1
|
Ferrara Muñiz X, García E, Blanco FC, Garbaccio S, Garro C, Zumárraga M, Dellagostin O, Trangoni M, Marfil MJ, Bianco MV, Abdala A, Revelli J, Bergamasco M, Soutullo A, Marini R, Rocha RV, Sánchez A, Bigi F, Canal AM, Eirin ME, Cataldi AA. Field Trial with Vaccine Candidates Against Bovine Tuberculosis Among Likely Infected Cattle in a Natural Transmission Setting. Vaccines (Basel) 2024; 12:1173. [PMID: 39460339 PMCID: PMC11512252 DOI: 10.3390/vaccines12101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Vaccines may improve the control and eradication of bovine tuberculosis. However, the evaluation of experimental candidates requires the assessment of the protection, excretion, transmission and biosafety. A natural transmission trial among likely infected animals was conducted. Methods: Seventy-four male heifers were randomly distributed (five groups) and vaccinated subcutaneously with attenuated strains (M. bovis Δmce2 or M. bovis Δmce2-phoP), a recombinant M. bovis BCG Pasteur (BCGr) or M. bovis BCG Pasteur. Then, they cohoused with a naturally infected bTB cohort under field conditions exposed to the infection. Results: A 23% of transmission of wild-type strains was confirmed (non-vaccinated group). Strikingly, first vaccination did not induce immune response (caudal fold test and IFN-gamma release assay). However, after 74 days of exposure to bTB, animals were re-vaccinated. Although their sensitization increased throughout the trial, the vaccines did not confer significant protection, when compared to the non-vaccinated group, as demonstrated by pathology progression of lesions and confirmatory tools. Besides, the likelihood of acquiring the infection was similar in all groups compared to the non-vaccinated group (p > 0.076). Respiratory and digestive excretion of viable vaccine candidates was undetectable. To note, the group vaccinated with M. bovis Δmce2-phoP exhibited the highest proportion of animals without macroscopic lesions, compared to the one vaccinated with BCG, although this was not statistically supported. Conclusions: This highlights that further evaluation of these vaccines would not guarantee better protection. The limitations detected during the trial are discussed regarding the transmission rate of M. bovis wild-type, the imperfect test for studying sensitization, the need for a DIVA diagnosis and management conditions of the trials performed under routine husbandry conditions. Re-vaccination of likely infected bovines did not highlight a conclusive result, even suggesting a detrimental effect on those vaccinated with M. bovis BCG.
Collapse
Affiliation(s)
- Ximena Ferrara Muñiz
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), UEDD CONICET-INTA, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA)-CNIA, Hurlingham 1686, Buenos Aires Province, Argentina
| | - Elizabeth García
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), UEDD CONICET-INTA, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA)-CNIA, Hurlingham 1686, Buenos Aires Province, Argentina
| | - Federico Carlos Blanco
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), UEDD CONICET-INTA, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA)-CNIA, Hurlingham 1686, Buenos Aires Province, Argentina
| | - Sergio Garbaccio
- Instituto de Patobiología Veterinaria (IPVet), UEDD CONICET-INTA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham 1686, Buenos Aires Province, Argentina
| | - Carlos Garro
- Instituto de Patobiología Veterinaria (IPVet), UEDD CONICET-INTA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham 1686, Buenos Aires Province, Argentina
| | - Martín Zumárraga
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), UEDD CONICET-INTA, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA)-CNIA, Hurlingham 1686, Buenos Aires Province, Argentina
| | - Odir Dellagostin
- Núcleo de Biotecnología, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-770, Río Grande do Soul, Brazil
| | - Marcos Trangoni
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), UEDD CONICET-INTA, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA)-CNIA, Hurlingham 1686, Buenos Aires Province, Argentina
| | - María Jimena Marfil
- Cátedra de Enfermedades Infecciosas, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1113, Argentina
| | - Maria Verónica Bianco
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Fisiología y Recursos Genéticos Vegetales, Córdoba 5119, Córdoba Province, Argentina
| | - Alejandro Abdala
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela 2300, Santa Fe Province, Argentina
| | - Javier Revelli
- Veterinary Practitioner, Private Activity, San Martín 20, San Guillermo 2347, Santa Fe Province, Argentina
| | - Maria Bergamasco
- Laboratorio de Diagnóstico e Investigaciones Agropecuarias, Ministerio de Desarrollo Productivo de Santa Fe, Santa Fe 1251, Santa Fe Province, Argentina
| | - Adriana Soutullo
- Cátedra de Inmunología Básica, Facultad de Ciencias Bioquímicas y Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Santa Fe Province, Argentina
| | - Rocío Marini
- Cátedra de Patología Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza 3080, Santa Fe Province, Argentina
| | - Rosana Valeria Rocha
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), UEDD CONICET-INTA, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA)-CNIA, Hurlingham 1686, Buenos Aires Province, Argentina
| | - Amorina Sánchez
- Cátedra de Patología Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza 3080, Santa Fe Province, Argentina
| | - Fabiana Bigi
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), UEDD CONICET-INTA, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA)-CNIA, Hurlingham 1686, Buenos Aires Province, Argentina
| | - Ana María Canal
- Cátedra de Patología Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza 3080, Santa Fe Province, Argentina
| | - María Emilia Eirin
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), UEDD CONICET-INTA, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA)-CNIA, Hurlingham 1686, Buenos Aires Province, Argentina
| | - Angel Adrián Cataldi
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), UEDD CONICET-INTA, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA)-CNIA, Hurlingham 1686, Buenos Aires Province, Argentina
| |
Collapse
|
2
|
Williams GA, Allen D, Brewer J, Salguero FJ, Houghton S, Vordermeier HM. The safety of overdose and repeat administrations of BCG Danish strain 1331 vaccine in calves and pregnant heifers. Heliyon 2024; 10:e34683. [PMID: 39149000 PMCID: PMC11325048 DOI: 10.1016/j.heliyon.2024.e34683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis infection, is a zoonotic disease in cattle that represents a significant ongoing challenge to cattle farming productivity and the livelihoods of livestock farmers in the UK. Vaccination of cattle with BCG could directly target the ability of M. bovis to proliferate within vaccinates, restricting bTB pathogenesis and onward disease transmission, and represent a step change in the tools available to help control bTB in farmed cattle. A Marketing Authorisation (MA) is required before a cattle BCG vaccine could be sold and supplied as a veterinary medicine within the UK and this requires comprehensive data supporting vaccine quality, efficacy and, most importantly, its safety. We carried out two independent Good Laboratory Practice (GLP) studies in which the safety of BCG vaccination in cattle was stringently tested through overdose and repeat vaccine administrations in young calves and pregnant heifers. Mild and generally short-lived reactions to vaccinations were observed in some animals, most commonly increases in body temperature and swelling at vaccine injection sites, but these did not have a negative impact on the overall health status of vaccinates. BCG was not shed in the saliva, faeces, milk or urine from vaccinated animals and its dissemination was limited to injection site tissues and associated lymph nodes. Overall, young calves and pregnant heifers vaccinated with BCG remained in good general health, and the vaccinated pregnant heifers had normal pregnancies and gave birth to healthy calves. Obtaining a Marketing Authorisation for a cattle BCG vaccine is a critical milestone in the progress towards the eventual use of BCG vaccination in cattle as an additional bTB control tool within the UK; these pivotal GLP vaccine safety studies generated the detailed and essential target animal safety data needed to support this.
Collapse
Affiliation(s)
- Gareth A Williams
- Animal and Plant Health Agency (APHA), Addlestone, Surrey, KT15 3NB, UK
| | - David Allen
- Animal and Plant Health Agency (APHA), Addlestone, Surrey, KT15 3NB, UK
| | - Jacqueline Brewer
- Animal and Plant Health Agency (APHA), Addlestone, Surrey, KT15 3NB, UK
| | - Francisco J Salguero
- Animal and Plant Health Agency (APHA), Addlestone, Surrey, KT15 3NB, UK
- United Kingdom Health Security Agency (UKHSA), Salisbury, Wilts, SP4 0JG, UK
| | - Steve Houghton
- Veterinary Vaccines Consultancy Ltd, Paulerspury, Northants., NN12 7NN, UK
| | | |
Collapse
|
3
|
Lakew M, Tadesse B, Srinivasan S, Aschalew M, Andarge B, Kebede D, Etifu A, Alemu T, Yalew B, Benti T, Olani A, Abera S, Bedada W, Fromsa A, Mekonnen GA, Almaw G, Ameni G, Ashenafi H, Gumi B, Bakker D, Kapur V. Assessing the feasibility of test-and-cull and test-and-segregation approaches for the control of high-prevalence bovine tuberculosis in Ethiopian intensive dairy farms. Sci Rep 2024; 14:14298. [PMID: 38906922 PMCID: PMC11192749 DOI: 10.1038/s41598-024-64884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024] Open
Abstract
Bovine tuberculosis (bTB) is endemic and has a substantial impact on the livestock sector in Ethiopia and other low and middle-income countries (LMICs). With a national emphasis on dairy farm intensification to boost milk production and spur economic growth, the incidence of bTB is anticipated to rise. However, Ethiopia, like other LMICs, lacks a comprehensive national bTB control strategy due to the economic and social infeasibility of traditional test-and-cull (TC) approaches. To inform the development of such a strategy, we evaluated the effectiveness and feasibility of TC and test-and-segregation (TSg) strategies for bTB control on Ethiopian dairy farms. A TC approach was used at Farm A [N = 62; comparative cervical test (CCT) > 4 mm, starting prevalence 11.3%] while TSg was implemented at Farm B (N = 45; CCT > 4 mm, prevalence 22.2%), with testing intervals of 2-4 months. Both strategies achieved a reduction in bTB prevalence to 0%, requiring seven rounds of TC over 18 months at Farm A, and five rounds of TSg over 12 months at Farm B's negative herd. The results show that adopting more sensitive thresholds [CCT > 0 mm or single cervical test (SCT) > 2 mm] during later rounds was pivotal in identifying and managing previously undetected infections, emphasizing the critical need for optimized diagnostic thresholds. Cost analysis revealed that TC was approximately twice as expensive as TSg, primarily due to testing, labor, and cow losses in TC, versus construction of new facilities and additional labor for TSg. This underscores the economic and logistical challenges of bTB management in resource-limited settings. Taken together, our study highlights an urgent need for the exploration of alternative approaches including TSg and or vaccination to mitigate within herd transmission and enable implementation of bTB control in regions where TC is not feasible.
Collapse
Affiliation(s)
- Matios Lakew
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
- Animal Health Institute, P.O. Box 04, Sebeta, Ethiopia.
| | | | | | | | | | | | | | | | - Bekele Yalew
- Animal Health Institute, P.O. Box 04, Sebeta, Ethiopia
| | - Teferi Benti
- Animal Health Institute, P.O. Box 04, Sebeta, Ethiopia
| | - Abebe Olani
- Animal Health Institute, P.O. Box 04, Sebeta, Ethiopia
| | - Shubisa Abera
- Animal Health Institute, P.O. Box 04, Sebeta, Ethiopia
| | - Wegene Bedada
- Animal Health Institute, P.O. Box 04, Sebeta, Ethiopia
| | - Abebe Fromsa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | | | - Gizat Almaw
- Animal Health Institute, P.O. Box 04, Sebeta, Ethiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Hagos Ashenafi
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Balako Gumi
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Douwe Bakker
- Independent Researcher and Technical Consultant, Lelystad, The Netherlands.
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.
| | - Vivek Kapur
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
4
|
Zhao Y, Fei W, Yang L, Xiang Z, Chen X, Chen Y, Hu C, Chen J, Guo A. The Establishment of a Novel γ-Interferon In Vitro Release Assay for the Differentiation of Mycobacterial Bovis-Infected and BCG-Vaccinated Cattle. Vet Sci 2024; 11:198. [PMID: 38787170 PMCID: PMC11125845 DOI: 10.3390/vetsci11050198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
BCG vaccination is increasingly reconsidered in the effective prevention of bovine tuberculosis (bTB). However, the primary challenge in BCG vaccination for cattle is the lack of a technique for differentiating between infected and vaccinated animals (DIVA). This study aimed to establish a novel DIVA diagnostic test based on an interferon-gamma in vitro release assay (IGRA). The plasmid encoding three differential antigens (Rv3872, CFP-10, and ESAT-6) absent in BCG genes but present in virulent M. bovis was previously constructed. Thus, a recombinant protein called RCE (Rv3872, CFP-10, and ESAT-6) was expressed, and an RCE-based DIVA IGRA (RCE-IGRA) was established. The RCE concentration was optimized at 4 μg/mL by evaluating 97 cattle (74 of which were bTB-positive, and 23 were negative) using a commercial IGRA bTB diagnostic kit. Further, 84 cattle were tested in parallel with the RCE-IGRA and commercial PPD-based IGRA (PPD-IGRA), and the results showed a high correlation with a kappa value of 0.83. The study included BCG-vaccinated calves (n = 6), bTB-positive cattle (n = 6), and bTB-negative non-vaccinated calves (n = 6). After 3 months post-vaccination, PPD-IGRA generated positive results in both vaccinated and infected calves. However, RCE-IGRA developed positive results in infected calves but negative results in vaccinated calves. In conclusion, this DIVA method has broad prospects in differentiating BCG vaccination from natural infection to prevent bTB.
Collapse
Affiliation(s)
- Yuhao Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (W.F.); (Z.X.); (X.C.); (Y.C.); (C.H.); (J.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan 430070, China
| | - Wentao Fei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (W.F.); (Z.X.); (X.C.); (Y.C.); (C.H.); (J.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan 430070, China
| | - Li Yang
- Wuhan Keqian Biology Co., Ltd., Wuhan 430206, China;
| | - Zhijie Xiang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (W.F.); (Z.X.); (X.C.); (Y.C.); (C.H.); (J.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan 430070, China
| | - Xi Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (W.F.); (Z.X.); (X.C.); (Y.C.); (C.H.); (J.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan 430070, China
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (W.F.); (Z.X.); (X.C.); (Y.C.); (C.H.); (J.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan 430070, China
| | - Changmin Hu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (W.F.); (Z.X.); (X.C.); (Y.C.); (C.H.); (J.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan 430070, China
| | - Jianguo Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (W.F.); (Z.X.); (X.C.); (Y.C.); (C.H.); (J.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan 430070, China
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (W.F.); (Z.X.); (X.C.); (Y.C.); (C.H.); (J.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan 430070, China
| |
Collapse
|
5
|
Contreras C, Alegría-Moran R, Duchens M, Ábalos P, López R, Retamal P. Specific and non-specific effects of Mycobacterium bovis BCG vaccination in dairy calves. Front Vet Sci 2023; 10:1278329. [PMID: 37869491 PMCID: PMC10588636 DOI: 10.3389/fvets.2023.1278329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Bovine tuberculosis (bTB) is a chronic disease mainly caused by Mycobacterium bovis, a zoonotic pathogen with economic significance as it leads to reduced milk and meat production, and high costs for control measures. The Bacillus Calmette-Guérin (BCG) vaccine, primarily used to prevent tuberculosis in humans, has also been studied for controlling bTB. While showing effectiveness in preventing M. bovis infection and disease in cattle, the BCG vaccine can induce non-specific effects on the immune system, enhancing responses to infections caused by unrelated pathogens, and also having non-specific effects on lactation. The aim of this study is to describe both the specific and non-specific effects of BCG vaccination in calves from a commercial dairy herd in central Chile. Diagnosis of M. bovis infection was performed through the IFNγ release assay (IGRA) using ESAT6/CFP-10 and Rv3615c antigens. The records of milk production, somatic cell count (SCC), clinical mastitis (CM) and retained placenta (RP) during the first lactation were compared between vaccinated and non-vaccinated animals. The breed (Holstein Friesian [HF] v/s HF × Swedish Red crossbred [HFSR]) and the season (warm v/s cold) were also analyzed as categorical explanatory variables. Results of IGRA showed significant differences between vaccinated and control groups, indicating a vaccine efficacy of 58.5% at 18 months post vaccination in HFSR crossbred animals. Although milk production did not vary, SCC and CM showed differences between groups, associated to the breed and the season, respectively. When analyzing CM and RP as a whole entity of disease, BCG showed protection in all but the cold season variables. Overall, the BCG vaccine induced protective specific and non-specific effects on health parameters, which may be influenced by the breed of animals and the season. These results provide new features of BCG protection, supporting initiatives for its implementation as a complementary tool in bTB control.
Collapse
Affiliation(s)
- Catalina Contreras
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Raúl Alegría-Moran
- Escuela de Medicina Veterinaria, Sede Santiago, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Santiago, Chile
| | - Mario Duchens
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Pedro Ábalos
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Renata López
- Magister en Ciencias Animales y Veterinarias, Universidad de Chile, Santiago, Chile
| | - Patricio Retamal
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Milián-Suazo F, González-Ruiz S, Contreras-Magallanes YG, Sosa-Gallegos SL, Bárcenas-Reyes I, Cantó-Alarcón GJ, Rodríguez-Hernández E. Vaccination Strategies in a Potential Use of the Vaccine against Bovine Tuberculosis in Infected Herds. Animals (Basel) 2022; 12:ani12233377. [PMID: 36496897 PMCID: PMC9735741 DOI: 10.3390/ani12233377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Bovine tuberculosis (bTB) is a disease of cattle that represents a risk to public health and causes severe economic losses to the livestock industry. Recently, one of the strategies recommended for reducing the prevalence of the disease in animals is the use of the BCG vaccine, alone or in combination with proteins. It has been shown that the vaccine elicits a strong immune response, downsizes the number of animals with visible lesions, and reduces the rate of infection as well as the bacillary count. This paper, based on scientific evidence, makes suggestions about some practical vaccination alternatives that can be used in infected herds to reduce bTB prevalence, considering BCG strains, vaccine doses, routes of application, and age of the animals. Our conclusion is that vaccination is a promising alternative to be included in current control programs in underdeveloped countries to reduce the disease burden.
Collapse
Affiliation(s)
- Feliciano Milián-Suazo
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico
| | - Sara González-Ruiz
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico
- Correspondence:
| | | | | | - Isabel Bárcenas-Reyes
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico
| | | | - Elba Rodríguez-Hernández
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ajuchitlán 76280, Mexico
| |
Collapse
|
7
|
Byrne AW, Barrett D, Breslin P, Fanning J, Casey M, Madden JM, Lesellier S, Gormley E. Bovine tuberculosis in youngstock cattle: A narrative review. Front Vet Sci 2022; 9:1000124. [PMID: 36213413 PMCID: PMC9540495 DOI: 10.3389/fvets.2022.1000124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis, remains a high-priority global pathogen of concern. The role of youngstock animals in the epidemiology of bTB has not been a focus of contemporary research. Here we have aimed to collate and summarize what is known about the susceptibility, diagnosis, transmission (infectiousness), and epidemiology to M. bovis in youngstock (up to 1-year of age). Youngstock are susceptible to M. bovis infection when exposed, with the capacity to develop typical bTB lesions. Calves can be exposed through similar routes as adults, via residual infection, contiguous neighborhood spread, wildlife spillback infection, and the buying-in of infected but undetected cattle. Dairy systems may lead to greater exposure risk to calves relative to other production systems, for example, via pooled milk. Given their young age, calves tend to have shorter bTB at-risk exposure periods than older cohorts. The detection of bTB varies with age when using a wide range of ante-mortem diagnostics, also with post-mortem examination and confirmation (histological and bacteriological) of infection. When recorded as positive by ante-mortem test, youngstock appear to have the highest probabilities of any age cohort for confirmation of infection post-mortem. They also appear to have the lowest false negative bTB detection risk. In some countries, many calves are moved to other herds for rearing, potentially increasing inter-herd transmission risk. Mathematical models suggest that calves may also experience lower force of infection (the rate that susceptible animals become infected). There are few modeling studies investigating the role of calves in the spread and maintenance of infection across herd networks. One study found that calves, without operating testing and control measures, can help to maintain infection and lengthen the time to outbreak eradication. Policies to reduce testing for youngstock could lead to infected calves remaining undetected and increasing onwards transmission. Further studies are required to assess the risk associated with changes to testing policy for youngstock in terms of the impact for within-herd disease control, and how this may affect the transmission and persistence of infection across a network of linked herds.
Collapse
Affiliation(s)
- Andrew W. Byrne
- One-Health and Welfare Scientific Support Unit, National Disease Control Centre, Department of Agriculture, Food and the Marine, Dublin, Ireland
- *Correspondence: Andrew W. Byrne ;
| | - Damien Barrett
- One-Health and Welfare Scientific Support Unit, National Disease Control Centre, Department of Agriculture, Food and the Marine, Dublin, Ireland
- ERAD, Department of Agriculture, Food and the Marine, Dublin, Ireland
| | - Philip Breslin
- ERAD, Department of Agriculture, Food and the Marine, Dublin, Ireland
| | - June Fanning
- One-Health and Welfare Scientific Support Unit, National Disease Control Centre, Department of Agriculture, Food and the Marine, Dublin, Ireland
| | - Miriam Casey
- Centre for Veterinary Epidemiology and Risk Analysis (CVERA), School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| | - Jamie M. Madden
- Centre for Veterinary Epidemiology and Risk Analysis (CVERA), School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| | - Sandrine Lesellier
- Nancy Laboratory for Rabies and Wildlife (LRFSN), ANSES, Technopole Agricole et Vétérinaire, Malzéville, France
| | - Eamonn Gormley
- Tuberculosis Diagnostics and Immunology Research Laboratory, School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
8
|
Nuvey FS, Arkoazi J, Hattendorf J, Mensah GI, Addo KK, Fink G, Zinsstag J, Bonfoh B. Effectiveness and profitability of preventive veterinary interventions in controlling infectious diseases of ruminant livestock in sub-Saharan Africa: a scoping review. BMC Vet Res 2022; 18:332. [PMID: 36056387 PMCID: PMC9438146 DOI: 10.1186/s12917-022-03428-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Agriculture in general, and livestock production in particular, serve as a livelihood source for many people in sub-Saharan Africa (SSA). In many settings, lack of control of infectious diseases hampers livestock productivity, undermining the livelihood of rural populations. This scoping review sought to identify veterinary interventions previously evaluated as well as their relative effectiveness in controlling infectious livestock diseases. To be included, papers had to be written in English, German or French, and had to describe the effectiveness and/or profitability of preventive veterinary intervention(s) against anthrax, blackleg, bovine tuberculosis, brucellosis, contagious bovine pleuropneumonia, contagious caprine pleuropneumonia, foot-and-mouth disease, goat pox, lumpy skin disease, pasteurellosis, peste des petits ruminants, and/or sheep pox in any SSA country. Of the 2748 publications initially screened, 84 met our inclusion criteria and were analyzed. Most of the studies (n = 73, 87%) evaluated the effectiveness and/or profitability of vaccination, applied exclusively, applied jointly with, or compared to strategies like deworming, antimicrobial treatment, surveillance, feed supplementation, culling and dipping in reducing morbidity and/or mortality to livestock diseases. The effectiveness and/or profitability of antimicrobial treatment (n = 5), test and slaughter (n = 5), and use of lay animal health workers (n = 1) applied exclusively, were evaluated in the other studies. Vaccination was largely found to be both effective and with positive return on investment. Ineffective vaccination was mainly due to loss of vaccine potency under unfavorable field conditions like adverse weather events, cold chain failure, and mismatch of circulating pathogen strain and the vaccines in use. In summary, vaccination is the most effective and profitable means of controlling infectious livestock diseases in SSA. However, to achieve effective control of these diseases, its implementation must integrate pathogen surveillance, and optimal vaccine delivery tools, to overcome the reported field challenges.
Collapse
Affiliation(s)
- Francis Sena Nuvey
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland. .,Faculty of Medicine, University of Basel, Klingelbergstrasse 61, 4056, Basel, Switzerland.
| | - Jalil Arkoazi
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland.,Faculty of Science, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Jan Hattendorf
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland.,Faculty of Science, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Gloria Ivy Mensah
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Accra, Ghana
| | - Kennedy Kwasi Addo
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Accra, Ghana
| | - Günther Fink
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland.,Faculty of Science, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Jakob Zinsstag
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland.,Faculty of Science, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Bassirou Bonfoh
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, BP 1303, Côte d'Ivoire
| |
Collapse
|
9
|
Vaccination of Calves with the Mycobacterium bovis BCG Strain Induces Protection against Bovine Tuberculosis in Dairy Herds under a Natural Transmission Setting. Animals (Basel) 2022; 12:ani12091083. [PMID: 35565515 PMCID: PMC9102018 DOI: 10.3390/ani12091083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/11/2022] [Accepted: 04/15/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Bovine tuberculosis (bTB) is a zoonotic disease caused mainly by Mycobacterium bovis, of which control is based on culling infected animals and, without official compensations, is associated with major economic losses for milk and meat producers. The vaccination of cattle with the M. bovis Bacillus Calmette-Guerin (BCG) strain, as a strategy for bTB control, might attenuate this situation. The objective of this trial was to assess the efficacy of the BCG Russia strain in a cohort study performed under field conditions, with the vaccination of 501 calves in seven dairy farms, including 441 non-vaccinated control animals. Peripheral blood was collected at 6, 12 and 18 months post-vaccination, and infection status was determined using a diagnostic procedure which discriminates the infected amongst vaccinated animals. On average, the BCG vaccine showed a low but significant level of protection (22.4%) at the end of the trial, although diverse levels of protection and duration of immunity were observed between trial herds, suggesting that the efficacy of the BCG vaccination could be influenced by the general health condition of calves and their exposition to non-tuberculous mycobacteria. These results support the use of BCG as a complementary tool in the control of the disease in high prevalence areas. Abstract Bovine tuberculosis (bTB) is a zoonotic disease caused mainly by Mycobacterium bovis, which is associated with major economic losses for milk and meat producers. The objective of this trial was to assess the efficacy of the BCG Russia strain in a cohort study performed under field conditions, with the vaccination of calves in seven dairy farms from a high prevalence area in central Chile. The trial was performed with 501 animals, subcutaneously vaccinated with 2–8 × 105 colony-forming units of BCG, whilst 441 matched control animals received a saline placebo. Peripheral blood was collected at 6, 12 and 18 months post-vaccination, and infection status was determined using the IFNγ release assay in conjunction with the DIVA (Detecting Infected amongst Vaccinated Animals) antigens ESAT-6, CFP-10 and Rv3615c. The BCG vaccine showed a low but significant level of protection of 22.4% (95% CI 4.0 to 36.4) at the end of the trial. However, diverse levels of protection and a variable duration of immunity were observed between trial herds. This diverse outcome could be influenced by the general health condition of calves and their exposition to non-tuberculous mycobacteria. These results suggest that BCG vaccination of dairy calves in a natural transmission setting confers variable protection to animals against bTB in a high prevalence area.
Collapse
|
10
|
Lakew M, Srinivasan S, Mesele B, Olani A, Koran T, Tadesse B, Mekonnen GA, Almaw G, Sahlu T, Seyoum B, Beyecha K, Gumi B, Ameni G, Ashenafi H, Bakker D, Kapur V, Gebre S. Utility of the Intradermal Skin Test in a Test-and-Cull Approach to Control Bovine Tuberculosis: A Pilot Study in Ethiopia. Front Vet Sci 2022; 9:823365. [PMID: 35330613 PMCID: PMC8940234 DOI: 10.3389/fvets.2022.823365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Bovine tuberculosis (bTB) is one of the top three, high-priority, livestock diseases in Ethiopia and hence, the need for evaluation of potential control strategies is critical. Here, we applied the test-and-segregate followed by cull strategy for the control of bTB in the intensive Alage dairy farm in Ethiopia. All cattle reared on this farm were repeatedly skin tested using the Comparative Cervical Tuberculin (CCT) test for a total of five times between 2015 and 2021. During the first (October 2015) and second (March 2017) rounds of testing, all reactor animals (>4 mm) were culled, while those that were deemed as inconclusive (1–4 mm) were segregated and retested. At retest, animals with CCT >2 mm were removed from the herd. In the third (December 2017) and fourth (June 2018) rounds of tuberculin testing, a more stringent approach was taken wherein all reactors per the severe mode of CCT test interpretation (>2 mm) were culled. A final herd status check was performed in May 2021. In summary, the number of CCT positives (>4 mm) in the farm dropped from 23.1% (31/134) in October 2015 to 0% in December 2017 and remained 0% until May 2021. In contrast, the number of Single Cervical Tuberculin (SCT) test positives (≥4 mm) increased from 1.8 to 9.5% (from 2017 to 2021), indicating that CCT test might not be sufficient to effectively clear the herd of bTB. However, a more stringent approach would result in a drastic increase in the number of false positives. The total cost of the bTB control effort in this farm holding 134–200 cattle at any given time was conservatively estimated to be ~US$48,000. This, together with the need for culling an unacceptably high number of animals based on skin test status, makes the test-and-cull strategy impractical for nationwide implementation in Ethiopia and other low- and middle-income countries (LMICs) where the infection is endemic. Hence, there is an increased emphasis on the need to explore alternate, affordable measures such as vaccination alongside accurate diagnostics to help control bTB in endemic settings.
Collapse
Affiliation(s)
- Matios Lakew
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- *Correspondence: Matios Lakew
| | - Sreenidhi Srinivasan
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Beruhtesfa Mesele
- Alage Agricultural Technical and Vocational Education Training (ATVET) College, Alage, Ethiopia
| | - Abebe Olani
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Tafesse Koran
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Biniam Tadesse
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | | | - Gizat Almaw
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Temertu Sahlu
- Alage Agricultural Technical and Vocational Education Training (ATVET) College, Alage, Ethiopia
| | - Bekele Seyoum
- Alage Agricultural Technical and Vocational Education Training (ATVET) College, Alage, Ethiopia
| | - Kebede Beyecha
- Alage Agricultural Technical and Vocational Education Training (ATVET) College, Alage, Ethiopia
| | - Balako Gumi
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hagos Ashenafi
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Douwe Bakker
- Independent Researcher and Technical Consultant, Lelystad, Netherlands
| | - Vivek Kapur
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
- Department of Animal Science, The Pennsylvania State University, University Park, PA, United States
| | - Solomon Gebre
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| |
Collapse
|
11
|
Sirak A, Tulu B, Bayissa B, Gumi B, Berg S, Salguero FJ, Ameni G. Cellular and Cytokine Responses in Lymph Node Granulomas of Bacillus Calmette Guérin (BCG)-Vaccinated and Non-vaccinated Cross-Breed Calves Naturally Infected With Mycobacterium bovis. Front Vet Sci 2021; 8:698800. [PMID: 34604367 PMCID: PMC8483244 DOI: 10.3389/fvets.2021.698800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
Local immunological responses at the site of infections, such as at the lymph nodes and lungs, do play a role in containing infection caused by Mycobacterium bovis (M. bovis). This bovine tuberculosis (bTB) study was conducted to evaluate cellular and cytokine responses in the lymph nodes and lungs of BCG-vaccinated and non-vaccinated calves that were naturally infected with M. bovis. Immunohistochemical assays were used for examination of the responses of macrophages, T cells, cytokines and chemical mediators of 40 (22 vaccinated and 18 non-vaccinated) Holstein-Friesian-zebu crossbred calves that were naturally exposed for 1 year to a known bTB positive cattle herd. The incidence rates of bTB visible lesion were 68.2% (15/22) and 89% (16/18) in vaccinated and non-vaccinated calves, respectively. The local responses of CD4+ and CD8+ T cells, and those of IFN-γ and TNF-α within the lesions, were stronger (P < 0.05) in BCG-vaccinated calves than in non-vaccinated calves. However, there was no statistically significant difference between the two groups (P > 0.05) in the response of CD68+ cells. Thus, the findings of this study indicated stronger responses of a set of immunological cells and markers at the local granulomas of BCG-vaccinated calves than in non-vaccinated calves. Furthermore, BCG vaccination may also play a role in reducing the severity of the gross pathology at the primary site of infection.
Collapse
Affiliation(s)
- Asegedech Sirak
- Animal Health and Zoonotic Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.,National Animal Health Diagnostic and Investigation Centre, Sebeta, Ethiopia
| | - Begna Tulu
- National Animal Health Diagnostic and Investigation Centre, Sebeta, Ethiopia.,Medical Laboratory Science Department, Bahir Dar University, Bahir Dar, Ethiopia
| | - Berecha Bayissa
- Animal Health and Zoonotic Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.,Vaccine Production and Drug Formulation Directorate, National Veterinary Institute, Bishoftu, Ethiopia
| | - Balako Gumi
- Animal Health and Zoonotic Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Stefan Berg
- Bacteriology Department, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Francisco J Salguero
- Department of Pathology and Infectious Diseases, University of Surrey, Guildford, United Kingdom
| | - Gobena Ameni
- Animal Health and Zoonotic Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Veterinary Medicine, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| | | |
Collapse
|
12
|
Bayissa B, Sirak A, Zewude A, Worku A, Gumi B, Berg S, Hewinson RG, Wood JLN, Jones GJ, Vordermeier HM, Ameni G. Field evaluation of specific mycobacterial protein-based skin test for the differentiation of Mycobacterium bovis-infected and Bacillus Calmette Guerin-vaccinated crossbred cattle in Ethiopia. Transbound Emerg Dis 2021; 69:e1-e9. [PMID: 34331511 PMCID: PMC8801543 DOI: 10.1111/tbed.14252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Bovine tuberculosis (bTB) challenges intensive dairy production in Ethiopia and implementation of the test and slaughter control strategy is not economically acceptable in the country. Vaccination of cattle with Bacillus Calmette–Guerin (BCG) could be an important adjunct to control, which would require a diagnostic test to differentiate Mycobacterium bovis (M. bovis)‐infected and BCG‐vaccinated animals (DIVA role). This study describes an evaluation of a DIVA skin test (DST) that is based on a cocktail (DSTc) or fusion (DSTf) of specific (ESAT‐6, CFP‐10 and Rv3615c) M. bovis proteins in Zebu–Holstein–Friesians crossbred cattle in Ethiopia. The study animals used were 74 calves (35 BCG vaccinated and 39 unvaccinated) aged less than 3 weeks at the start of experiment and 68 naturally infected ‘TB reactor’ cows. Six weeks after vaccination, the 74 calves were tested with the DSTc and the single intradermal cervical comparative tuberculin (SICCT) test. The TB reactor cows were tested with the DSTc and the SICCT test. Reactions to the DSTc were not observed in BCG‐vaccinated and unvaccinated calves, while SICCT test reactions were detected in vaccinated calves. DSTc reactions were detected in 95.6% of the TB reactor cows and single intradermal tuberculin positive reactions were found in 98.2% (95% confidence interval, CI, 92.1–100%). The sensitivity of the DSTc was 95.6% (95% CI, 87.6–99.1%), and significantly (p < .001) higher than the sensitivity (75%, 95% CI, 63.0–84.7%) of the SICCT test at 4 mm cut‐off. DSTf and DSTc reactions were correlated (r = 0.75; 95% CI = 0.53–0.88). In conclusion, the DSTc could differentiate M. bovis‐infected from BCG‐vaccinated cattle in Ethiopia. DST had higher sensitivity than the SICCT test. Hence, the DSTc could be used as a diagnostic tool for bTB if BCG vaccination is implemented for the control of bTB in Ethiopia and other countries.
Collapse
Affiliation(s)
- Berecha Bayissa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.,Vaccine Production and Drug Formulation Directorate, National Veterinary Institute, Bishoftu, Ethiopia
| | - Asegedech Sirak
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.,National Animal Health Diagnostic and Investigation Centre, Sebeta, Ethiopia
| | - Aboma Zewude
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Adane Worku
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Balako Gumi
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Stefan Berg
- Department of Bacteriology, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, UK
| | | | - James L N Wood
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Gareth J Jones
- Department of Bacteriology, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, UK
| | | | - H Martin Vordermeier
- Department of Bacteriology, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, UK.,Aberystwyth University, Ceredigion, UK
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Veterinary Medicine, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
13
|
Gormley E, Ní Bhuachalla D, Fitzsimons T, O'Keeffe J, McGrath G, Madden JM, Fogarty N, Kenny K, Messam LLM, Murphy D, Corner LAL. Protective immunity against tuberculosis in a free-living badger population vaccinated orally with Mycobacterium bovis Bacille Calmette-Guérin. Transbound Emerg Dis 2021; 69:e10-e19. [PMID: 34331741 DOI: 10.1111/tbed.14254] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022]
Abstract
Vaccination of badgers with Mycobacterium bovis Bacille Calmette-Guérin (BCG) has been shown to protect badgers against tuberculosis in experimental trials. During the 3-year County Kilkenny BCG vaccine field study, badgers were treated orally with placebo (100% in Zone A), BCG (100% in Zone C) or randomly assigned 50%: 50% treatment with BCG or placebo (Zone B). At the end of the study, 275 badgers were removed from the trial area and subjected to detailed post-mortem examination followed by histology and culture for M. bovis. Among these badgers, 83 (30.2%) were captured for the first time across the three zones, representing a non-treated proportion of the population. Analysis of the data based on the infection status of treated animals showed a prevalence of 52% (95% CI: 40%-63%) infection in Zone A (placebo), 39% (95% CI: 17%-64%) in Zone B (placebo) and 44% (95% CI: 20%-70%) in Zone B (BCG vaccinated) and 24% (95% CI: 14%-36%) in Zone C (BCG vaccinated). There were no statistically significant differences in the proportion of animals with infection involving the lung and thoracic lymph nodes, extra-thoracic infection or in the distribution and severity scores of histological lesions. Among the 83 non-treated badgers removed at the end of the study, the infection prevalence of animals in Zone A (prevalence = 46%, 95% CI: 32%-61%) and Zone B (prevalence = 44%, 95% CI: 23%-67%) was similar to the treated animals in these zones. However, in Zone C, no evidence of infection was found in any of the untreated badgers (prevalence = 0%, 95% CI: 0%-14%). This is consistent with an indirect protective effect in the non-vaccinated badgers leading to a high level of population immunity. The results suggest that BCG vaccination of badgers could be a highly effective means of reducing the incidence of tuberculosis in badger populations.
Collapse
Affiliation(s)
- Eamonn Gormley
- Tuberculosis Diagnostics and Immunology Research Laboratory, School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| | - Deirdre Ní Bhuachalla
- Tuberculosis Diagnostics and Immunology Research Laboratory, School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland.,Department of Agriculture, Food and the Marine, Dublin 2, Ireland
| | - Tara Fitzsimons
- Tuberculosis Diagnostics and Immunology Research Laboratory, School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| | - James O'Keeffe
- Department of Agriculture, Food and the Marine, Dublin 2, Ireland
| | - Guy McGrath
- UCD Centre for Veterinary Epidemiology and Risk Analysis (CVERA), School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| | - Jamie M Madden
- UCD Centre for Veterinary Epidemiology and Risk Analysis (CVERA), School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| | - Naomi Fogarty
- Central Veterinary Research Laboratory, Backweston Co., Kildare, Ireland
| | - Kevin Kenny
- Central Veterinary Research Laboratory, Backweston Co., Kildare, Ireland
| | - Locksley L McV Messam
- Tuberculosis Diagnostics and Immunology Research Laboratory, School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| | - Denise Murphy
- Tuberculosis Diagnostics and Immunology Research Laboratory, School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland.,Department of Agriculture, Food and the Marine, Dublin 2, Ireland
| | - Leigh A L Corner
- Tuberculosis Diagnostics and Immunology Research Laboratory, School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
14
|
Bayissa B, Sirak A, Worku A, Zewude A, Zeleke Y, Chanyalew M, Gumi B, Berg S, Conlan A, Hewinson RG, Wood JLN, Vordermeier HM, Ameni G. Evaluation of the Efficacy of BCG in Protecting Against Contact Challenge With Bovine Tuberculosis in Holstein-Friesian and Zebu Crossbred Calves in Ethiopia. Front Vet Sci 2021; 8:702402. [PMID: 34368285 PMCID: PMC8339472 DOI: 10.3389/fvets.2021.702402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Bovine tuberculosis (bTB) is prevalent in intensive dairy farms in Ethiopia. Vaccination could be an alternative control approach given the socio-economic challenges of a test-and-slaughter control strategy. The efficacy of the BCG was evaluated on 40 Holstein-Friesian (HF) and zebu crossbred calves recruited from single intradermal cervical comparative tuberculin (SICCT) test negative herds and randomly allocated into two groups. Twenty-two calves were vaccinated within 2 weeks of age, and 18 were kept as a control. Six weeks post-vaccination, the two groups were exposed and kept mixed with known SICCT test positive cows for 1 year. Immune responses were monitored by interferon gamma (IFN-γ) release assay (IGRA), SICCT test, and antibody assay. Vaccinated calves developed strong responses to the SICCT test at the sixth week post-vaccination, but did not respond to ESAT-6/CFP-10 peptide antigen-based IGRA. During the exposure, IFN-γ response to the specific peptide cocktail [F(2.44, 92.67) = 26.96; p < 0.001] and skin reaction to the specific proteins cocktail [F(1.7, 64.3); p < 0.001] increased progressively in both groups while their antibody responses were low. The prevalence of bTB was 88.9% (95% CI: 65.3–98.6) and 63.6% (95% CI: 40.7–83.8) in the control and vaccinated calves, respectively, based on Mycobacterium bovis isolation, giving a direct protective efficacy estimate of 28.4% (95% CI: −2.7 to 50.1). The proportion of vaccinated calves with lesion was 7.0% (34/484) against 11.4% (45/396) in control calves, representing a 38% (95% CI: 5.8–59.4) reduction of lesion prevalence. Besides, the severity of pathology was significantly lower (Mann–Whitney U-test, p < 0.05) in vaccinated (median score = 2.0, IQR = 0–4.75) than in control (median score = 5, IQR = 3.0–6.25) calves. Moreover, survival from M. bovis infection in vaccinated calves was significantly (log-rank test: χ2 = 6.749, p < 0.01) higher than that of the control calves. In conclusion, the efficacy of BCG was low, but the reduced frequency and severity of lesion in vaccinated calves could suggest its potential role in containing onward transmission.
Collapse
Affiliation(s)
- Berecha Bayissa
- Animal Health and Zoonotic Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.,Vaccine Production and Drug Formulation Directorate, National Veterinary Institute, Debre Zeit, Ethiopia
| | - Asegedech Sirak
- Animal Health and Zoonotic Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.,National Animal Health Diagnostic and Investigation Centre, Sebeta, Ethiopia
| | - Adane Worku
- Animal Health and Zoonotic Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Aboma Zewude
- Animal Health and Zoonotic Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Yemisrach Zeleke
- Animal Health and Zoonotic Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mahlet Chanyalew
- Animal Health and Zoonotic Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Balako Gumi
- Animal Health and Zoonotic Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Stefan Berg
- Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Andrew Conlan
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - R Glyn Hewinson
- Institute of Biology, Environmental and Rural Sciences, Aberystwyth University, Ceredigion, United Kingdom
| | | | - James L N Wood
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - H Martin Vordermeier
- Animal and Plant Health Agency, Addlestone, United Kingdom.,Institute of Biology, Environmental and Rural Sciences, Aberystwyth University, Ceredigion, United Kingdom
| | - Gobena Ameni
- Animal Health and Zoonotic Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Veterinary Medicine, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
15
|
Almaw G, Mekonnen GA, Mihret A, Aseffa A, Taye H, Conlan AJK, Gumi B, Zewude A, Aliy A, Tamiru M, Olani A, Lakew M, Sombo M, Gebre S, Diguimbaye C, Hilty M, Fané A, Müller B, Hewinson RG, Ellis RJ, Nunez-Garcia J, Palkopoulou E, Abebe T, Ameni G, Parkhill J, Wood JLN, Berg S, van Tonder AJ. Population structure and transmission of Mycobacterium bovis in Ethiopia. Microb Genom 2021; 7:000539. [PMID: 33945462 PMCID: PMC8209724 DOI: 10.1099/mgen.0.000539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/02/2021] [Indexed: 12/03/2022] Open
Abstract
Bovine tuberculosis (bTB) is endemic in cattle in Ethiopia, a country that hosts the largest national cattle herd in Africa. The intensive dairy sector, most of which is peri-urban, has the highest prevalence of disease. Previous studies in Ethiopia have demonstrated that the main cause is Mycobacterium bovis, which has been investigated using conventional molecular tools including deletion typing, spoligotyping and Mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR). Here we use whole-genome sequencing to examine the population structure of M. bovis in Ethiopia. A total of 134 M. bovis isolates were sequenced including 128 genomes from 85 mainly dairy cattle and six genomes isolated from humans, originating from 12 study sites across Ethiopia. These genomes provided a good representation of the previously described population structure of M. bovis, based on spoligotyping and demonstrated that the population is dominated by the clonal complexes African 2 (Af2) and European 3 (Eu3). A range of within-host diversity was observed amongst the isolates and evidence was found for both short- and long-distance transmission. Detailed analysis of available genomes from the Eu3 clonal complex combined with previously published genomes revealed two distinct introductions of this clonal complex into Ethiopia between 1950 and 1987, likely from Europe. This work is important to help better understand bTB transmission in cattle in Ethiopia and can potentially inform national strategies for bTB control in Ethiopia and beyond.
Collapse
Affiliation(s)
- Gizat Almaw
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Getnet Abie Mekonnen
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Hawult Taye
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Balako Gumi
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Aboma Zewude
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Abde Aliy
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Mekdes Tamiru
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Abebe Olani
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Matios Lakew
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Melaku Sombo
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Solomon Gebre
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Colette Diguimbaye
- Institut de Recherches en Elevage pour le Développement & Clinique Médico-Chirurgicale PROVIDENCE, N'Djaména, Chad
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Adama Fané
- Laboratoire Centrale Vétérinaire, Bamako, Mali
| | | | | | | | | | | | - Tamrat Abebe
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Veterinary Medicine, College of Food and Agriculture, United Arab Emirates University, Al Ain, UAE
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - James L. N. Wood
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
16
|
Retamal P, Ábalos P, Alegría-Morán R, Valdivieso N, Vordermeier M, Jones G, Saadi K, Perez Watt C, Salinas C, Ávila C, Padilla V, Benavides B, Orellana R. Vaccination of Holstein heifers with Mycobacterium bovis BCG strain induces protection against bovine tuberculosis and higher milk production yields in a natural transmission setting. Transbound Emerg Dis 2021; 69:1419-1425. [PMID: 33872473 DOI: 10.1111/tbed.14108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/18/2021] [Accepted: 04/13/2021] [Indexed: 12/26/2022]
Abstract
Bovine tuberculosis (TB) is a chronic disease caused mainly by Mycobacterium bovis, a zoonotic pathogen that has a worldwide distribution causing serious economic losses for milk and meat producers. In Chile, the disease in dairy cattle has a heterogeneous distribution, where the Metropolitan Region concentrates the highest animal prevalence and the main challenge for the national control and eradication programme. In this epidemiological context, vaccination with the M. bovis Bacillus Calmette-Guerin (BCG) vaccine might be a useful strategy for disease prevention and control. The objective of this study was to assess the efficacy and impacts on productivity and fertility of vaccination with the BCG Russia strain in 11 month-old heifers from a dairy farm, under a natural transmission condition. Sixty-two animals were vaccinated via the subcutaneous route with the equivalent of one human dose of BCG, and 60 control animals received saline. Subsequently, blood sampling was performed at 3, 6, 9, 12, 15 and 18 months post-inoculation, and infection status was determined using the IFNγ release assay (IGRA) with the DIVA (differentiate infected from vaccinated animals) antigens ESAT-6, CFP-10 and Rv3615c. Efficacy was calculated as the percentage of reduction in the incidence of infection attributable to vaccination, which showed a statistically significant level of overall protection of 66.5%. No adverse effects on fertility and production were recorded. In contrast, we observed beneficial effects of vaccination on several milk production parameters, with the milk yield in the first 100 days after calving in the BCG group significantly higher compared to unvaccinated heifers (p < .05). These results suggest that BCG vaccination of heifers in a natural transmission setting might result in both sanitary and productive benefits, supporting its implementation as a new strategy for TB prevention in a high prevalence area of Chile.
Collapse
Affiliation(s)
- Patricio Retamal
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Pedro Ábalos
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Raúl Alegría-Morán
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | | | - Martin Vordermeier
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, UK.,Centre of Excellence for Bovine Tuberculosis, Aberystwyth University, Aberystwyth, UK
| | - Gareth Jones
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, UK
| | - Karina Saadi
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.,Servicio Agrícola y Ganadero, Santiago, Chile
| | - Carolina Perez Watt
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Constanza Salinas
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Constanza Ávila
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Valentina Padilla
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Belén Benavides
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Romina Orellana
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
17
|
Campbell Z, Coleman P, Guest A, Kushwaha P, Ramuthivheli T, Osebe T, Perry B, Salt J. Prioritizing smallholder animal health needs in East Africa, West Africa, and South Asia using three approaches: Literature review, expert workshops, and practitioner surveys. Prev Vet Med 2021; 189:105279. [PMID: 33581421 PMCID: PMC8024747 DOI: 10.1016/j.prevetmed.2021.105279] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/18/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022]
Abstract
Managing the health needs of livestock contributes to reducing poverty and improving the livelihoods of smallholder and pastoralist livestock keepers globally. Animal health practitioners, producers, policymakers, and researchers all must prioritize how to mobilize limited resources. This study employed three approaches to prioritize animal health needs in East and West Africa and South Asia to identify diseases and syndromes that impact livestock keepers. The approaches were a) systematic literature review, b) a series of expert workshops, and c) a practitioner survey of veterinarians and para-veterinary professionals. The top constraints that emerged from all three approaches include endo/ ectoparasites, foot and mouth disease, brucellosis, peste des petits ruminants, Newcastle disease, and avian influenza. Expert workshops additionally identified contagious caprine pleuropneumonia, contagious bovine pleuropneumonia, mastitis, and reproductive disorders as constraints not emphasized in the literature review. Practitioner survey results additionally identified nutrition as a constraint for smallholder dairy and pastoralist small ruminant production. Experts attending the workshops agreed most constraints can be managed using existing veterinary technologies and best husbandry practices, which supports a shift away from focusing on individual diseases and new technologies towards addressing systemic challenges that limit access to veterinary services and inputs. Few research studies focused on incidence/ prevalence of disease and impact, suggesting better incorporation of socio-economic impact measures in future research would better represent the interests of livestock keepers.
Collapse
Affiliation(s)
- Zoë Campbell
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi, 00100, Kenya.
| | - Paul Coleman
- H20 Venture Partners, 33-35 George Street, Oxford, OX1 2AY, United Kingdom
| | - Andrea Guest
- H20 Venture Partners, 33-35 George Street, Oxford, OX1 2AY, United Kingdom
| | - Peetambar Kushwaha
- GALVmed Asia Office, Unit 118 & 120 B, Splendor Forum, Plot No 3, Jasola District Centre, Jasola, New Delhi, 110025, India
| | - Thembinkosi Ramuthivheli
- GALVmed Africa Office, International Livestock Research Institute (ILRI), Swing One, Naivasha Road, Nairobi, Kenya
| | - Tom Osebe
- GALVmed Africa Office, International Livestock Research Institute (ILRI), Swing One, Naivasha Road, Nairobi, Kenya
| | - Brian Perry
- Nuffield College of Clinical Medicine, University of Oxford, United Kingdom; College of Medicine and Veterinary Medicine, University of Edinburgh, Arthurstone House, Meigle, Blairgowrie, PH12 8QW, Scotland, United Kingdom
| | - Jeremy Salt
- GALVmed UK Office, Doherty Building, Pentlands Science Park, Bush Loan, Penicuik Edinburgh, EH26 0PZ, Scotland, United Kingdom
| |
Collapse
|
18
|
Srinivasan S, Conlan AJK, Easterling LA, Herrera C, Dandapat P, Veerasami M, Ameni G, Jindal N, Raj GD, Wood J, Juleff N, Bakker D, Vordermeier M, Kapur V. A Meta-Analysis of the Effect of Bacillus Calmette-Guérin Vaccination Against Bovine Tuberculosis: Is Perfect the Enemy of Good? Front Vet Sci 2021; 8:637580. [PMID: 33681334 PMCID: PMC7930010 DOI: 10.3389/fvets.2021.637580] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/27/2021] [Indexed: 01/10/2023] Open
Abstract
More than 50 million cattle are likely exposed to bovine tuberculosis (bTB) worldwide, highlighting an urgent need for bTB control strategies in low- and middle-income countries (LMICs) and other regions where the disease remains endemic and test-and-slaughter approaches are unfeasible. While Bacillus Calmette-Guérin (BCG) was first developed as a vaccine for use in cattle even before its widespread use in humans, its efficacy against bTB remains poorly understood. To address this important knowledge gap, we conducted a systematic review and meta-analysis to determine the direct efficacy of BCG against bTB challenge in cattle, and performed scenario analyses with transmission dynamic models incorporating direct and indirect vaccinal effects ("herd-immunity") to assess potential impact on herd level disease control. The analysis shows a relative risk of infection of 0.75 (95% CI: 0.68, 0.82) in 1,902 vaccinates as compared with 1,667 controls, corresponding to a direct vaccine efficacy of 25% (95% CI: 18, 32). Importantly, scenario analyses considering both direct and indirect effects suggest that disease prevalence could be driven down close to Officially TB-Free (OTF) status (<0.1%), if BCG were introduced in the next 10-year time period in low to moderate (<15%) prevalence settings, and that 50-95% of cumulative cases may be averted over the next 50 years even in high (20-40%) disease burden settings with immediate implementation of BCG vaccination. Taken together, the analyses suggest that BCG vaccination may help accelerate control of bTB in endemic settings, particularly with early implementation in the face of dairy intensification in regions that currently lack effective bTB control programs.
Collapse
Affiliation(s)
- Sreenidhi Srinivasan
- Department of Animal Science, The Pennsylvania State University, University Park, PA, United States
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Andrew J. K. Conlan
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Laurel A. Easterling
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Christian Herrera
- Department of Animal Science, The Pennsylvania State University, University Park, PA, United States
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Premanshu Dandapat
- Indian Veterinary Research Institute, Eastern Regional Station, Kolkata, India
| | | | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Naresh Jindal
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Gopal Dhinakar Raj
- Translational Research Platform for Veterinary Biological, Tamil Nadu University of Veterinary and Animal Sciences, Chennai, India
| | - James Wood
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nick Juleff
- The Bill & Melinda Gates Foundation, Seattle, WA, United States
| | - Douwe Bakker
- Technical Consultant and Independent Researcher, Lelystad, Netherlands
| | - Martin Vordermeier
- Animal and Plant Health Agency, Addlestone, United Kingdom
- Centre for Bovine Tuberculosis, Institute for Biological, Environmental and Rural Sciences, University of Aberystwyth, Aberystwyth, United Kingdom
| | - Vivek Kapur
- Department of Animal Science, The Pennsylvania State University, University Park, PA, United States
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
19
|
Gutema FD, Agga GE, Makita K, Smith RL, Mourits M, Tufa TB, Leta S, Beyene TJ, Asefa Z, Urge B, Ameni G. Evaluation of the Control Options of Bovine Tuberculosis in Ethiopia Using a Multi-Criteria Decision Analysis. Front Vet Sci 2020; 7:586056. [PMID: 33392283 PMCID: PMC7772415 DOI: 10.3389/fvets.2020.586056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/26/2020] [Indexed: 11/13/2022] Open
Abstract
Bovine tuberculosis (BTB) is a zoonotic bacterial infection caused by Mycobacterium bovis and is characterized by the development of granulomatous lesions in the lymph nodes, lungs and other tissues. It poses serious public health impacts and food security challenges to the agricultural sector in terms of dairy and meat productions. In Ethiopia, BTB has been considered as a priority disease because of its high prevalence in urban and peri-urban dairy farms. However, there has not been any national control program in the country. Thus, in order to initiate BTB control program in the country, information on control options is needed to tailor the best option for the Ethiopian situation. The objective of this study was to identify, evaluate and rank various BTB control options in Ethiopia using a multi-criteria decision analysis based on preference ranking organization method for enrichment evaluations (PROMETHEE) approach while accounting for the stakeholders' preferences. Control options were evaluated under two scenarios: with (scenario 1) and without (scenario 2) bacillus Calmette–Guérin (BCG) vaccination. Nine potential control options were identified that include combinations of three control options (1) test and slaughter with or without government support, (2) test and segregation, and (3) BCG vaccination. Under scenario 1, BCG vaccination, BCG vaccination and test and slaughter with partial compensation by government, and BCG vaccination and test and slaughter with full compensation by government were the top three ranked control options. Under scenario 2, test and slaughter with full compensation by government was the preferred control option, followed by test and segregation supported by test and slaughter with full government compensation, and test and slaughter with half compensation by government. Irrespective of the variability in the weighting by the stakeholders, the sensitivity analysis showed the robustness of the ranking method. In conclusion, the study demonstrated that BCG vaccination, and test and slaughter with full compensation by government were the two most preferred control options under scenarios 1 and 2, respectively. National level discussions were strongly recommended for further concretization and implementation of these control measures.
Collapse
Affiliation(s)
- Fanta D Gutema
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Getahun E Agga
- U. S. Department of Agriculture, Agricultural Research Service, Food Animal Environmental Systems Research Unit, Bowling Green, KY, United States
| | - Kohei Makita
- Department of Veterinary Medicine, School of Veterinary Medicine, Rakukno Gakuen University, Ebetsu, Japan
| | - Rebecca L Smith
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Monique Mourits
- Business Economics Group, Wageningen University, Wageningen, Netherlands
| | - Takele B Tufa
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Samson Leta
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Tariku J Beyene
- Department of Preventive Veterinary Medicine, Ohio State University, Columbus, OH, United States
| | - Zerihun Asefa
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Beksissa Urge
- Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Veterinary Medicine, College of Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
20
|
Arrieta-Villegas C, Allepuz A, Grasa M, Martín M, Cervera Z, Mercader I, López-Soria S, Domingo M, Pérez de Val B. Long-term efficacy of BCG vaccination in goat herds with a high prevalence of tuberculosis. Sci Rep 2020; 10:20369. [PMID: 33230112 PMCID: PMC7683592 DOI: 10.1038/s41598-020-77334-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
Vaccination of goats against tuberculosis (TB) has been promoted as an ancillary tool for controlling the disease in infected livestock herds. A three-year trial to assess the efficacy of BCG vaccine was carried out in five goat herds. At the beginning of the trial (month 0), all animals were tested for TB using thee different diagnostic tests. Animals negative to all tests were vaccinated with BCG and all replacement goat kids were also systematically vaccinated throughout the trial. All animals were tested by Interferon-gamma release assay (IGRA) using vaccine compatible reagents at months 6, 12, 24, and 36. The risk factors for TB infection were also evaluated. At the end of the study, four out of five farms showed variable reductions of the initial prevalence (93.5%, 28.5%, 23.2%, and 14.3% respectively), and an overall incidence reduction of 50% was observed in BCG vaccinated goats, although adult vaccinated goats showed higher incidences than vaccinated goat kids. The unvaccinated positive animals remaining in herds and adult BCG vaccinated goats significantly enhanced the risk of infection in vaccinated animals. A systematic vaccination of goats with BCG, together with the removal of positive unvaccinated animals, may contribute to reducing the TB prevalence in goat herds.
Collapse
Affiliation(s)
- Claudia Arrieta-Villegas
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus UAB, Bellaterra, Barcelona, Catalonia, Spain.
| | - Alberto Allepuz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus UAB, Bellaterra, Barcelona, Catalonia, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Catalonia, Spain
| | - Miriam Grasa
- Agrupació de Defensa Sanitària de Cabrum i Oví Lleter de Catalunya, Barbens, Catalonia, Spain
| | - Maite Martín
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus UAB, Bellaterra, Barcelona, Catalonia, Spain
| | - Zoraida Cervera
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus UAB, Bellaterra, Barcelona, Catalonia, Spain
| | - Irene Mercader
- Departament d'Agricultura, Ramaderia, Pesca i Alimentació, Generalitat de Catalunya, Barcelona, Catalonia, Spain
| | - Sergio López-Soria
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus UAB, Bellaterra, Barcelona, Catalonia, Spain
| | - Mariano Domingo
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus UAB, Bellaterra, Barcelona, Catalonia, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Catalonia, Spain
| | - Bernat Pérez de Val
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus UAB, Bellaterra, Barcelona, Catalonia, Spain
| |
Collapse
|
21
|
Balseiro A, Thomas J, Gortázar C, Risalde MA. Development and Challenges in Animal Tuberculosis Vaccination. Pathogens 2020; 9:pathogens9060472. [PMID: 32549360 PMCID: PMC7350370 DOI: 10.3390/pathogens9060472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Vaccination with Bacillus Calmette-Guérin (BCG) constituted a major advance in the prevention of human tuberculosis (TB) in the beginning of the past century. BCG has also a clear potential for use in animals and, in particular, in the main domestic species subjected to TB control programs, cattle. Nowadays, the use of BCG vaccination against TB in cattle is not permitted by European Union legislation because BCG can induce a cellular immune response producing diagnostic interference in the eradication programs based on tuberculin single and comparative intradermal tests imposed worldwide. In this review we recall the history of TB vaccination as well as different vaccine trials and the response to vaccination in both domestic and wild animals. Promising potential inactivated vaccines are also reviewed. Research studies are mainly focused to improve vaccine efficacy, and at the same time to ensure its easy administration, safety and stability in the environment. Great challenges remain, particularly in terms of vaccine candidates and also in the acceptance of vaccination. Vaccination should be included in a strategic plan for integrated control of TB under a "one health" perspective, which also includes other measures such as improved biosafety on farms to avoid or decrease contact between domestic and wild animals or control of wildlife reservoirs to avoid overabundance that may favor infection maintenance.
Collapse
Affiliation(s)
- Ana Balseiro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071 León, Spain
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas, Grulleros, 24346 León, Spain
- Correspondence: ; Tel.: +34-98-729-1331
| | - Jobin Thomas
- SaBio-Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Universidad de Castilla-la Mancha (UCLM), 13071 Ciudad Real, Spain; (J.T.); (C.G.)
- Indian Council of Agricultural Research (ICAR), New Delhi 110001, India
| | - Christian Gortázar
- SaBio-Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Universidad de Castilla-la Mancha (UCLM), 13071 Ciudad Real, Spain; (J.T.); (C.G.)
| | - María A. Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba (UCO), 14014 Córdoba, Spain;
- Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), 14004 Córdoba, Spain
| |
Collapse
|
22
|
Roy A, Tomé I, Romero B, Lorente-Leal V, Infantes-Lorenzo JA, Domínguez M, Martín C, Aguiló N, Puentes E, Rodríguez E, de Juan L, Risalde MA, Gortázar C, Domínguez L, Bezos J. Evaluation of the immunogenicity and efficacy of BCG and MTBVAC vaccines using a natural transmission model of tuberculosis. Vet Res 2019; 50:82. [PMID: 31615555 PMCID: PMC6792192 DOI: 10.1186/s13567-019-0702-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022] Open
Abstract
Effective vaccines against tuberculosis (TB) are needed in order to prevent TB transmission in human and animal populations. Evaluation of TB vaccines may be facilitated by using reliable animal models that mimic host pathophysiology and natural transmission of the disease as closely as possible. In this study, we evaluated the immunogenicity and efficacy of two attenuated vaccines, BCG and MTBVAC, after each was given to 17 goats (2 months old) and then exposed for 9 months to goats infected with M. caprae. In general, MTBVAC-vaccinated goats showed higher interferon-gamma release than BCG vaccinated goats in response to bovine protein purified derivative and ESAT-6/CFP-10 antigens and the response was significantly higher than that observed in the control group until challenge. All animals showed lesions consistent with TB at the end of the study. Goats that received either vaccine showed significantly lower scores for pulmonary lymph nodes and total lesions than unvaccinated controls. Both MTBVAC and BCG vaccines proved to be immunogenic and effective in reducing severity of TB pathology caused by M. caprae. Our model system of natural TB transmission may be useful for evaluating and optimizing vaccines.
Collapse
Affiliation(s)
- Alvaro Roy
- BIOFABRI S.L., Porriño, Pontevedra, Spain.,VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Irene Tomé
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Beatriz Romero
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Víctor Lorente-Leal
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Mercedes Domínguez
- Servicio de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Investigación Carlos III, Majadahonda, Madrid, Spain
| | - Carlos Martín
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Servicio de Microbiología, Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza, Spain
| | - Nacho Aguiló
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Lucía de Juan
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.,Dpto. de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - María A Risalde
- Dpto. de Anatomía y Anatomía Patológica Comparadas, Universidad de Córdoba, Córdoba, Spain.,Infectious Diseases Unit, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía de Córdoba, Universidad de Córdoba, Córdoba, Spain
| | - Christian Gortázar
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM), Ciudad Real, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.,Dpto. de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Bezos
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain. .,Dpto. de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
23
|
Mendum TA, Chandran A, Williams K, Vordermeier HM, Villarreal-Ramos B, Wu H, Singh A, Smith AA, Butler RE, Prasad A, Bharti N, Banerjee R, Kasibhatla SM, Bhatt A, Stewart GR, McFadden J. Transposon libraries identify novel Mycobacterium bovis BCG genes involved in the dynamic interactions required for BCG to persist during in vivo passage in cattle. BMC Genomics 2019; 20:431. [PMID: 31138110 PMCID: PMC6540422 DOI: 10.1186/s12864-019-5791-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/10/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND BCG is the most widely used vaccine of all time and remains the only licensed vaccine for use against tuberculosis in humans. BCG also protects other species such as cattle against tuberculosis, but due to its incompatibility with current tuberculin testing regimens remains unlicensed. BCG's efficacy relates to its ability to persist in the host for weeks, months or even years after vaccination. It is unclear to what degree this ability to resist the host's immune system is maintained by a dynamic interaction between the vaccine strain and its host as is the case for pathogenic mycobacteria. RESULTS To investigate this question, we constructed transposon mutant libraries in both BCG Pasteur and BCG Danish strains and inoculated them into bovine lymph nodes. Cattle are well suited to such an assay, as they are naturally susceptible to tuberculosis and are one of the few animal species for which a BCG vaccination program has been proposed. After three weeks, the BCG were recovered and the input and output libraries compared to identify mutants with in vivo fitness defects. Less than 10% of the mutated genes were identified as affecting in vivo fitness, they included genes encoding known mycobacterial virulence functions such as mycobactin synthesis, sugar transport, reductive sulphate assimilation, PDIM synthesis and cholesterol metabolism. Many other attenuating genes had not previously been recognised as having a virulence phenotype. To test these genes, we generated and characterised three knockout mutants that were predicted by transposon mutagenesis to be attenuating in vivo: pyruvate carboxylase, a hypothetical protein (BCG_1063), and a putative cyclopropane-fatty-acyl-phospholipid synthase. The knockout strains survived as well as wild type during in vitro culture and in bovine macrophages, yet demonstrated marked attenuation during passage in bovine lymph nodes confirming that they were indeed involved in persistence of BCG in the host. CONCLUSION These data show that BCG is far from passive during its interaction with the host, rather it continues to employ its remaining virulence factors, to interact with the host's innate immune system to allow it to persist, a property that is important for its protective efficacy.
Collapse
Affiliation(s)
- Tom A. Mendum
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | - Aneesh Chandran
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | - Kerstin Williams
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | | | | | - H. Wu
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | - Albel Singh
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Alex A. Smith
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | - Rachel E. Butler
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | - Aravind Prasad
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Innovation Park, Panchavati, Pashan, Pune, Maharashtra 411008 India
| | - Neeraj Bharti
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Innovation Park, Panchavati, Pashan, Pune, Maharashtra 411008 India
| | - Ruma Banerjee
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Innovation Park, Panchavati, Pashan, Pune, Maharashtra 411008 India
| | - Sunitha M. Kasibhatla
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Innovation Park, Panchavati, Pashan, Pune, Maharashtra 411008 India
| | - Apoorva Bhatt
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Graham R. Stewart
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | - Johnjoe McFadden
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| |
Collapse
|
24
|
Srinivasan S, Easterling L, Rimal B, Niu XM, Conlan AJK, Dudas P, Kapur V. Prevalence of Bovine Tuberculosis in India: A systematic review and meta-analysis. Transbound Emerg Dis 2018; 65:1627-1640. [PMID: 29885021 PMCID: PMC6282864 DOI: 10.1111/tbed.12915] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/17/2018] [Accepted: 05/01/2018] [Indexed: 12/11/2022]
Abstract
Bovine tuberculosis (bTB) is a chronic disease of cattle that impacts productivity and represents a major public health threat. Despite the considerable economic costs and zoonotic risk consequences associated with the disease, accurate estimates of bTB prevalence are lacking in many countries, including India, where national control programmes are not yet implemented and the disease is considered endemic. To address this critical knowledge gap, we performed a systematic review of the literature and a meta-analysis to estimate bTB prevalence in cattle in India and provide a foundation for the future formulation of rational disease control strategies and the accurate assessment of economic and health impact risks. The literature search was performed in accordance with PRISMA guidelines and identified 285 cross-sectional studies on bTB in cattle in India across four electronic databases and handpicked publications. Of these, 44 articles were included, contributing a total of 82,419 cows and buffaloes across 18 states and one union territory in India. Based on a random-effects (RE) meta-regression model, the analysis revealed a pooled prevalence estimate of 7.3% (95% CI: 5.6, 9.5), indicating that there may be an estimated 21.8 million (95% CI: 16.6, 28.4) infected cattle in India-a population greater than the total number of dairy cows in the United States. The analyses further suggest that production system, species, breed, study location, diagnostic technique, sample size and study period are likely moderators of bTB prevalence in India and need to be considered when developing future disease surveillance and control programmes. Taken together with the projected increase in intensification of dairy production and the subsequent increase in the likelihood of zoonotic transmission, the results of our study suggest that attempts to eliminate tuberculosis from humans will require simultaneous consideration of bTB control in cattle population in countries such as India.
Collapse
Affiliation(s)
- Sreenidhi Srinivasan
- Department of Animal ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- The Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Laurel Easterling
- Department of Animal ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- The Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Bipin Rimal
- The Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Xiaoyue Maggie Niu
- Department of StatisticsEberly College of ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Andrew J. K. Conlan
- Disease Dynamics UnitDepartment of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - Patrick Dudas
- The Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Vivek Kapur
- Department of Animal ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- The Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
25
|
Warimwe GM, Purushotham J, Perry BD, Hill AV, Gilbert SC, Dungu B, Charleston B. Tackling human and animal health threats through innovative vaccinology in Africa. AAS Open Res 2018; 1:18. [PMID: 32259020 PMCID: PMC7118973 DOI: 10.12688/aasopenres.12877.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2018] [Indexed: 07/27/2023] Open
Abstract
Africa bears the brunt of many of the world's most devastating human and animal infectious diseases, a good number of which have no licensed or effective vaccines available. The continent's potential to generate novel interventions against these global health threats is however largely untapped. Strengthening Africa's vaccine research and development (R&D) sector could accelerate discovery, development and deployment of effective countermeasures against locally prevalent infectious diseases, many of which are neglected and have the capacity to spread to new geographical settings. Here, we review Africa's human and veterinary vaccine R&D sectors and identify key areas that should be prioritized for investment, and synergies that could be exploited from Africa's veterinary vaccine industry, which is surprisingly strong and has close parallels with human vaccine R&D.
Collapse
Affiliation(s)
- George M. Warimwe
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- The Pirbright Institute, Woking, GU24 0NF, UK
| | | | - Brian D. Perry
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | | | | | | | | |
Collapse
|
26
|
Warimwe GM, Purushotham J, Perry BD, Hill AVS, Gilbert SC, Dungu B, Charleston B. Tackling human and animal health threats through innovative vaccinology in Africa. AAS Open Res 2018; 1:18. [PMID: 32259020 PMCID: PMC7118973 DOI: 10.12688/aasopenres.12877.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2018] [Indexed: 11/20/2022] Open
Abstract
Africa bears the brunt of many of the world's most devastating human and animal infectious diseases, a good number of which have no licensed or effective vaccines available. The continent's potential to generate novel interventions against these global health threats is however largely untapped. Strengthening Africa's vaccine research and development (R&D) sector could accelerate discovery, development and deployment of effective countermeasures against locally prevalent infectious diseases, many of which are neglected and have the capacity to spread to new geographical settings. Here, we review Africa's human and veterinary vaccine R&D sectors and identify key areas that should be prioritized for investment, and synergies that could be exploited from Africa's veterinary vaccine industry, which is surprisingly strong and has close parallels with human vaccine R&D.
Collapse
Affiliation(s)
- George M Warimwe
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya.,The Pirbright Institute, Woking, GU24 0NF, UK
| | | | - Brian D Perry
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Sarah C Gilbert
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | | | | |
Collapse
|
27
|
Buddle BM, Vordermeier HM, Chambers MA, de Klerk-Lorist LM. Efficacy and Safety of BCG Vaccine for Control of Tuberculosis in Domestic Livestock and Wildlife. Front Vet Sci 2018; 5:259. [PMID: 30417002 PMCID: PMC6214331 DOI: 10.3389/fvets.2018.00259] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/01/2018] [Indexed: 01/24/2023] Open
Abstract
Bovine tuberculosis (TB) continues to be an intractable problem in many countries, particularly where "test and slaughter" policies cannot be implemented or where wildlife reservoirs of Mycobacterium bovis infection serve as a recurrent source of infection for domestic livestock. Alternative control measures are urgently required and vaccination is a promising option. Although the M. bovis bacille Calmette-Guérin (BCG) vaccine has been used in humans for nearly a century, its use in animals has been limited, principally as protection against TB has been incomplete and vaccination may result in animals reacting in the tuberculin skin test. Valuable insights have been gained over the past 25 years to optimise protection induced by BCG vaccine in animals and in the development of tests to differentiate infected from vaccinated animals (DIVA). This review examines factors affecting the efficacy of BCG vaccine in cattle, recent field trials, use of DIVA tests and the effectiveness of BCG vaccine in other domestic livestock as well as in wildlife. Oral delivery of BCG vaccine to wildlife reservoirs of infection such as European badgers, brushtail possums, wild boar, and deer has been shown to induce protection against TB and could prove to be a practical means to vaccinate these species at scale. Testing of BCG vaccine in a wide range of animal species has indicated that it is safe and vaccination has the potential to be a valuable tool to assist in the control of TB in both domestic livestock and wildlife.
Collapse
Affiliation(s)
- Bryce M Buddle
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| | | | - Mark A Chambers
- Animal and Plant Health Agency, Addlestone, United Kingdom.,Faculty of Health & Medical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Lin-Mari de Klerk-Lorist
- Veterinary Wildlife Services, Kruger National Park, Department of Agriculture, Forestry and Fisheries, Pretoria, South Africa
| |
Collapse
|
28
|
Low-dose BCG vaccination protects free-ranging cattle against naturally-acquired bovine tuberculosis. Vaccine 2018; 36:7338-7344. [PMID: 30327211 DOI: 10.1016/j.vaccine.2018.10.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/03/2018] [Accepted: 10/06/2018] [Indexed: 11/23/2022]
Abstract
Vaccination of cattle with Mycobacterium bovis BCG has been shown to protect against infection with virulent strains of M. bovis, and against resultant bovine tuberculosis (TB). Here we report on a large-scale trial in New Zealand where free-ranging cattle were vaccinated with 3 x 105 BCG via injection, a lower dose than any previously trialed in cattle against exposure to a natural force of M. bovis infection. In a multi-year enrolment study involving >800 animals, three cohorts of 1-2 year old cattle were randomised to receive vaccine or to serve as non-vaccinated controls. Cattle were slaughtered and subject to standard abattoir post mortem examination for M. bovis culture-positive TB lesions after up to 3.7 years of in-field exposure; additionally, lymph node samples from approximately half of the cattle were examined further to identify infection in the absence of lesions. Overall TB prevalence, as identified by gross lesions detected at slaughter, was low among farmed cattle at the study site (<4% annually). There were two lesioned cases among 520 vaccinated trial cattle (0.38%) compared to eight among 297 non-vaccinated trial cattle (2.69%). Trial vaccine efficacy was 85.7% against abattoir-detectable TB (statistically significant protection), and 86.7% when adjusted for duration of exposure. BCG vaccination did not significantly affect the response rates of cattle to ante mortem skin- or blood-tests in diagnostic tests conducted >7 months post-vaccination. Use of a reduced, yet effective, dose of BCG would increase the cost effectiveness of using this vaccine in a bovine TB control programme.
Collapse
|
29
|
Ameni G, Tafess K, Zewde A, Eguale T, Tilahun M, Hailu T, Sirak A, Salguero FJ, Berg S, Aseffa A, Hewinson RG, Vordermeier HM. Vaccination of calves with Mycobacterium bovis Bacillus Calmette-Guerin reduces the frequency and severity of lesions of bovine tuberculosis under a natural transmission setting in Ethiopia. Transbound Emerg Dis 2017; 65:96-104. [PMID: 28168855 PMCID: PMC5811905 DOI: 10.1111/tbed.12618] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Indexed: 11/29/2022]
Abstract
Bovine tuberculosis (bTB) is highly prevalent in intensive dairy farms of the urban "milk-sheds" in Ethiopia, and vaccination could be a cost-effective disease control strategy. In the present study, the efficacy of Bacillus Calmette-Guerin (BCG) to protect against bTB was assessed in Holstein-Friesian calves in a natural transmission setting. Twenty-three 2-week-old calves were subcutaneously vaccinated with BCG Danish SSI strain 1331, and matched 26 calves were injected with placebo. Six weeks later, calves were introduced into a herd of M. bovis-infected animals (reactors) and kept in contact with them for 1 year. In vitro and in vivo immunological tests were performed to assess immune responses post-vaccination and during exposure. Successful vaccine uptake was confirmed by tuberculin skin test and IFN-γ responses in vaccinated calves. The kinetics of IFN-γ responses to early secretory antigen target 6 and culture filtrate protein 10 (ESAT6 and CFP10, respectively) and tuberculin skin test responses post-exposure suggested that the animals were infected early after being placed in contact with the infected herd as immunological signs of infection were measurable between 2 and 4 months post-initial exposure. Protection was determined by comparing gross and microscopic pathology and bacteriological burden between vaccinated and control calves. BCG vaccination reduced the proportions of tissues with visible pathology in vaccinates compared to control calves by 49% (p < .001) with 56%, 43%, 72%, and 38% reductions in the proportion of lesioned tisues in head, thoracic, abdominal lymph nodes, and lungs, respectively (p-values .029-.0001). In addition, the lesions were less severe grossly and microscopically in vaccinated calves than in non-vaccinated calves (p < .05). The reduction in the overall incidence rates of bTB was 23%, 28%, and 33% on the basis of the absence of gross pathology, M. bovis culture positivity, and histopathology, respectively, in vaccinated animals. In conclusion, BCG vaccination reduced the frequency and severity of the pathology of bTB significantly, which is likely to reduce onwards transmission of the disease.
Collapse
Affiliation(s)
- G Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - K Tafess
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - A Zewde
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - T Eguale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - M Tilahun
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - T Hailu
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - A Sirak
- National Animal Health Diagnostic and Investigation Centre, Sebeta, Ethiopia
| | - F J Salguero
- School of Veterinary Medicine, University of Surrey, Surrey, UK
| | - S Berg
- Animal and Plant Health Agency, New Haw, Surrey, UK
| | - A Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - R G Hewinson
- Animal and Plant Health Agency, New Haw, Surrey, UK
| | | |
Collapse
|