EHDV infection, by CPE or immunofluorescent labeling of viral proteins, to enable the calculation of infectious EHDV titers.
Collapse
|
8
|
Guimerà Busquets M, Darpel KE. Purification of Epizootic Hemorrhagic Disease Virus (and Other Orbiviruses) Particles from Infected Mammalian or Insect Cells. Methods Mol Biol 2024; 2838:77-89. [PMID: 39126624 DOI: 10.1007/978-1-0716-4035-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Epizootic hemorrhagic disease virus (EHDV), like other orbiviruses, infects and replicates in mammalian and insect vector cells. Within its ruminant hosts EHDV, like bluetongue virus (BTV), it has mainly been associated with infection of endothelial cells of capillaries as well as leukocyte subsets. Furthermore, EHDV infects and replicates within its biological vector, Culicoides biting midges and Culicoides-derived cells. A wide range of common laboratory cell lines such as BHK, BSR, and Vero cells are susceptible to infection with certain EHDV strains. Cell culture supernatants of infected cells are commonly used for both in vivo and in vitro infection studies. For specific virological or immunological studies, using highly purified virus particles, however, might be beneficial or even required. Here we describe a purification method for EHDV particles, which had been originally developed for certain strains of BTV.
Collapse
Affiliation(s)
| | - Karin E Darpel
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Ashby M. Real-Time RT-PCR for the Diagnosis of Epizootic Hemorrhagic Disease Virus. Methods Mol Biol 2024; 2838:155-161. [PMID: 39126630 DOI: 10.1007/978-1-0716-4035-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) has become an essential tool in rapid and reliable detection of animal diseases such as epizootic hemorrhagic disease (EHD). Here we provide a protocol for the detection of epizootic hemorrhagic disease virus (EHDV) genetic material in blood and tissue samples, using a real-time RT-PCR that targets a conserved region in segment 9 of the EHDV genome. This protocol can be used to detect up to approximately 90 samples in a single run and can be completed in less than 4 h.
Collapse
|
10
|
Corla A. Virus Isolation of Epizootic Hemorrhagic Disease Virus in Cell Culture. Methods Mol Biol 2024; 2838:65-75. [PMID: 39126623 DOI: 10.1007/978-1-0716-4035-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Virus isolation is used to assist in the diagnosis and confirmation of viral infections. Successful isolation of a virus is highly dependent upon the quality of starting material. Here we describe the preparation and isolation of epizootic hemorrhagic disease virus (EHDV) from blood and tissue samples in tissue culture flasks (TCFs) through the inoculation of susceptible cell lines including Vero, BHK, and KC cells.
Collapse
|
11
|
Portanti O, Thabet S, Abenza E, Ciarrocchi E, Pisciella M, Irelli R, Savini G, Hammami S, Pulsoni S, Casaccia C, Coetzee L, Marcacci M, Di Domenico M, Lorusso A. Development and validation of an RT-qPCR for detection and quantitation of emerging epizootic hemorrhagic disease virus serotype 8 RNA from field samples. J Virol Methods 2023; 321:114808. [PMID: 37690747 DOI: 10.1016/j.jviromet.2023.114808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Epizootic hemorrhagic disease virus (EHDV) is a Culicoides-transmitted virus circulating in multiple serotypes. It has become a concern in the European Union as a novel strain of the serotype 8 (EHDV-8) of clear Northern African origin, has been recently discovered in symptomatic cattle in Italy (islands of Sardinia and Sicily), Spain, and Portugal. Current molecular typing methods targeting the S2 nucleotide sequences -coding for the outermost protein of the virion VP2- are not able to detect the novel emerging EHDV-8 strain as they enrolled the S2 sequence of the unique EHDV-8 reference strain isolated in Australia in 1982. Thus, in this study, we developed and validated a novel typing assay for the detection and quantitation of the novel EHDV-8 RNA from field samples, including blood of ruminants and insects. This molecular tool will certainly support EHDV-8 surveillance and control.
Collapse
Affiliation(s)
- Ottavio Portanti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise, Campo Boario, 64100 Teramo, Italy
| | - Sarah Thabet
- Service de Microbiologie, Immunologie et Pathologie Générale, École Nationale de Médecine Vétérinaire de Sidi Thabet, IRESA, Université de la Manouba, Tunisia
| | - Elena Abenza
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise, Campo Boario, 64100 Teramo, Italy
| | - Eugenia Ciarrocchi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise, Campo Boario, 64100 Teramo, Italy
| | - Maura Pisciella
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise, Campo Boario, 64100 Teramo, Italy
| | - Roberta Irelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise, Campo Boario, 64100 Teramo, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise, Campo Boario, 64100 Teramo, Italy
| | - Salah Hammami
- Service de Microbiologie, Immunologie et Pathologie Générale, École Nationale de Médecine Vétérinaire de Sidi Thabet, IRESA, Université de la Manouba, Tunisia
| | - Simone Pulsoni
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise, Campo Boario, 64100 Teramo, Italy
| | - Claudia Casaccia
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise, Campo Boario, 64100 Teramo, Italy
| | - Lauren Coetzee
- Central Veterinary Laboratory (CVL), 24 Goethe Street, Private Bag 18137 Windhoek, Namibia; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise, Campo Boario, 64100 Teramo, Italy
| | - Marco Di Domenico
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise, Campo Boario, 64100 Teramo, Italy
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise, Campo Boario, 64100 Teramo, Italy.
| |
Collapse
|
12
|
Li H, Li D, Chen H, Yue X, Fan K, Dong L, Wang G. Application of Silicon Nanowire Field Effect Transistor (SiNW-FET) Biosensor with High Sensitivity. SENSORS (BASEL, SWITZERLAND) 2023; 23:6808. [PMID: 37571591 PMCID: PMC10422280 DOI: 10.3390/s23156808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
As a new type of one-dimensional semiconductor nanometer material, silicon nanowires (SiNWs) possess good application prospects in the field of biomedical sensing. SiNWs have excellent electronic properties for improving the detection sensitivity of biosensors. The combination of SiNWs and field effect transistors (FETs) formed one special biosensor with high sensitivity and target selectivity in real-time and label-free. Recently, SiNW-FETs have received more attention in fields of biomedical detection. Here, we give a critical review of the progress of SiNW-FETs, in particular, about the reversible surface modification methods. Moreover, we summarized the applications of SiNW-FETs in DNA, protein, and microbial detection. We also discuss the related working principle and technical approaches. Our review provides an extensive discussion for studying the challenges in the future development of SiNW-FETs.
Collapse
Affiliation(s)
- Huiping Li
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Dujuan Li
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Huiyi Chen
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xiaojie Yue
- The Children’s Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Kai Fan
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Linxi Dong
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Gaofeng Wang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
13
|
Jiménez-Cabello L, Utrilla-Trigo S, Lorenzo G, Ortego J, Calvo-Pinilla E. Epizootic Hemorrhagic Disease Virus: Current Knowledge and Emerging Perspectives. Microorganisms 2023; 11:1339. [PMID: 37317313 DOI: 10.3390/microorganisms11051339] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023] Open
Abstract
Epizootic Hemorrhagic Disease (EHD) of ruminants is a viral pathology that has significant welfare, social, and economic implications. The causative agent, epizootic hemorrhagic disease virus (EHDV), belongs to the Orbivirus genus and leads to significant regional disease outbreaks among livestock and wildlife in North America, Asia, Africa, and Oceania, causing significant morbidity and mortality. During the past decade, this viral disease has become a real threat for countries of the Mediterranean basin, with the recent occurrence of several important outbreaks in livestock. Moreover, the European Union registered the first cases of EHDV ever detected within its territory. Competent vectors involved in viral transmission, Culicoides midges, are expanding its distribution, conceivably due to global climate change. Therefore, livestock and wild ruminants around the globe are at risk for this serious disease. This review provides an overview of current knowledge about EHDV, including changes of distribution and virulence, an examination of different animal models of disease, and a discussion about potential treatments to control the disease.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Gema Lorenzo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| |
Collapse
|
14
|
McGregor BL, Reister-Hendricks LM, Nordmeyer C, Stapleton S, Davis TM, Drolet BS. Using Zoos as Sentinels for Re-Emerging Arboviruses: Vector Surveillance during an Outbreak of Epizootic Hemorrhagic Disease at the Minnesota Zoo. Pathogens 2023; 12:pathogens12010140. [PMID: 36678488 PMCID: PMC9864106 DOI: 10.3390/pathogens12010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Vector-borne disease prevalence is increasing at a time when surveillance capacity in the United States is decreasing. One way to address this surveillance deficiency is to utilize established infrastructure, such as zoological parks, to investigate animal disease outbreaks and improve our epidemiological understanding of vector-borne pathogens. During fall 2020, an outbreak of epizootic hemorrhagic disease (EHD) at the Minnesota Zoo resulted in morbidity and seroconversion of several collection animals. In response to this outbreak, insect surveillance was conducted, and the collected insects were tested for the presence of epizootic hemorrhagic disease virus (EHDV) by RT-qPCR to better understand the local transmitting vector populations responsible for the outbreak. Six pools of Culicoides biting midges were positive for EHDV, including three pools of Culicoides sonorensis, two pools of Culicoides variipennis, and a pool of degraded C. variipennis complex midges. All three endemic serotypes of EHDV (1, 2, and 6) were detected in both animals and midge pools from the premises. Despite this outbreak, no EHDV cases had been reported in wild animals near the zoo. This highlights the importance and utility of using animal holding facilities, such as zoos, as sentinels to better understand the spatio-temporal dynamics of pathogen transmission.
Collapse
Affiliation(s)
- Bethany L. McGregor
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, USDA-Agricultural Research Service, Manhattan, KS 66502, USA
- Correspondence:
| | - Lindsey M. Reister-Hendricks
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, USDA-Agricultural Research Service, Manhattan, KS 66502, USA
| | - Cale Nordmeyer
- Conservation Department, Minnesota Zoo, Apple Valley, MN 55124, USA
| | - Seth Stapleton
- Conservation Department, Minnesota Zoo, Apple Valley, MN 55124, USA
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Travis M. Davis
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, USDA-Agricultural Research Service, Manhattan, KS 66502, USA
| | - Barbara S. Drolet
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, USDA-Agricultural Research Service, Manhattan, KS 66502, USA
| |
Collapse
|
15
|
Sghaier S, Sailleau C, Marcacci M, Thabet S, Curini V, Ben Hassine T, Teodori L, Portanti O, Hammami S, Jurisic L, Spedicato M, Postic L, Gazani I, Ben Osman R, Zientara S, Bréard E, Calistri P, Richt JA, Holmes EC, Savini G, Di Giallonardo F, Lorusso A. Epizootic Haemorrhagic Disease Virus Serotype 8 in Tunisia, 2021. Viruses 2022; 15:16. [PMID: 36680057 PMCID: PMC9866946 DOI: 10.3390/v15010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Epizootic haemorrhagic disease (EHD) is a Culicoides-borne viral disease caused by the epizootic haemorrhagic disease virus (EHDV) associated with clinical manifestations in domestic and wild ruminants, primarily white-tailed deer (Odocoileus virginianus) and cattle (Bos taurus). In late September 2021, EHDV was reported in cattle farms in central/western Tunisia. It rapidly spread throughout the country with more than 200 confirmed outbreaks. We applied a combination of classical and molecular techniques to characterize the causative virus as a member of the serotype EHDV-8. This is the first evidence of EHDV- 8 circulation since 1982 when the prototype EHDV-8 strain was isolated in Australia. This work highlights the urgent need for vaccines for a range of EHDV serotypes.
Collapse
Affiliation(s)
- Soufien Sghaier
- Institut de la Recherche Vétérinaire de Tunisie, Tunis 1006, Tunisia
| | - Corinne Sailleau
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | - Sarah Thabet
- Institut de la Recherche Vétérinaire de Tunisie, Tunis 1006, Tunisia
| | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | - Thameur Ben Hassine
- Direction Générale des Services Vétérinaires, Commissariat Régional au Développement Agricole de Nabeul, Nabeul 1082, Tunisia
| | - Liana Teodori
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | - Ottavio Portanti
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | - Salah Hammami
- Service de Microbiologie, Immunologie et Pathologie Générale, École Nationale de Médecine Vétérinaire de Sidi Thabet, IRESA, Universitè de la Manouba, Winnipeg 2010, Tunisia
| | - Lucija Jurisic
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
- Facoltà di Medicina Veterinaria, Università degli Studi di Teramo, 64100 Piano D’Accio-Teramo, Italy
| | - Massimo Spedicato
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | - Lydie Postic
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Ines Gazani
- CRDA Ministère d’Agriculture, Avenue Habib Bourguiba, Kasserine 1200, Tunisia
| | - Raja Ben Osman
- National Drug Control Laboratory, Vaccine Control Unit, Tunis 1002, Tunisia
| | - Stephan Zientara
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Emmanuel Bréard
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Paolo Calistri
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | - Jürgen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | | | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| |
Collapse
|
16
|
Li Z, Li Z, Yang Z, Li L, Gao L, Xie J, Liao D, Gao X, Hu Z, Niu B, Yao P, Zeng W, Li H, Yang H. Isolation and characterization of two novel serotypes of Tibet orbivirus from Culicoides and sentinel cattle in Yunnan Province of China. Transbound Emerg Dis 2022; 69:3371-3387. [PMID: 36047657 DOI: 10.1111/tbed.14691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 02/04/2023]
Abstract
Tibet orbivirus (TIBOV), a new candidate of Orbivirus genus, was initially isolated from mosquitoes in Tibet in 2009 and subsequently from both Culicoides and mosquitoes in several provinces of China and Japan. Little is known about the origin, genetic diversity, dissemination and pathogenicity of TIBOV, although its potential threat to animal health has been acknowledged. In this study, two viruses, V290/YNSZ and V298/YNJH, were isolated from the Culicoides and sentinel cattle in Yunnan Province. Their genome sequences, cell tropism in mammalian and insect cell lines along with pathogenicity in suckling mice were determined. Genome phylogenetic analyses confirmed their classification as TIBOV species; however, OC1 proteins of the V290/YNSZ and V298/YNJH shared maximum sequence identities of 31.5% and 33.9% with other recognized TIBOV serotypes (TIBOV-1 to TIBOV-4) and formed two monophyletic branches in phylogenetic tree, indicating they represented two novel TIBOV serotypes which were tentatively designated as TIBOV-5 and TIBOV-6. The viruses replicated robustly in BHK, Vero and C6/36 cells and triggered overt clinical symptoms in suckling mice after intracerebral inoculation, causing mortality of 100% and 25%. Cross-sectional epidemiology analysis revealed silent circulation of TIBOV in Yunnan Province with overall prevalence of 16.4% (18/110) in cattle, 10.8% (13/120) in goats and 5.5% (6/110) in swine. The prevalence patterns of four investigated TIBOV serotypes (TIBOV-1, -2, -5 and 6) differed from each one another, with their positive rates ranging from 8.2% (9/110) for TIBOV-2 in cattle to 0.9% (1/110) for TIBOV-1 and TIBOV-5 in cattle and swine. Our findings provided new insights for diversity, pathogenicity and epidemiology of TIBOV and formed a basis for future studies addressing the geographical distribution and the zoonotic potential of TIBOV.
Collapse
Affiliation(s)
- Zhanhong Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Zhuoran Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Le Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Lin Gao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Jiarui Xie
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Defang Liao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Xiang Gao
- Animal Disease Control and Prevention Center of Jinghong County, Jinghong, China
| | - Zhongyan Hu
- Animal Disease Control and Prevention Center of Jinghong County, Jinghong, China
| | - Baosheng Niu
- Animal Disease Control and Prevention Center of Shizong County, Qujing, China
| | - Pingfen Yao
- Animal Disease Control and Prevention Center of Shizong County, Qujing, China
| | - Weikun Zeng
- School of Medicine, Kunming University, Kunming, China
| | - Huachun Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Heng Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China.,College of Agriculture and Life Sciences, Kunming University, Kunming, China
| |
Collapse
|
17
|
Duan Y, Yang Z, Zhu P, Xiao L, Li Z, Li Z, Li L, Zhu J. A serologic investigation of epizootic hemorrhagic disease virus in China between 2014 and 2019. Virol Sin 2022; 37:513-520. [PMID: 35718300 PMCID: PMC9437609 DOI: 10.1016/j.virs.2022.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/13/2022] [Indexed: 11/15/2022] Open
Abstract
Epizootic hemorrhagic disease virus (EHDV) is a member of the genus Orbivirus, family Sedoreoviridae. It was firstly recognized in 1955 to cause a highly fatal disease of wild white-tailed deer in America. So far, EHDV was detected and isolated in many wild or domestic ruminants, and widely distributed all over the world. Although the domestic cattle and sheep infected by EHDV were usually asymptomatic or subclinical, several outbreaks of epizootic hemorrhagic disease (EHD) in deer and cattle had been reported. Many EHDV strains were isolated and sequenced in last two decades in China, which promoted a general serologic investigation of EHDV in China. In this study, 18,122 sera were collected from asymptomatic or subclinical domestic ruminants (cattle, cow, yaks, sheep, goats, and deer) in 116 regions belonging to 15 provinces in China. All the sera were tested by EHDV C-ELISA, and the results were obtained by big data analysis. EHDV infections were detected in the 14 of 15 provinces, and only Tibet (average altitude ≥ 4000 m) which was the highest province in China was free of EHDV. The numbers of seropositive collections in both bovine and goat/sheep were in an inverse proportion to the latitude. However, the seropositive rates in bovine were ranged from 0% to 100%, while the seropositive rates in goat/sheep were no more than 50%. The results suggested that bovine was obviously more susceptive for EHDV infection than goat and sheep, therefore might be a major reservoir of EHDV in China. The prevalence of EHDV was consistent with the distribution of Culicoides which were known as the sole insect vectors of EHDV. In particular, the seropositive rates of EHDV were very high in the southern provinces, which required the enhanced surveillance in the future. This is a big data analysis. This is the first English report for EHDV prevalence in multiple provinces in China. The samples included in this study cover 15 provinces and 6 years.
Collapse
Affiliation(s)
- Yingliang Duan
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650000, China
| | - Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650000, China
| | - Pei Zhu
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650000, China
| | - Lei Xiao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650000, China
| | - Zhanhong Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650000, China
| | - Zhuoran Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650000, China
| | - Le Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650000, China
| | - Jianbo Zhu
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650000, China.
| |
Collapse
|
18
|
Development of a Competitive Enzyme-Linked Immunosorbent Assay Based on Purified Recombinant Viral Protein 7 for Serological Diagnosis of Epizootic Haemorrhagic Disease in Camels. J Trop Med 2022; 2022:5210771. [PMID: 35356489 PMCID: PMC8959998 DOI: 10.1155/2022/5210771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022] Open
Abstract
Epizootic haemorrhagic disease virus (EHDV) is a member of the Orbivirus genus in the Reoviridae family, and it is the etiological agent of an arthropod-transmitted disease that affects domestic and wild ruminants. Due to its significant economic impact, many attempts have been done in order to develop diagnostic immunoassays mainly based on the use of the viral protein 7 (VP7), that is, the immunodominant serogroup-specific antigen. In this work, a recombinant VP7 (recVP7) of EHDV serotype 2 was produced in a baculovirus system, and after purification using ion metal affinity chromatography, we obtained a high yield of recombinant protein characterized by a high degree of purity. We used the purified recVP7 as reagent to develop a competitive enzyme-linked immunoassay (c-ELISA), and we tested the presence of EHDV antibodies in 185 dromedary camel serum samples. The c-ELISA showed good performance parameters in recognising positive sera of naturally EHDV-infected dromedary camels; in particular, our developed test reached 85.7% of sensitivity, 98.1% of specificity, 93% of accuracy, and a high agreement value with results obtained by the commercial ELISA kit (Cohen's kappa value of 0.85) that we adopted as the reference method. This c-ELISA could be a useful screening test to monitor the virus spread in camels that are sentinel animals for endemic areas of disease.
Collapse
|
19
|
Perspectives on the Changing Landscape of Epizootic Hemorrhagic Disease Virus Control. Viruses 2021; 13:v13112268. [PMID: 34835074 PMCID: PMC8618044 DOI: 10.3390/v13112268] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/28/2022] Open
Abstract
Epizootic hemorrhagic disease (EHD) is an insect-transmitted viral disease of wild and domestic ruminants. It was first described following a 1955 epizootic in North American white-tailed deer (Odocoileus virginianus), a species which is highly susceptible to the causative agent of EHD, epizootic hemorrhagic disease virus (EHDV). EHDV has been detected globally across tropical and temperate regions, largely corresponding to the presence of Culicoides spp. biting midges which transmit the virus between ruminant hosts. It regularly causes high morbidity and mortality in wild and captive deer populations in endemic areas during epizootics. Although cattle historically have been less susceptible to EHDV, reports of clinical disease in cattle have increased in the past two decades. There is a pressing need to identify new methods to prevent and mitigate outbreaks and reduce the considerable impacts of EHDV on livestock and wildlife. This review discusses recent research advancements towards the control of EHDV, including the development of new investigative tools and progress in basic and applied research focused on virus detection, disease mitigation, and vector control. The potential impacts and implications of these advancements on EHD management are also discussed.
Collapse
|
20
|
Development of a Novel Loop Mediated Isothermal Amplification Assay (LAMP) for the Rapid Detection of Epizootic Haemorrhagic Disease Virus. Viruses 2021; 13:v13112187. [PMID: 34834993 PMCID: PMC8621080 DOI: 10.3390/v13112187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Epizootic haemorragic disease (EHD) is an important disease of white-tailed deer and can cause a bluetongue-like illness in cattle. A definitive diagnosis of EHD relies on molecular assays such as real-time RT-qPCR or conventional PCR. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is a cost-effective, specific, and sensitive technique that provides an alternative to RT-qPCR. We designed two sets of specific primers targeting segment-9 of the EHD virus genome to enable the detection of western and eastern topotypes, and evaluated their performance in singleplex and multiplex formats using cell culture isolates (n = 43), field specimens (n = 20), and a proficiency panel (n = 10). The limit of detection of the eastern and western RT-LAMP assays was estimated as ~24.36 CT and as ~29.37 CT in relation to real-time RT-qPCR, respectively, indicating a greater sensitivity of the western topotype singleplex RT-LAMP. The sensitivity of the western topotype RT-LAMP assay, relative to the RT-qPCR assay, was 72.2%, indicating that it could be theoretically used to detect viraemic cervines and bovines. For the first time, an RT-LAMP assay was developed for the rapid detection of the EHD virus that could be used as either a field test or high throughput screening tool in established laboratories to control the spread of EHD.
Collapse
|
21
|
Li ZR, Yang ZX, Li ZH, Gao X, Hu ZY, Yang H, Liao DF. Development and evaluation of recombinase polymerase amplification combined with lateral flow dipstick assays for co-detection of epizootic haemorrhagic disease virus and the Palyam serogroup virus. BMC Vet Res 2021; 17:286. [PMID: 34433470 PMCID: PMC8390197 DOI: 10.1186/s12917-021-02977-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/22/2021] [Indexed: 11/29/2022] Open
Abstract
Background Epizootic haemorrhagic disease virus (EHDV) and the Palyam serogroup viruses (PALV) have led to significant economic losses associated with livestock production globally. A rapid, sensitive and specific method for the detection of EHDV and PALV is critical for virus detection, monitoring, and successful control and elimination of related diseases. Results In the present study, a recombinase polymerase amplification combined with lateral flow dipstick (RPA-LFD) assay for the co-detection of genome segment 1 (Seg-1) of EHDV and PALV was developed and evaluated. The analytical sensitivities of the established RPA-LFD assay in the detection of EHDV and PALV were 7.1 copies/µL and 6.8 copies/µL, respectively. No cross-reaction with other members of the genus Orbivirus, including African horse sickness virus, bluetongue virus, Guangxi orbivirus, Tibet orbivirus and Yunnan orbivirus was observed. The established RPA-LFD assay accurately detected 39 EHDV strains belonging to 5 serotypes and 29 PALV strains belonging to 3 serotypes. The trace back results of quantitative real-time polymerase chain reaction (qRT-PCR) and the established RPA-LFD assay on sentinel cattle were consistent. The coincidence rates of qRT-PCR and the established RPA-LFD assay in 56 blood samples from which EHDV or PALV had been isolated and 96 blood samples collected from cattle farms were more than 94.8 %. The results demonstrated that the established RPR-LFD assay is specific, sensitive and reliable, and could be applied in early clinical diagnosis of EHDV and PALV. Conclusions This study highlights the development and application of the RPA-LFD assay in the co-detection of EHDV and PALV for the first time. The assay could be used as a potential optional rapid, reliable, sensitive and low-cost method for field diagnosis of EHDV and PALV. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02977-9.
Collapse
Affiliation(s)
- Zhuo-Ran Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Yunnan, 650224, Kunming, China
| | - Zhen-Xing Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Yunnan, 650224, Kunming, China
| | - Zhan-Hong Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Yunnan, 650224, Kunming, China
| | - Xiang Gao
- Animal Disease Control and Prevention Center of Jinghong, Yunnan, 666100, Jinghong, China
| | - Zhong-Yan Hu
- Animal Disease Control and Prevention Center of Jinghong, Yunnan, 666100, Jinghong, China
| | - Heng Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Yunnan, 650224, Kunming, China.
| | - De-Fang Liao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Yunnan, 650224, Kunming, China.
| |
Collapse
|
22
|
Yamamoto K, Hiromatsu R, Kaida M, Kato T, Yanase T, Shirafuji H. Isolation of epizootic hemorrhagic disease virus serotype 7 from cattle showing fever in Japan in 2016 and improvement of a reverse transcription-polymerase chain reaction assay to detect epizootic hemorrhagic disease virus. J Vet Med Sci 2021; 83:1378-1388. [PMID: 34248104 PMCID: PMC8498830 DOI: 10.1292/jvms.20-0523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epizootic hemorrhagic disease (EHD) is an arthropod-borne disease of wild and domestic ruminants caused by the EHD virus (EHDV). To date, seven EHDV serotypes have been identified. In Japan, strain Ibaraki of EHDV serotype 2 has caused outbreaks of Ibaraki disease in cattle. In addition, EHDV serotype 7 (EHDV-7) has caused large-scale EHD epizootics. In mid-September 2016, eight cattle at a breeding farm in Fukuoka Prefecture, Japan developed fever. Since EHDV-7 was detected in sentinel cattle in western Japan in 2016, we suspected that the cause of this fever might be an EHDV-7 infection. In this study, we tested cattle for EHDV-7 and some other viruses. Consequently, EHDV was isolated from washed blood cells collected from three of the eight cattle, and genetic analysis of genome segment 2 revealed that this isolate was EHDV-7. Moreover, all affected cattle tested positive for anti-EHDV-7 neutralizing antibodies. Our results suggest that the fever was caused by EHDV-7 infection. In addition, we modified a conventional reverse transcription polymerase chain reaction assay for the specific detection of EHDV. This modified assay could detect various strains of EHDV isolated in Japan, Australia, and North America. Furthermore, the assay permitted the detection of EHDV-7 in blood cells collected from seven of the eight cattle. We believe that this modified assay will be a useful tool for the diagnosis of EHD.
Collapse
Affiliation(s)
- Kunitaka Yamamoto
- Fukuoka Chuo Livestock Hygiene Service Center, 4-14-5 Hakozaki-Futo, Higashi-ku, Fukuoka 812-0051, Japan
| | - Riki Hiromatsu
- Fukuoka Chuo Livestock Hygiene Service Center, 4-14-5 Hakozaki-Futo, Higashi-ku, Fukuoka 812-0051, Japan
| | - Mina Kaida
- Fukuoka Chuo Livestock Hygiene Service Center, 4-14-5 Hakozaki-Futo, Higashi-ku, Fukuoka 812-0051, Japan
| | - Tomoko Kato
- Kyushu Research Station, National Institute of Animal Health, National Food and Agriculture Research Organization (NARO), 2702 Chuzan, Kagoshima 891-0105, Japan
| | - Tohru Yanase
- Kyushu Research Station, National Institute of Animal Health, National Food and Agriculture Research Organization (NARO), 2702 Chuzan, Kagoshima 891-0105, Japan
| | - Hiroaki Shirafuji
- Kyushu Research Station, National Institute of Animal Health, National Food and Agriculture Research Organization (NARO), 2702 Chuzan, Kagoshima 891-0105, Japan
| |
Collapse
|
23
|
Yang H, Li Z, Wang J, Li Z, Yang Z, Liao D, Zhu J, Li H. Novel Serotype of Epizootic Hemorrhagic Disease Virus, China. Emerg Infect Dis 2021; 26:3081-3083. [PMID: 33219797 PMCID: PMC7706924 DOI: 10.3201/eid2612.191301] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In 2018, a strain of epizootic hemorrhagic disease virus (EHDV), named YNDH/V079/2018, was isolated from a sentinel calf in Mangshi County, Yunnan Province, China. Nucleotide sequencing and neutralization tests indicated that the virus belongs to a novel serotype of EHDV that had not been reported previously.
Collapse
|
24
|
Yang H, Gu W, Li Z, Zhang L, Liao D, Song J, Shi B, Hasimu J, Li Z, Yang Z, Zhong Q, Li H. Novel putative bluetongue virus serotype 29 isolated from inapparently infected goat in Xinjiang of China. Transbound Emerg Dis 2021; 68:2543-2555. [PMID: 33190404 DOI: 10.1111/tbed.13927] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/29/2020] [Accepted: 11/10/2020] [Indexed: 02/04/2023]
Abstract
Bluetongue virus (BTV) is the 'type' species of the genus Orbivirus causing bluetongue (BT) in sheep, bovine and other ruminants. Twenty-four serotypes and several atypical serotypes of BTV were identified worldwide. In present study, a novel strain of BTV (V196/XJ/2014) was isolated from an asymptomatic sentinel goat in Yuli County, Xinjiang of China. Serotype identification of this isolate exhibited uniform negative results by serotype-specific conventional RT-PCR and real-time RT-PCR for BTV-1 to BTV-27, and virus neutralization tests using reference sera of BTV-1 to BTV-24. Genomic analysis showed V196/XJ/2014 grouped with atypical serotypes of BTV-25 to BTV-28, BTV-X/XJ1407, BTV-X/ITL2015 and BTV-Y/TUN2017, while segment 2 and VP2 protein of V196/XJ/2014 shared <63.4%/61.4% nucleic acids and amino acids sequence identities with other recognized BTV serotypes and its segment 2 formed a separate 'nucleotype' in phylogenetic tree. These results indicated V196/XJ/2014 does not belong to any reported serotypes of BTV. Further studies of infectivity and pathogenicity showed that goats infected with V196/XJ/2014 did not exhibit observed clinical symptoms, but high level of virus amplification and homologous neutralization antibodies were detected post-infection. Our studies suggested a novel putative serotype of BTV-29 was isolated in Xinjiang of China, which expands our knowledge about the diversity of BTV.
Collapse
Affiliation(s)
- Heng Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Wenxi Gu
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Autonomous Region, China
| | - Zhanhong Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Ling Zhang
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Autonomous Region, China
| | - Defang Liao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Jianling Song
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Baoxin Shi
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Autonomous Region, China
| | - Jiapaer Hasimu
- Yuli Animal Husbandry and Veterinary Station, Yuli, Xinjiang Autonomous Region, China
| | - Zhuoran Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Qi Zhong
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Autonomous Region, China
| | - Huachun Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| |
Collapse
|
25
|
Yanase T, Murota K, Hayama Y. Endemic and Emerging Arboviruses in Domestic Ruminants in East Asia. Front Vet Sci 2020; 7:168. [PMID: 32318588 PMCID: PMC7154088 DOI: 10.3389/fvets.2020.00168] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 03/10/2020] [Indexed: 02/04/2023] Open
Abstract
Epizootic congenital abnormalities caused by Akabane, Aino, and Chuzan viruses have damaged the reproduction of domestic ruminants in East Asia for many years. In the past, large outbreaks of febrile illness related to bovine ephemeral fever and Ibaraki viruses severely affected the cattle industry in that region. In recent years, vaccines against these viruses have reduced the occurrence of diseases, although the viruses are still circulating and have occasionally caused sporadic and small-scaled epidemics. Over a long-term monitoring period, many arboviruses other than the above-mentioned viruses have been isolated from cattle and Culicoides biting midges in Japan. Several novel arboviruses that may infect ruminants (e.g., mosquito- and tick-borne arboviruses) were recently reported in mainland China based on extensive surveillance. It is noteworthy that some are suspected of being associated with cattle diseases. Malformed calves exposed to an intrauterine infection with orthobunyaviruses (e.g., Peaton and Shamonda viruses) have been observed. Epizootic hemorrhagic disease virus serotype 6 caused a sudden outbreak of hemorrhagic disease in cattle in Japan. Unfortunately, the pathogenicity of many other viruses in ruminants has been uncertain, although these viruses potentially affect livestock production. As global transportation grows, the risk of an accidental incursion of arboviruses is likely to increase in previously non-endemic areas. Global warming will also certainly affect the distribution and active period of vectors, and thus the range of virus spreads will expand to higher-latitude regions. To prevent anticipated damages to the livestock industry, the monitoring system for arboviral circulation and incursion should be strengthened; moreover, the sharing of information and preventive strategies will be essential in East Asia.
Collapse
Affiliation(s)
- Tohru Yanase
- Kyushu Research Station, National Institute of Animal Health, NARO, Kagoshima, Japan
| | - Katsunori Murota
- Kyushu Research Station, National Institute of Animal Health, NARO, Kagoshima, Japan
| | - Yoko Hayama
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, NARO, Tsukuba, Japan
| |
Collapse
|
26
|
Three New Orbivirus Species Isolated from Farmed White-Tailed Deer ( Odocoileus virginianus) in the United States. Viruses 2019; 12:v12010013. [PMID: 31861885 PMCID: PMC7019857 DOI: 10.3390/v12010013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 01/04/2023] Open
Abstract
We report the detection and gene coding sequences of three novel Orbivirus species found in six dead farmed white-tailed deer in the United States. Phylogenetic analyses indicate that the new orbiviruses are genetically closely related to the Guangxi, Mobuck, Peruvian horse sickness, and Yunnan orbiviruses, which are thought to be solely borne by mosquitos. However, four of the six viruses analyzed in this work were found as co-infecting agents along with a known cervid pathogen, epizootic hemorrhagic disease virus-2 (EHDV-2), raising questions as to whether the new viruses are primary pathogens or secondary pathogens that exacerbate EHDV-2 infections. Moreover, EHDV-2 is known to be a Culicoides-borne virus, raising additional questions as to whether Culicoides species can also serve as vectors for the novel orbiviruses, if mosquitoes can vector EHDV-2, or whether the deer were infected through separate bites by the insects. Our findings expand knowledge of the possible viral pathogens of deer in the United States. Moreover, due to the close genetic relatedness of the three new orbiviruses to viruses that are primary pathogens of cattle and horses, our findings also underscore a crucial need for additional research on the potential role of the three new orbiviruses as pathogens of other animals.
Collapse
|
27
|
Rajko-Nenow P, Brown-Joseph T, Tennakoon C, Flannery J, Oura CAL, Batten C. Detection of a novel reassortant epizootic hemorrhagic disease virus serotype 6 in cattle in Trinidad, West Indies, containing nine RNA segments derived from exotic EHDV strains with an Australian origin. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 74:103931. [PMID: 31238112 PMCID: PMC6857627 DOI: 10.1016/j.meegid.2019.103931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 12/01/2022]
Abstract
Epizootic hemorrhagic disease virus (EHDV) is a Culicoides-transmitted orbivirus that infects domestic and wild ruminants in many parts of the world. Of the eight proposed serotypes, only EHDV-1, 2 and 6 have been reported to be present in the Americas. Following the identification of a virulent EHD-6 reasssortant virus in the USA in 2007 (EHDV-6 Indiana), with outer coat protein segments derived from an Australian strain of EHDV and all remaining segments derived from a locally circulating EHDV-2 strain, questions have remained about the origin of the Australian parent strain and how it may have arrived in the USA. When EHDV-6 was identified in asymptomatic cattle imported into the Caribbean island of Trinidad in 2013, full genome sequencing was carried out to further characterise the virus. The EHDV-6 Trinidad was a reassortant virus, with 8 of its 10 segments, being derived from the same exotic Australian EHDV-6 strain as the VP2 and VP5 present in the EHDV-6 Indiana strain from the USA. Analyses of the two remaining segments revealed that segment 8 showed the highest nucleotide identity (90.4%) with a USA New Jersey strain of EHDV-1, whereas segment 4 had the highest nucleotide identity (96.5%) with an Australian EHDV-2 strain. This data strongly suggests that the Trinidad EHDV-6 has an Australian origin, receiving its segment 4 from a reassortment event with an EHDV-2 also from Australia. This reassortant virus likely came to the Americas, where it received its segment 8 from a locally-circulating (as yet unknown) EHDV strain. This virus then may have gained entry into the USA, where it further reassorted with a known locally-circulating EHDV-2, the resulting strain being EHDV-6 Indiana. This study therefore identifies, for the first time, the likely minor parent virus of the EHDV-6 currently circulating in the USA.
Collapse
Affiliation(s)
- Paulina Rajko-Nenow
- Non-vesicular reference laboratory, The Pirbright Institute, Woking, Surrey GU24 0NF, UK.
| | - Tamiko Brown-Joseph
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Chandana Tennakoon
- Integrative Biology & Bioinformatics, The Pirbright Institute, Woking, Surrey GU24 0NF, UK
| | - John Flannery
- Non-vesicular reference laboratory, The Pirbright Institute, Woking, Surrey GU24 0NF, UK
| | - Christopher A L Oura
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Carrie Batten
- Non-vesicular reference laboratory, The Pirbright Institute, Woking, Surrey GU24 0NF, UK
| |
Collapse
|
28
|
Wang L, Lanka S, Cassout D, Mateus-Pinilla NE, Li G, Wilson WC, Yoo D, Shelton P, Fredrickson RL. Inter-serotype reassortment among epizootic haemorrhagic disease viruses in the United States. Transbound Emerg Dis 2019; 66:1809-1820. [PMID: 31131970 DOI: 10.1111/tbed.13257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 02/05/2023]
Abstract
First described in 1955 in New Jersey, epizootic haemorrhagic disease (EHD) causes a severe clinical disease in wild and domestic ruminants worldwide. Epizootic haemorrhagic disease outbreaks occur in deer populations each year from summer to late autumn. The etiological agent is EHD virus (EHDV) which is a double-stranded segmented icosahedral RNA virus. EHD virus utilizes point mutations and reassortment strategies to maintain viral fitness during infection. In 2018, EHDV serotype 2 was predominantly detected in deer in Illinois. Whole genome sequencing was conducted for two 2018 EHDV2 isolates (IL41747 and IL42218) and the sequence analyses indicated that IL42218 was a reassortant between different serotypes whereas IL41747 was a genetically stable strain. Our data suggest that multiple strains contribute to outbreaks each year.
Collapse
Affiliation(s)
- Leyi Wang
- Department of Veterinary Clinical Medicine and the Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| | - Saraswathi Lanka
- Department of Veterinary Clinical Medicine and the Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| | - Debbie Cassout
- Department of Veterinary Clinical Medicine and the Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| | - Nohra E Mateus-Pinilla
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, Illinois
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - William C Wilson
- United States Department of Agriculture, Agricultural Research Service, Arthropod-borne Animal Diseases Research Unit, Manhattan, Kansas
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Paul Shelton
- Illinois Department of Natural Resources, Division of Wildlife Resources, Springfield, Illinois
| | - Richard L Fredrickson
- Department of Veterinary Clinical Medicine and the Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| |
Collapse
|
29
|
Field data implicating Culicoides stellifer and Culicoides venustus (Diptera: Ceratopogonidae) as vectors of epizootic hemorrhagic disease virus. Parasit Vectors 2019; 12:258. [PMID: 31122295 PMCID: PMC6533733 DOI: 10.1186/s13071-019-3514-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/19/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Epizootic hemorrhagic disease virus (EHDV) is an Orbivirus of veterinary importance which is transmitted by biting midges of the genus Culicoides (Diptera: Ceratopogonidae) to ruminants. Culicoides sonorensis Wirth & Jones, the only confirmed vector of EHDV in the USA, is rare in the southeastern states where transmission persists, suggesting that other Culicoides species transmit EHDV in this region. The present study aimed to determine which Culicoides species transmitted EHDV in Florida and Alabama, two states in the southeastern USA. Viral RNA was detected in field-collected midges using molecular methods. These data are presented alongside data on Culicoides blood meal analysis, white-tailed deer (Odocoileus virginianus) aspiration, and seasonality to demonstrate an interaction between potential vector species and EHDV hosts. RESULTS Out of 661 pools tested, 20 pools were positive for EHDV viral RNA, including six pools from Culicoides stellifer (Coquillett) and 14 pools from Culicoides venustus Hoffman. The overall infection rate was 0.06% for C. stellifer and 2.18% for C. venustus. No positive pools were identified for a further 17 species. Serotypes identified in Culicoides included EHDV-2, EHDV-6, and coinfections of EHDV-2 and EHDV-6 and were identified in similar proportions to serotypes in deer at 3 of 4 deer farms. Viral detections conducted in Alabama also identified one positive pool of C. venustus. Blood meal analysis revealed that both Culicoides species fed on white-tailed deer (verified through aspiration), fallow deer, and elk, species for which EHDV viremia has been documented. Seasonality data indicated that both species were present throughout the period in which viral transmission occurred to EHDV hosts in 2016 in addition to the 2017 epizootic. CONCLUSIONS Our finding of EHDV positive pools of field-collected C. stellifer and C. venustus and an interaction between these species and EHDV hosts satisfy two of the four criteria for vector incrimination as set by the World Health Organization. Determining the vectors of EHDV is an important step towards developing sound strategies for the control of vector Culicoides and management of EHDV in the southeastern USA.
Collapse
|
30
|
Dommergues L, Viarouge C, Métras R, Youssouffi C, Sailleau C, Zientara S, Cardinale E, Cêtre-Sossah C. Evidence of bluetongue and Epizootic Haemorrhagic disease circulation on the island of Mayotte. Acta Trop 2019; 191:24-28. [PMID: 30590029 DOI: 10.1016/j.actatropica.2018.12.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/23/2018] [Accepted: 12/23/2018] [Indexed: 12/11/2022]
Abstract
A cross-sectional study was conducted to explore the epidemiological situation in Mayotte regarding two orbiviruses: Bluetongue virus (BTV) and Epizootic Haemorrhagic Disease virus (EHDV). In all, 385 individual asymptomatic cattle were blood-sampled (one EDTA and one serum tube per animal) between February and June 2016. Antibody (ELISA) and genome prevalence (PCR) was assessed. Almost all the selected cattle showed antibodies against both BTV and EHDV, at 99.5% (CI95% [98.00, 100]) and 96.9% (CI95% [94.5, 98.3]), respectively. Most of the cattle acquired antibodies in their first years of age. EHDV and BTV genomes were detected in 25.2% (CI95% [21.1, 29.8]) and 18.2% (CI95% [14.6, 22.4]) of samples, respectively. Coinfection with BTV and EHDV was observed in 9.4% of samples (CI95% [6.8, 12.7]). Cattle under three years old were more frequently reported as positive for genome detection by PCR than older cattle. Five serotypes of BTV and one serotype of EHDV were identified from eight samples: BTV-4, BTV-9, BTV-11, BTV-15, BTV-19 and EHDV-6, of which some were reported in neighbouring areas. BTV and EHDV both circulate in Mayotte and in its surrounding territories.
Collapse
Affiliation(s)
- Laure Dommergues
- GDS Mayotte-Coopérative Agricole des éleveurs Mahorais, Coconi, Mayotte, France.
| | - Cyril Viarouge
- UMR VIROLOGIE, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Raphaëlle Métras
- CIRAD, UMR ASTRE, Montpellier, France; ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
| | | | - Corinne Sailleau
- UMR VIROLOGIE, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Stephan Zientara
- UMR VIROLOGIE, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Eric Cardinale
- ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France; CIRAD, UMR ASTRE, Sainte Clotilde, La Réunion, France
| | - Catherine Cêtre-Sossah
- ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France; CIRAD, UMR ASTRE, Sainte Clotilde, La Réunion, France
| |
Collapse
|
31
|
Maan S, Belaganahalli MN, Maan NS, Potgieter AC, Mertens PPC. Quantitative RT-PCR assays for identification and typing of the Equine encephalosis virus. Braz J Microbiol 2019; 50:287-296. [PMID: 30637652 PMCID: PMC6863193 DOI: 10.1007/s42770-018-0034-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/17/2018] [Indexed: 10/27/2022] Open
Abstract
Equine encephalosis (EE) is an acute, arthropod-borne, noncontagious, febrile disease of equids. The clinical signs of EE are similar to milder forms of African horse sickness (AHS) and the two diseases can be easily confused. The Equine encephalosis virus (EEV) is a distinct virus species within the genus Orbivirus, family Reoviridae, with ten linear segments of dsRNA genome. Seven distinct serotypes of EEV have been recognised on the basis of sequence analyses of Seg-2. The need for differential diagnosis of similar forms of EE and AHS warranted the development of molecular diagnostic methods for specific detection and identification of EEV. We report the development of quantitative real-time RT-PCR assay for detection of any member of the EEV species targeting the highly conserved EEV Seg-9. Similar serotype-specific qRT-PCR assays were designed for each of the seven EEV serotypes targeting genome Seg-2, encoding the serotype determining VP2 protein. These assays were evaluated using different EEV serotypes and other closely related orbiviruses. They were shown to be EEV virus species-specific, or EEV type-specific capable of detecting 1 to 13 copies of viral RNA in clinical samples. The assays failed to detect RNA from closely related orbiviruses, including AHSV and Peruvian horse sickness virus (PHSV) isolates.
Collapse
Affiliation(s)
- Sushila Maan
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125 004, India.
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK.
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana, 125 004, India.
| | - Manjunatha N Belaganahalli
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK.
- One Health Institute, School of Veterinary medicine, University of California, Davis, California, 95616, USA.
| | - Narender Singh Maan
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125 004, India
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | - Abraham C Potgieter
- Deltamune (Pty) Ltd, 248 Jean Avenue, Lyttelton, Centurion, 0140, South Africa
| | - Peter P C Mertens
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- Chair of Virology, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK
| |
Collapse
|
32
|
Brown-Joseph T, Rajko-Nenow P, Hicks H, Sahadeo N, Harrup LE, Carrington CV, Batten C, Oura CAL. Identification and characterization of epizootic hemorrhagic disease virus serotype 6 in cattle co-infected with bluetongue virus in Trinidad, West Indies. Vet Microbiol 2018; 229:1-6. [PMID: 30642583 PMCID: PMC6340808 DOI: 10.1016/j.vetmic.2018.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022]
Abstract
Epizootic haemorrhagic disease virus serotype 6 (EHDV-6) is circulating in Trinidad. EHDV is infecting cattle at a slower rate than BTV. EHDV appears to have a faster viral evolution rate than BTV. The EHDV-6 Trinidad strain (VP-2) falls within the eastern topotype clade that is likely to have originated from Australia.
Epizootic hemorrhagic disease virus (EHDV) is an economically important virus that can cause severe clinical disease in deer and to a lesser extent cattle. This study set out to determine and characterize which EHDV serotypes were circulating in Trinidad. Serum and whole blood samples were collected monthly for six months from a cohort of cattle imported to Trinidad from the USA. Results revealed that all the cattle seroconverted to EHDV within six months of their arrival, with EHDV RNA being detected in the samples just prior to antibodies, as expected. Serotyping assays revealed that a single serotype (EHDV-6) was circulating in the cattle. Sequencing of the surface viral protein (VP2) of EHDV-6, followed by phylogenetic analysis, revealed that the Trinidad EHDV-6 strain was closely related to EHDV-6 viruses found in Guadeloupe (2010), Martinique (2010) and USA (2006), with 96–97.2% nucleotide identity. The Trinidad EHDV-6 VP-2 shared 97.2% identity with the Australian EHDV-6 prototype strain, classifying it within the eastern topotype clade. Bayesian coalescent analysis support Australia as the most probable source for the EHDV-6 VP2 sequences in the Americas and Caribbean region and suggests that the they diverged from the Australian prototype strain around 1966 (95% HPD 1941–1979).
Collapse
Affiliation(s)
- Tamiko Brown-Joseph
- Department of Pre-Clinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad, West Indies.
| | - Paulina Rajko-Nenow
- Non-vesicular reference laboratory, The Pirbright Institute, Woking, Surrey, GU24 0NF, UK
| | - Hayley Hicks
- Non-vesicular reference laboratory, The Pirbright Institute, Woking, Surrey, GU24 0NF, UK
| | - Nikita Sahadeo
- Department of Pre-Clinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad, West Indies
| | - Lara E Harrup
- Entomology Group, The Pirbright Institute, Woking, Surrey, GU24 0NF, UK
| | - Christine V Carrington
- Department of Pre-Clinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad, West Indies
| | - Carrie Batten
- Non-vesicular reference laboratory, The Pirbright Institute, Woking, Surrey, GU24 0NF, UK
| | - Christopher A L Oura
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of theWest Indies, St. Augustine, Trinidad, West Indies
| |
Collapse
|