1
|
He W, Liao K, Li R, Peng W, Qian B, Zeng D, Tang F, Xue F, Jung YS, Dai J. Development of a CRISPR/Cas12a-based fluorescent detection method of Senecavirus A. BMC Vet Res 2024; 20:258. [PMID: 38877537 PMCID: PMC11179212 DOI: 10.1186/s12917-024-04116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Senecavirus A (SVA), identified in 2002, is known to cause porcine idiopathic vesicular disease (PIVD), which presents with symptoms resembling other vesicular diseases. This similarity complicates field diagnosis. Conventional molecular diagnostic techniques are limited by their cost, sensitivity, and requirement for complicated instrumentation. Therefore, developing an effective and accurate diagnostic method is crucial for timely identification and isolation of affected pigs, thereby preventing further disease spread. METHODS In this study, we developed a highly-specific and ultra-sensitive SVA detection method powered by CRISPR/Cas12a. To enhance the availability in laboratories with varied equipment conditions, microplate reader and ultraviolet light transilluminator were introduced. Moreover, PCR amplification has also been incorporated into this method to improve sensitivity. The specificity and sensitivity of this method were determined following the preparation of the recombinant Cas12a protein and optimization of the CRISPR/Cas12a-based trans-cleavage system. RESULTS The method demonstrated no cross-reactivity with ten kinds of viruses of swine. The minimum template concentration required to activate substantial trans-cleavage activity was determined to be 106 copies/µL of SVA templates. However, when PCR amplification was incorporated, the method achieved a detection limit of one copy of SVA templates per reaction. It also exhibited 100% accuracy in simulated sample testing. The complete testing process does not exceed three hours. CONCLUSIONS Importantly, this method utilizes standard laboratory equipment, making it accessible for use in resource-limited settings and facilitating widespread and ultra-sensitive screening during epidemics. Overall, the development of this method not only broadens the array of tools available for detecting SVA but also holds significant promise for controlling the spread of PIVD.
Collapse
Affiliation(s)
- Wei He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, China
- Ningxia Hui Autonomous Region Food Testing and Research Institute, Yinchuan, 750002, China
| | - Kai Liao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruixue Li
- Ningxia Hui Autonomous Region Food Testing and Research Institute, Yinchuan, 750002, China
| | - Wanqing Peng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bingxu Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dexin Zeng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, China.
- Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China.
| | - Yong Sam Jung
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianjun Dai
- China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
2
|
Liu Y, Zhang X, Han X, Liu J, Yao L. Development of a droplet digital PCR method for detection of porcine circovirus 4. BMC Vet Res 2023; 19:129. [PMID: 37608311 PMCID: PMC10464377 DOI: 10.1186/s12917-023-03690-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Porcine circovirus 4 (PCV4), a newly emerging virus that was first discovered in 2019, may pose a potential threat to the pig industry. Droplet digital PCR (ddPCR) is an absolute quantitative method that has high sensitivity and accuracy. In this study, we developed a novel ddPCR assay to detect PCV4. Furthermore, we evaluated the detection limit, sensitivity, specificity and reproducibility of the ddPCR and TaqMan real-time quantitative PCR (qPCR) and tested 160 clinical samples to compare the detection rate of the two methods. RESULTS The detection limit for ddPCR was 0.54 copies/µL, 10.6 times greater sensitivity than qPCR. Both ddPCR and qPCR assays exhibited good linearity and repeatability, and the established ddPCR method was highly specific for PCV4. The results of clinical sample testing showed that the positivity rate of ddPCR (5.6%) was higher than that of qPCR (4.4%). CONCLUSIONS This study successfully developed a sensitive, specific and repeatable ddPCR assay for PCV4 detection, which can be widely used in clinical diagnosis of PCV4 infections.
Collapse
Affiliation(s)
- Yangkun Liu
- Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, Henan, China
| | - Xinru Zhang
- Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, Henan, China
| | - Xueying Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiaxing Liu
- Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, Henan, China
| | - Lunguang Yao
- Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, Henan, China.
| |
Collapse
|
3
|
Ran X, Hu Z, Wang J, Yang Z, Li Z, Wen X. Prevalence of Senecavirus A in pigs from 2014 to 2020: a global systematic review and meta-analysis. J Vet Sci 2023; 24:e48. [PMID: 37271515 DOI: 10.4142/jvs.22307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/23/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Senecavirus A (SVA), a member of the family Picornaviridae, is newly discovered, which causes vesicular lesions, lameness in swine, and even death in neonatal piglets. SVA has rapidly spread worldwide in recent years, especially in Asia. OBJECTIVES We conducted a global meta-analysis and systematic review to determine the status of SVA infection in pigs. METHODS Through PubMed, VIP Chinese Journals Database, China National Knowledge Infrastructure, and Wanfang Data search data from 2014 to July 26, 2020, a total of 34 articles were included in this analysis based on our inclusion criteria. We estimated the pooled prevalence of SVA in pigs by the random effects model. A risk of bias assessment of the studies and subgroup analysis to explain heterogeneity was undertaken. RESULTS We estimated the SVA prevalence to be 15.90% (1,564/9,839; 95% confidence interval [CI], 44.75-65.89) globally. The prevalence decreased to 11.06% (945/8,542; 95% CI, 28.25-50.64) after 2016. The highest SVA prevalence with the VP1-based RT-PCR and immunohistochemistry assay was 58.52% (594/1,015; 95% CI, 59.90-83.96) and 85.54% (71/83; 95% CI, 76.68-100.00), respectively. Besides, the SVA prevalence in piglet herds was the highest at 71.69% (119/166; 95% CI, 68.61-98.43) (p < 0.05). Moreover, our analysis confirmed that the subgroups, including country, sampling year, sampling position, detected gene, detection method, season, age, and climate, could be the heterogeneous factors associated with SVA prevalence. CONCLUSIONS The results indicated that SVA widely exists in various countries currently. Therefore, more prevention and control policies should be proposed to enhance the management of pig farms and improve breeding conditions and the environment to reduce the spread of SVA.
Collapse
Affiliation(s)
- Xuhua Ran
- School of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Zhenru Hu
- School of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Jun Wang
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhiyuan Yang
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhongle Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130018, China.
| | - Xiaobo Wen
- School of Animal Science and Technology, Hainan University, Haikou 570228, China.
| |
Collapse
|
4
|
Bennett B, Urzúa-Encina C, Pardo-Roa C, Ariyama N, Lecocq C, Rivera C, Badía C, Suárez P, Agredo M, Aguayo C, Ávila C, Araya H, Pérez P, Berrios F, Agüero B, Mendieta V, Pituco EM, de Almeida IG, Medina R, Brito B, Johow M, Ramirez VN. First report and genetic characterization of Seneca Valley virus (SVV) in Chile. Transbound Emerg Dis 2022; 69:e3462-e3468. [PMID: 36327129 DOI: 10.1111/tbed.14747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/10/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
Seneca Valley virus (SVV) is a non-enveloped RNA virus and the only member of the Senecavirus A (SVA) species, in the Senecavirus genus, Picornaviridae family. SVV infection causes vesicular lesions in the oral cavity, snout and hooves of pigs. This infection is clinically indistinguishable from trade-restrictions-related diseases such as foot-and-mouth disease. Other clinical manifestations include diarrhoea, anorexia, lethargy, neurological signs and mortality in piglets during their first week of age. Before this study, Chile was considered free of vesicular diseases of swine, including SVV. In April 2022, a suspected case of vesicular disease in a swine farm was reported in Chile. The SVV was confirmed and other vesicular diseases were ruled out. An epidemiological investigation and phylogenetic analyses were performed to identify the origin and extent of the outbreak. Three hundred ninety-five samples from 44 swine farms were collected, including faeces (208), oral fluid (28), processing fluid (14), fresh semen (61), environmental samples (80) and tissue from lesions (4) for real-time RT-PCR detection. Until June 2022, the SVV has been detected in 16 out of 44 farms, all epidemiologically related to the index farm. The closest phylogenetic relationship of the Chilean SVV strain is with viruses collected from swine in California in 2017. The direct cause of the SVV introduction has not yet been identified; however, the phylogenetic analyses suggest the USA as the most likely source. Since the virus remains active in the environment, transmission by fomites such as contaminated feed cannot be discarded. Further studies are needed to determine the risk of the introduction of novel SVV and other transboundary swine pathogens to Chile.
Collapse
Affiliation(s)
- Benjamín Bennett
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago, Chile
| | - Constanza Urzúa-Encina
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago, Chile
| | - Catalina Pardo-Roa
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Naomi Ariyama
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago, Chile
| | | | | | | | | | | | | | | | - Hugo Araya
- Servicio Agrícola y Ganadero (SAG), Santiago, Chile
| | | | - Felipe Berrios
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago, Chile
| | - Belén Agüero
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago, Chile
| | - Vanessa Mendieta
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago, Chile
| | - Edviges Maristela Pituco
- Reference Laboratory of Pan American Center for Foot-and-Mouth Disease and Veterinary Public Health of the Pan American Health Organization/World Health Organization (PANAFTOSA/VPH-PAHO/WHO), Pedro Leopoldo -MG, Brazil
| | - Iassudara Garcia de Almeida
- Reference Laboratory of Pan American Center for Foot-and-Mouth Disease and Veterinary Public Health of the Pan American Health Organization/World Health Organization (PANAFTOSA/VPH-PAHO/WHO), Pedro Leopoldo -MG, Brazil
| | - Rafael Medina
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Barbara Brito
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW, Australia
| | | | - Victor Neira Ramirez
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago, Chile
| |
Collapse
|
5
|
Chen W, Wang W, Wang X, Li Z, Wu K, Li X, Li Y, Yi L, Zhao M, Ding H, Fan S, Chen J. Advances in the differential molecular diagnosis of vesicular disease pathogens in swine. Front Microbiol 2022; 13:1019876. [PMID: 36386633 PMCID: PMC9641196 DOI: 10.3389/fmicb.2022.1019876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV), Senecavirus A (SVA) and swine vesicular disease virus (SVDV) are members of the family Picornaviridae, which can cause similar symptoms - vesicular lesions in the tissues of the mouth, nose, feet, skin and mucous membrane of animals. Rapid and accurate diagnosis of these viruses allows for control measures to prevent the spread of these diseases. Reverse transcription-polymerase chain reaction (RT-PCR) and real-time RT-PCR are traditional and reliable methods for pathogen detection, while their amplification reaction requires a thermocycler. Isothermal amplification methods including loop-mediated isothermal amplification and recombinase polymerase amplification developed in recent years are simple, rapid and do not require specialized equipment, allowing for point of care diagnostics. Luminex technology allows for simultaneous detection of multiple pathogens. CRISPR-Cas diagnostic systems also emerging nucleic acid detection technologies which are very sensitivity and specificity. In this paper, various nucleic acid detection methods aimed at vesicular disease pathogens in swine (including FMDV, SVA and SVDV) are summarized.
Collapse
Affiliation(s)
- Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Weijun Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xinyan Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Shuangqi Fan, ; Jinding Chen,
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Shuangqi Fan, ; Jinding Chen,
| |
Collapse
|
6
|
Hawko S, Burrai GP, Polinas M, Angioi PP, Dei Giudici S, Oggiano A, Alberti A, Hosri C, Antuofermo E. A Review on Pathological and Diagnostic Aspects of Emerging Viruses—Senecavirus A, Torque teno sus virus and Linda Virus—In Swine. Vet Sci 2022; 9:vetsci9090495. [PMID: 36136710 PMCID: PMC9502770 DOI: 10.3390/vetsci9090495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Worldwide demand for food is expected to increase due to population growth and swine accounts for more than one-third of meat produced worldwide. Several factors affect the success of livestock production systems, including animal disease control. Despite the importance of infectious diseases to animal health and the productivity of the global swine industry, pathogens of swine, in particular emerging viruses, such as Senecavirus A, Torque teno sus virus, and Linda virus, have gained limited interest. We performed a systematic analysis of the literature, with a focus on the main macroscopical and histological findings related to those viruses to fill the gap and highpoint these potentially hazardous pathogens. Abstract Swine production represents a significant component in agricultural economies as it occupies over 30% of global meat demand. Infectious diseases could constrain the swine health and productivity of the global swine industry. In particular, emerging swine viral diseases are omnipresent in swine populations, but the limited knowledge of the pathogenesis and the scarce information related to associated lesions restrict the development of data-based control strategies aimed to reduce the potentially great impact on the swine industry. In this paper, we reviewed and summarized the main pathological findings related to emerging viruses, such as Senecavirus A, Torque teno sus virus, and Linda virus, suggesting a call for further multidisciplinary studies aimed to fill this lack of knowledge and better clarify the potential role of those viral diseases in swine pathology.
Collapse
Affiliation(s)
- Salwa Hawko
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Giovanni P. Burrai
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
- Correspondence: ; Tel.: +39-079-229440
| | - Marta Polinas
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Pier Paolo Angioi
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Annalisa Oggiano
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Alberto Alberti
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Chadi Hosri
- Department of Veterinary Medicine, Faculty of Agronomy and Veterinary Sciences, Lebanese University, Beirut 14/6573, Lebanon
| | | |
Collapse
|
7
|
Wang K, Liu L, Wang J, Sun X, Han Q, Zhou C, Xu X, Wang J. Quantification of hepatitis E virus in raw pork livers using droplet digital RT-PCR. Food Microbiol 2022; 109:104114. [DOI: 10.1016/j.fm.2022.104114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 10/14/2022]
|
8
|
Wang H, Dong J, Zhang T, Wang F, Yang R, Zhang Y, Zhao X. A novel rapid detection of Senecavirus A using recombinase polymerase amplification (RPA) coupled with lateral flow (LF) dipstrip. Anal Biochem 2022; 646:114627. [PMID: 35245488 DOI: 10.1016/j.ab.2022.114627] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/06/2022] [Accepted: 02/22/2022] [Indexed: 11/24/2022]
Abstract
SENECAVIRUS A: (SVA), an emerging picornavirus, has been associated with vesicular disease and neonatal mortality in swine, posing a great threat to the global swine industry. Accurate diagnosis of SVA is crucial for the effective prevention and control disease. In the present study, a simple, rapid and accurate diagnostic assay was developed combining recombinase polymerase amplification and a lateral flow dipstrip (RPA-LF) to detect SVA infection. Using recombinant plasmid pMD19-T-VP1 DNA as a template, the RPA-LF optimal reaction conditions were incubated at 35 °C for 25 min, and the result was visualized directly on the dipstrip. The specificity assay showed no cross-reactivity with other tested viruses, and the sensitivity assay revealed the minimum detection limit was 15 copies/μl. Moreover, the RPA-LF method was successfully applied with viral cDNA as template to test clinical samples, with no significant difference being observed between RPA-LF and qRT-PCR. Hence, the established RPA-LF assay could be used as a potential optional rapid, reliable, sensitive and low-cost method for field diagnosis of SVA, especially in resource-limited regions.
Collapse
Affiliation(s)
- Huibao Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, PR China; China Agricultural Veterinary Biological Science and Technology Co. Ltd., Lanzhou, PR China
| | - Jinjie Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, PR China; China Agricultural Veterinary Biological Science and Technology Co. Ltd., Lanzhou, PR China; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Tao Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, PR China; China Agricultural Veterinary Biological Science and Technology Co. Ltd., Lanzhou, PR China
| | - Fan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, PR China; China Agricultural Veterinary Biological Science and Technology Co. Ltd., Lanzhou, PR China
| | - Rui Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, PR China; China Agricultural Veterinary Biological Science and Technology Co. Ltd., Lanzhou, PR China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, PR China.
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, PR China.
| |
Collapse
|
9
|
Li J, Zhang Z, Lv J, Ma Z, Pan L, Zhang Y. Global Phosphoproteomics Analysis of IBRS-2 Cells Infected With Senecavirus A. Front Microbiol 2022; 13:832275. [PMID: 35154063 PMCID: PMC8826396 DOI: 10.3389/fmicb.2022.832275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/05/2022] [Indexed: 11/24/2022] Open
Abstract
Phosphorylation is a widespread posttranslational modification that regulates numerous biological processes. Viruses can alter the physiological activities of host cells to promote virus particle replication, and manipulating phosphorylation is one of the mechanisms. Senecavirus A (SVA) is the causative agent of porcine idiopathic vesicular disease. Although numerous studies on SVA have been performed, comprehensive phosphoproteomics analysis of SVA infection is lacking. The present study performed a quantitative mass spectrometry-based phosphoproteomics survey of SVA infection in Instituto Biologico-Rim Suino-2 (IBRS-2) cells. Three parallel experiments were performed, and 4,520 phosphosites were quantified on 2,084 proteins. Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that many phosphorylated proteins were involved in apoptosis and spliceosome pathways, and subcellular structure localization analysis revealed that more than half were located in the nucleus. Motif analysis of proteins with differentially regulated phosphosites showed that proline, aspartic acid, and glutamic acid were the most abundant residues in the serine motif, while proline and arginine were the most abundant in the threonine motif. Forty phosphosites on 27 proteins were validated by parallel reaction monitoring (PRM) phosphoproteomics, and 30 phosphosites in 21 proteins were verified. Nine proteins with significantly altered phosphosites were further discussed, and eight [SRRM2, CDK13, DDX20, DDX21, BAD, ELAVL1, PDZ-binding kinase (PBK), and STAT3] may play a role in SVA infection. Finally, kinase activity prediction showed 10 kinases’ activity was reversed following SVA infection. It is the first phosphoproteomics analysis of SVA infection of IBRS-2 cells, and the results greatly expand our knowledge of SVA infection. The findings provide a basis for studying the interactions of other picornaviruses and their mammalian host cells.
Collapse
Affiliation(s)
- Jieyi Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhongwang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
- *Correspondence: Zhongwang Zhang,
| | - Jianliang Lv
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Zhongyuan Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Li Pan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
- Li Pan,
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Wang W, Zhou L, Ge X, Han J, Guo X, Chen Y, Zhang Y, Yang H. Development of a VP2-based real-time fluorescent reverse transcription recombinase-aided amplification assay to rapidly detect Senecavirus A. Transbound Emerg Dis 2021; 69:2828-2839. [PMID: 34931455 DOI: 10.1111/tbed.14435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 01/28/2023]
Abstract
Senecavirus A (SVA), a newly emergent picornavirus correlated with sudden neonatal mortality and vesicular lesions in pigs, has had a considerable impact on the global pig farming industry. Timely and dependable detection of SVA is helpful in preventing the further spread of this pathogenic virus. In the current study, a real-time fluorescent reverse transcription recombinase-aided amplification (rRT-RAA) assay, which targets the most conserved region within the VP2 gene of SVA, was developed and evaluated for SVA detection. The detection limit for this assay was tested to be 1.185 50% tissue culture infective dose (TCID50 ) of SVA RNA per reaction at a 95% confidence interval, which is comparable to that of a previously published rRT-PCR assay for SVA. The testing results of the rRT-RAA assay were very reproducible and repeatable, with inter- and intra-assay coefficient of variation values less than 7.0%. In addition, the established rRT-RAA assay displayed excellent specificity for SVA detection without cross-reaction with other clinically important swine pathogenic viruses. The diagnostic performance of rRT-RAA was evaluated using 189 clinical swine samples, which were detected in parallel using the reference rRT-PCR assay. The results showed that 146 and 151 samples tested positive for SVA by rRT-RAA and rRT-PCR, respectively. The overall agreement between both assays was 97.4% (184/189) with a kappa value of 0.927 (p < .001). Further linear regression analysis demonstrated that the detection results between the two assays were significantly correlated (R2 = 0.9192, p < .0001). Taken together, our newly established rRT-RAA assay is a powerful and time-saving diagnostic tool for SVA detection in clinical samples. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wenlong Wang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P.R. China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P.R. China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P.R. China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P.R. China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P.R. China
| | - Yanhong Chen
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P.R. China
| | - Yongning Zhang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P.R. China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P.R. China
| |
Collapse
|
11
|
Tan S, Dvorak CMT, Murtaugh MP. Characterization of Emerging Swine Viral Diseases through Oxford Nanopore Sequencing Using Senecavirus A as a Model. Viruses 2020; 12:v12101136. [PMID: 33036361 PMCID: PMC7600144 DOI: 10.3390/v12101136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
Emerging viral infectious diseases present a major threat to the global swine industry. Since 2015, Senecavirus A (SVA) has been identified as a cause of vesicular disease in different countries and is considered an emerging disease. Despite the growing concern about SVA, there is a lack of preventive and diagnostic strategies, which is also a problem for all emerging infectious diseases. Using SVA as a model, we demonstrated that Oxford Nanopore MinION sequencing could be used as a robust tool for the investigation and surveillance of emerging viral diseases. Our results identified that MinION sequencing allowed for rapid, unbiased pathogen detection at the species and strain level for clinical cases. SVA whole genome sequences were generated using both direct RNA sequencing and PCR-cDNA sequencing methods, with an optimized consensus accuracy of 94% and 99%, respectively. The advantages of direct RNA sequencing lie in its shorter turnaround time, higher analytical sensitivity and its quantitative relationship between input RNA and output sequencing reads, while PCR-cDNA sequencing excelled at creating highly accurate sequences. This study developed whole genome sequencing methods to facilitate the control of SVA and provide a reference for the timely detection and prevention of other emerging infectious diseases.
Collapse
|
12
|
Liu F, Wang Q, Huang Y, Wang N, Shan H. A 5-Year Review of Senecavirus A in China since Its Emergence in 2015. Front Vet Sci 2020; 7:567792. [PMID: 33134352 PMCID: PMC7561413 DOI: 10.3389/fvets.2020.567792] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
Senecavirus A (SVA), previously known as Seneca Valley virus, is classified into the genus Senecavirus in the family Picornaviridae. This virus can cause vesicular disease and epidemic transient neonatal losses in swine. Typical clinical signs include vesicular and/or ulcerative lesions on the snout, oral mucosa, coronary bands and hooves. SVA emerged in Guangdong Province of China in 2015, and thereafter gradually spread into other provinces, autonomous regions and municipalities (P.A.M.s). Nowadays more than half of the P.A.M.s have been affected by SVA, and asymptomatic infection has occurred in some areas. The phylogenetic analysis shows that China isolates are clustered into five genetic branches, implying a fast evolutionary speed since SVA emergence in 2015. This review presented current knowledge concerning SVA infection in China, including its history, epidemiology, evolutionary characteristics, diagnostics and vaccines.
Collapse
Affiliation(s)
- Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yilan Huang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ning Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
13
|
Mu S, Abdullah SW, Zhang Y, Han S, Guo H, Li M, Dong H, Xu J, Teng Z, Wen X, Sun S. Development of a novel SYBR green I-based quantitative RT-PCR assay for Senecavirus A detection in clinical samples of pigs. Mol Cell Probes 2020; 53:101643. [PMID: 32768439 DOI: 10.1016/j.mcp.2020.101643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 11/26/2022]
Abstract
Porcine vesicular disease caused by Senecavirus A (SVA) is a newly emerging disease in many countries. Based on clinical signs only, it is very challenging to distinguish SVA infection from other similar diseases, such as foot and mouth disease, swine vesicular disease, and vesicular stomatitis. Therefore, it is crucial to establish a detection assay for the clinical diagnosis of SVA infection. In this study, a pair of specific primers were designed based on the highly conserved L/VP4 gene sequence of SVA. The established SYBR green I-based quantitative reverse transcription polymerase chain reaction (qRT-PCR) method was used to detect SVA nucleic acids in clinical samples. The limit of detection SVA nucleic acids by qRT-PCR was 6.4 × 101 copies/μL, which was significantly more sensitive than that by gel electrophoresis of 6.4 × 103 copes/μL. This assay was specific and had no cross-reaction with other seven swine viruses. Using SYBR green I-based qRT-PCR, the SVA positive rates in experimental animal samples and field samples were 67.60% (96/142) and 80% (24/30) respectively. The results demonstrate that SYBR green I-based qRT-PCR is a rapid and specific method for the clinical diagnosis and epidemiological investigation of related vesicular diseases caused by SVA.
Collapse
Affiliation(s)
- Suyu Mu
- State Key Laboratory of Veterinary Etiological Biology and National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Sahibzada Waheed Abdullah
- State Key Laboratory of Veterinary Etiological Biology and National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Yun Zhang
- State Key Laboratory of Veterinary Etiological Biology and National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Shichong Han
- State Key Laboratory of Veterinary Etiological Biology and National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology and National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China; College of Animal Science, Yangtze University, Jingmi Street, Jingzhou District, Jingzhou, 434025, PR China
| | - Mei Li
- State Key Laboratory of Veterinary Etiological Biology and National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Hu Dong
- State Key Laboratory of Veterinary Etiological Biology and National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Jin Xu
- Bazhong Academy of Agriculture and Forestry, Jiangbei Avenue 1, Bazhong, Sichuan, PR China
| | - Zhidong Teng
- State Key Laboratory of Veterinary Etiological Biology and National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Xiaobo Wen
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction and Breeding and Epidemic Disease Research, Haidian Island, Haikou, 570228, PR China
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology and National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| |
Collapse
|
14
|
Houston E, Temeeyasen G, Piñeyro PE. Comprehensive review on immunopathogenesis, diagnostic and epidemiology of Senecavirus A. Virus Res 2020; 286:198038. [PMID: 32479975 DOI: 10.1016/j.virusres.2020.198038] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 01/19/2023]
Abstract
Senecavirus A (SVA), formerly known as Seneca Valley virus, is a single-strand, positive-sense RNA virus in the family Picornaviridae. This virus has been associated with recent outbreaks of vesicular disease (SVA-VD) and epidemic transient neonatal losses (ETNL) in several swine-producing countries. The clinical manifestation of and lesion caused by SVA are indistinguishable from other vesicular diseases. Pathogenicity studies indicate that SVA could regulate the host innate immune response to facilitate virus replication and the spread of the virus to bystander cells. SVA infection can induce specific humoral and cellular responses that can be detected within the first week of infection. However, SVA seems to produce persistent infection, and the virus can be shed in oral fluids for a month and detected in tissues for approximately two months after experimental infection. SVA transmission could be horizontal or vertical in infected herds of swine, while positive animals can also remain subclinical. In addition, mice seem to act as reservoirs, and the virus can persist in feed and feed ingredients, increasing the risk of introduction into naïve farms. Besides the pathological effects in swine, SVA possesses cytolytic activity, especially in neoplastic cells. Thus, SVA has been evaluated in phase II clinical trials as a virotherapy for neuroendocrine tumors. The goal of this review is summarize the current SVA-related research in pathogenesis, immunity, epidemiology and advances in diagnosis as well as discuses current challenges with subclinical/persistent presentation.
Collapse
Affiliation(s)
- Elizabeth Houston
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA; Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Gun Temeeyasen
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Pablo Enrique Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
15
|
Wang Y, Das A, Zheng W, Porter E, Xu L, Noll L, Liu X, Dodd K, Jia W, Bai J. Development and evaluation of multiplex real-time RT-PCR assays for the detection and differentiation of foot-and-mouth disease virus and Seneca Valley virus 1. Transbound Emerg Dis 2019; 67:604-616. [PMID: 31550077 DOI: 10.1111/tbed.13373] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/06/2019] [Accepted: 09/13/2019] [Indexed: 01/14/2023]
Abstract
Foot-and-mouth disease virus (FMDV) causes a highly contagious and economically important vesicular disease in cloven-hoofed animals that is clinically indistinguishable from symptoms caused by Seneca Valley virus 1 (SVV-1). To differentiate SVV-1 from FMDV infections, we developed a SVV-1 real-time RT-PCR (RT-qPCR) assay and multiplexed with published FMDV assays. Two published FMDV assays (Journal of the American Veterinary Medical Association, 220, 2002, 1636; Journal of Virological Methods, 236, 2016, 258) targeting the 3D polymerase (3D) region were selected and multiplexed with the SVV-1 assay that has two targets, one in the 5' untranslated region (5' UTR, this study) and the other in the 3D region (Journal of Virological Methods, 239, 2017, 34). In silico analysis showed that the primers and probes of SVV-1 assay matched 98.3% of the strain sequences (113/115). The primer and probe sequences of the Shi FMDV assay matched 85.4% (806/944), and that of the Callahan FMDV assay matched 62.7% (592/944) of the sequences. The limit of detection (LOD) for the two multiplex RT-qPCR assays for SVV-1 was both 9 copies per reaction by cloned positive plasmids and 0.16 TCID50 per reaction by cell culture. The LOD for FMDV by both multiplex assays was 11 copies per reaction using cloned positive plasmids. With cell cultures of the seven serotypes of FMDV, the Shi assay (Journal of Virological Methods, 236, 2016, 258) had LODs between 0.04 and 0.18 TCID50 per reaction that were either the same or lower than the Callahan assay. Interestingly, multiplexing with SVV-1 increased the amplification efficiencies of the Callahan assay (Journal of the American Veterinary Medical Association, 220, 2002, 1636) from 51.5%-66.7% to 89.5%-96.6%. Both assays specifically detected the target viruses without cross-reacting to SVV-1 or to other common porcine viruses. An 18S rRNA housekeeping gene that was amplified from multiple cloven-hoofed animal species was used as an internal control. The prevalence study did not detect any FMDV, but SVV-1 was detected from multiple types of swine samples with an overall positive rate of 10.5% for non-serum samples.
Collapse
Affiliation(s)
- Yin Wang
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA.,Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Amaresh Das
- Foreign Animal Disease Diagnostic Laboratory, NVSL, APHIS, Plum Island Animal Disease Center, NY, USA
| | - Wanglong Zheng
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Elizabeth Porter
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA
| | - Lizhe Xu
- Foreign Animal Disease Diagnostic Laboratory, NVSL, APHIS, Plum Island Animal Disease Center, NY, USA
| | - Lance Noll
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA
| | - Xuming Liu
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA.,Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Kimberly Dodd
- Foreign Animal Disease Diagnostic Laboratory, NVSL, APHIS, Plum Island Animal Disease Center, NY, USA
| | - Wei Jia
- Foreign Animal Disease Diagnostic Laboratory, NVSL, APHIS, Plum Island Animal Disease Center, NY, USA
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA.,Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
16
|
Zhang J, Nfon C, Tsai CF, Lee CH, Fredericks L, Chen Q, Sinha A, Bade S, Harmon K, Piñeyro P, Gauger P, Tsai YL, Wang HTT, Lee PYA. Development and evaluation of a real-time RT-PCR and a field-deployable RT-insulated isothermal PCR for the detection of Seneca Valley virus. BMC Vet Res 2019; 15:168. [PMID: 31126297 PMCID: PMC6534938 DOI: 10.1186/s12917-019-1927-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 05/20/2019] [Indexed: 12/17/2022] Open
Abstract
Background Seneca Valley virus (SVV) has emerged in multiple countries in recent years. SVV infection can cause vesicular lesions clinically indistinguishable from those caused by other vesicular disease viruses, such as foot-and-mouth disease virus (FMDV), swine vesicular disease virus (SVDV), vesicular stomatitis virus (VSV), and vesicular exanthema of swine virus (VESV). Sensitive and specific RT-PCR assays for the SVV detection is necessary for differential diagnosis. Real-time RT-PCR (rRT-PCR) has been used for the detection of many RNA viruses. The insulated isothermal PCR (iiPCR) on a portable POCKIT™ device is user friendly for on-site pathogen detection. In the present study, SVV rRT-PCR and RT-iiPCR were developed and validated. Results Neither the SVV rRT-PCR nor the RT-iiPCR cross-reacted with any of the vesicular disease viruses (20 FMDV, two SVDV, six VSV, and two VESV strains), classical swine fever virus (four strains), and 15 other common swine viruses. Analytical sensitivities of the SVV rRT-PCR and RT-iiPCR were determined using serial dilutions of in vitro transcribed RNA as well as viral RNA extracted from a historical SVV isolate and a contemporary SVV isolate. Diagnostic performances were further evaluated using 125 swine samples by two approaches. First, nucleic acids were extracted from the 125 samples using the MagMAX™ kit and then tested by both RT-PCR methods. One sample was negative by the rRT-PCR but positive by the RT-iiPCR, resulting in a 99.20% agreement (124/125; 95% CI: 96.59–100%, κ = 0.98). Second, the 125 samples were tested by the taco™ mini extraction/RT-iiPCR and by the MagMAX™ extraction/rRT-PCR system in parallel. Two samples were positive by the MagMAX™/rRT-PCR system but negative by the taco™ mini/RT-iiPCR system, resulting in a 98.40% agreement (123/125; 95% CI: 95.39–100%, κ = 0.97). The two samples with discrepant results had relatively high CT values. Conclusions The SVV rRT-PCR and RT-iiPCR developed in this study are very sensitive and specific and have comparable diagnostic performances for SVV RNA detection. The SVV rRT-PCR can be adopted for SVV detection in laboratories. The SVV RT-iiPCR in a simple field-deployable system could serve as a tool to help diagnose vesicular diseases in swine at points of need.
Collapse
Affiliation(s)
- Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA, 50011, USA.
| | - Charles Nfon
- National Center for Foreign Animal Diseases, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | | | | | - Lindsay Fredericks
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA, 50011, USA
| | - Qi Chen
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA, 50011, USA
| | - Avanti Sinha
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA, 50011, USA
| | - Sarah Bade
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA, 50011, USA
| | - Karen Harmon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA, 50011, USA
| | - Pablo Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA, 50011, USA
| | - Phillip Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA, 50011, USA
| | | | | | | |
Collapse
|
17
|
Li J, Liang W, Xu S, Shi J, Zhou X, Liu B, Yu L, Xiong J, Si G, He D. Rapid and sensitive detection of Senecavirus A by reverse transcription loop-mediated isothermal amplification combined with a lateral flow dipstick method. PLoS One 2019; 14:e0216245. [PMID: 31048910 PMCID: PMC6497277 DOI: 10.1371/journal.pone.0216245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/16/2019] [Indexed: 11/19/2022] Open
Abstract
Senecavirus A (SVA) is a critical pathogen causing vesicular lesions in sows and acute death of newborn piglets, resulting in very large economic losses in the pig industry. To restrict the transmission of SVA, an establishment of an effective diagnostic method is crucial for the prevention and control of the disease. However, traditional detection methods often have many drawbacks. In this study, reverse transcription loop-mediated isothermal amplification (RT-LAMP) was combined with a lateral flow dipstick (LFD) to detect SVA. The resulting RT-LAMP-LFD assay was performed at 60°C for 50 min and then directly judged on an LFD visualization strip. This method shows high specificity and sensitivity to SVA. The detection limit of RT-LAMP was 4.56x10-8 ng/μL RNA, approximately 11 copies/μL RNA, and it was 10 times more sensitive than RT-PCR. This detection method’s positive rate for clinical samples is comparable to that of RT-PCR. This method is time saving and highly efficient and is thus expected to be used to diagnose SVA infections in this field.
Collapse
Affiliation(s)
- Jinhui Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weifang Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shuaifei Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jian Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xia Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bowen Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Li Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jingfeng Xiong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guangbin Si
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Dongsheng He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, China
- * E-mail:
| |
Collapse
|