1
|
Magallanes S, Llorente F, Ruiz-López MJ, la Puente JMD, Ferraguti M, Gutiérrez-López R, Soriguer R, Aguilera-Sepúlveda P, Fernández-Delgado R, Jímenez-Clavero MÁ, Figuerola J. Warm winters are associated to more intense West Nile virus circulation in southern Spain. Emerg Microbes Infect 2024; 13:2348510. [PMID: 38686545 PMCID: PMC11073421 DOI: 10.1080/22221751.2024.2348510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
West Nile virus (WNV) is the most widely distributed mosquito-borne flavivirus in the world. This flavivirus can infect humans causing in some cases a fatal neurological disease and birds are the main reservoir hosts. WNV is endemic in Spain, and human cases have been reported since 2004. Although different studies analyse how climatic conditions can affect the dynamics of WNV infection, very few use long-term datasets. Between 2003 and 2020 a total of 2,724 serum samples from 1,707 common coots (Fulica atra) were analysed for the presence of WNV-specific antibodies. Mean (SD) annual seroprevalence was 24.67% (0.28) but showed high year-to-year variations ranging from 5.06% (0.17) to 68.89% (0.29). Significant positive correlations (p < 0.01) were observed between seroprevalence and maximum winter temperature and mean spring temperature. The unprecedented WNV outbreak in humans in the south of Spain in 2020 was preceded by a prolonged period of escalating WNV local circulation. Given current global and local climatic trends, WNV circulation is expected to increase in the next decades. This underscores the necessity of implementing One Health approaches to reduce the risk of future WNV outbreaks in humans. Our results suggest that higher winter and spring temperatures may be used as an early warning signal of more intense WNV circulation among wildlife in Spain, and consequently highlight the need of more intense vector control and surveillance in human inhabited areas.
Collapse
Affiliation(s)
- Sergio Magallanes
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Seville, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - María José Ruiz-López
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Seville, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Josué Martínez-de la Puente
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Seville, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Parasitology, University of Granada, Granada, Spain
| | - Martina Ferraguti
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Seville, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Rafael Gutiérrez-López
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER of Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Ramón Soriguer
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Seville, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | | | | | - Miguel Ángel Jímenez-Clavero
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - Jordi Figuerola
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Seville, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
2
|
Streng K, Hakze-van der Honing RW, Graham H, van Oort S, de Best PA, Abourashed A, van der Poel WHM. Orthoflavivirus surveillance in the Netherlands: Insights from a serosurvey in horses & dogs and a questionnaire among horse owners. Zoonoses Public Health 2024; 71:900-910. [PMID: 39057842 DOI: 10.1111/zph.13171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
AIMS Zoonotic arboviruses (arthropod-borne) of the Orthoflavivirus genus, such as West Nile virus (WNV), Usutu virus (USUV) and Tick-borne encephalitis virus (TBEV), are emerging in Northwestern Europe and pose a threat to both human and animal health. In the Netherlands, passive symptomatic surveillance (notification of clinical cases) in horses is one of the main pillars for the early detection of WNV. For such passive surveillance to work properly, horse owners and veterinarians need to recognize symptoms and report suspected cases to the authorities. Currently, little is known about the seroprevalence of orthoflaviviruses in domestic animals in the Netherlands. Therefore, this study aims at identifying the seroprevalence of WNV and USUV in horses and dogs in the Netherlands. Additionally, this study seeks to evaluate the knowledge and perceptions of Dutch horse owners towards mosquito-borne viruses. METHODS AND RESULTS A cross-sectional serosurvey in horses and dogs was conducted between May 2021 and May 2022. Serum samples were screened using an ELISA and doubtful and positive samples were confirmed by Virus Neutralization Tests for WNV, USUV and TBEV. A validated questionnaire, the MosquitoWise survey, was used to assess the knowledge and perceptions of Dutch horse owners towards mosquito-borne viruses between July and October 2022. The serosurvey revealed a low seroprevalence for WNV in horses and no WNV-positive dogs were found. Similarly, a low USUV seroprevalence was found in dogs. The MosquitoWise survey revealed a high knowledge level for horse owners and high awareness of WNV vaccination but a more limited intent to vaccinate. CONCLUSIONS The low seroprevalences of WNV and USUV indicate many dogs and horses remain susceptible, offering opportunities for trend analysis and surveillance. However, despite multiple recent detections of WNV, USUV, and TBEV in humans, the role of dogs and horses in early detection of human cases is debatable. High awareness among horse owners and the absence of detected equine WNV cases highlight this uncertainty. Continued surveillance is crucial for detecting increased virus circulation and protecting both animal and human health.
Collapse
Affiliation(s)
- Kiki Streng
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Heather Graham
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, The Netherlands
| | - Sophie van Oort
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, The Netherlands
| | - Pauline A de Best
- Viroscience, Erasmus MC, Rotterdam, The Netherlands
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ayat Abourashed
- Viroscience, Erasmus MC, Rotterdam, The Netherlands
- Centre for Advances Studies of Blanes, Blanes, Spain
| | - Wim H M van der Poel
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, The Netherlands
| |
Collapse
|
3
|
Williams RAJ, Criollo Valencia HA, López Márquez I, González González F, Llorente F, Jiménez-Clavero MÁ, Busquets N, Mateo Barrientos M, Ortiz-Díez G, Ayllón Santiago T. West Nile Virus Seroprevalence in Wild Birds and Equines in Madrid Province, Spain. Vet Sci 2024; 11:259. [PMID: 38922006 PMCID: PMC11209238 DOI: 10.3390/vetsci11060259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
West Nile virus (WNV) is a re-emerging flavivirus, primarily circulating among avian hosts and mosquito vectors, causing periodic outbreaks in humans and horses, often leading to neuroinvasive disease and mortality. Spain has reported several outbreaks, most notably in 2020 with seventy-seven human cases and eight fatalities. WNV has been serologically detected in horses in the Community of Madrid, but to our knowledge, it has never been reported from wild birds in this region. To estimate the seroprevalence of WNV in wild birds and horses in the Community of Madrid, 159 wild birds at a wildlife rescue center and 25 privately owned equines were sampled. Serum from thirteen birds (8.2%) and one equine (4.0%) tested positive with a WNV competitive enzyme-linked immunosorbent assay (cELISA) designed for WNV antibody detection but sensitive to cross-reacting antibodies to other flaviviruses. Virus-neutralization test (VNT) confirmed WNV antibodies in four bird samples (2.5%), and antibodies to undetermined flavivirus in four additional samples. One equine sample (4.0%) tested positive for WNV by VNT, although this horse previously resided in a WN-endemic area. ELISA-positive birds included both migratory and resident species, juveniles and adults. Two seropositive juvenile birds suggest local flavivirus transmission within the Community of Madrid, while WNV seropositive adult birds may have been infected outside Madrid. The potential circulation of flaviviruses, including WNV, in birds in the Madrid Community raises concerns, although further surveillance of mosquitoes, wild birds, and horses in Madrid is necessary to establish the extent of transmission and the principal species involved.
Collapse
Affiliation(s)
- Richard A. J. Williams
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, José Antonio Nováis, 28040 Madrid, Spain
| | | | - Irene López Márquez
- Group for the Rehabilitation of Native Fauna and their Habitat—GREFA, 28220 Madrid, Spain; (I.L.M.); (F.G.G.)
| | - Fernando González González
- Group for the Rehabilitation of Native Fauna and their Habitat—GREFA, 28220 Madrid, Spain; (I.L.M.); (F.G.G.)
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco Llorente
- Animal Health Research Center (CISA-INIA), CSIC, 28130 Valdeolmos, Spain; (F.L.)
| | | | - Núria Busquets
- IRTA, Animal Health Program, Animal Health Research Center (CReSA), Campus of the Autonomous University of Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
- Mixed Research Unit IRTA-UAB in Animal Health, Animal Health Research Center (CReSA), Campus of the Autonomous University of Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
| | - Marta Mateo Barrientos
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Gustavo Ortiz-Díez
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Tania Ayllón Santiago
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, José Antonio Nováis, 28040 Madrid, Spain
- Faculty of Health Sciences, Alfonso X El Sabio University, 28691 Madrid, Spain;
| |
Collapse
|
4
|
Tamba M, Bonilauri P, Galletti G, Casadei G, Santi A, Rossi A, Calzolari M. West Nile virus surveillance using sentinel birds: results of eleven years of testing in corvids in a region of northern Italy. Front Vet Sci 2024; 11:1407271. [PMID: 38818494 PMCID: PMC11138491 DOI: 10.3389/fvets.2024.1407271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
The natural transmission cycle of West Nile virus (WNV) involves birds as primary hosts and mosquitoes as vectors, but this virus can spread to mammals, human beings included. Asymptomatic infected donors pose a risk to the safety of blood transfusions and organ transplants, as WNV can be transmitted through these medical procedures. Since 2009, the region of Emilia-Romagna in northern Italy has been implementing an integrated surveillance system in order to detect WNV circulation in the environment at an early stage. Here we report the results of the two components of the surveillance system, the active testing of corvids and humans, and demonstrate that bird surveillance alone improves a surveillance system based solely on human case detection. As WNV risk reduction measures are applied on a provincial basis, we assessed the ability of this surveillance system component to detect virus circulation prior to the notification of the first human case for each province. Overall, 99 epidemic seasons were evaluated as a result of 11 years (2013-2023) of surveillance in the nine provinces of the region. In this period, 22,314 corvids were tested for WNV and 642 (2.9%) were found to be infected. WNV was generally first detected in birds in July, with sample prevalence peaks occurring between August and September. During the same period, 469 autochthonous human cases were notified, about 60% of which were reported in August. WNV was detected 79 times out of the 99 seasons considered. The virus was notified in birds 73 times (92.4%) and 60 times (75.9%) in humans. WNV was first or only notified in birds in 57 seasons (72.1%), while it was first or only notified in humans in 22 seasons (27.8%). Active surveillance in corvids generally allows the detection of WNV before the onset of human cases. Failure of virus detection occurred mainly in seasons where the number of birds tested was low. Our results show that active testing of a minimum of 3.8 corvids per 100 km2 provides a satisfactory timeliness in the virus detection, but for early detection of WNV it is crucial to test birds between mid-June and mid-August.
Collapse
Affiliation(s)
- Marco Tamba
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy
| | | | | | | | | | | | | |
Collapse
|
5
|
Rusenova N, Rusenov A, Chervenkov M, Sirakov I. Seroprevalence of West Nile Virus among Equids in Bulgaria in 2022 and Assessment of Some Risk Factors. Vet Sci 2024; 11:209. [PMID: 38787181 PMCID: PMC11126025 DOI: 10.3390/vetsci11050209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
The aim of this study was to analyze the seroprevalence of West Nile virus (WNV) among equids in Bulgaria, confirm the results of a competitive ELISA versus the virus neutralization test (VNT) and investigate some predisposing factors for WNV seropositivity. A total of 378 serum samples from 15 provinces in northern and southern Bulgaria were tested. The samples originated from 314 horses and 64 donkeys, 135 males and 243 females, aged from 1 to 30 years. IgG and IgM antibodies against WNV protein E were detected by ELISA. ELISA-positive samples were additionally tested via VNT for WNV and Usutu virus. Thirty-five samples were WNV-positive by ELISA (9.26% [CI = 6.45-12.88]), of which 15 were confirmed by VNT; hence, the seroprevalence was 3.97% (CI = 2.22-6.55). No virus-neutralizing antibodies to Usutu virus were detected among the 35 WNV-ELISA-positive equids in Bulgaria. When compared with VNT, ELISA showed 100.0% sensitivity and 94.5% specificity. A statistical analysis showed that the risk factors associated with WNV seropositivity were the region (p < 0.0001), altitude of the locality (p < 0.0001), type of housing (p < 0.0001) and breed (p = 0.0365). The results of the study demonstrate, albeit indirectly, that WNV circulates among equids in northern and southern Bulgaria, indicating that they could be suitable sentinel animals for predicting human cases and determining the risk in these areas or regions of the country.
Collapse
Affiliation(s)
- Nikolina Rusenova
- Department of Veterinary Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Anton Rusenov
- Department of Internal Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Mihail Chervenkov
- Faculty of Veterinary Medicine, University of Forestry, 1797 Sofia, Bulgaria;
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ivo Sirakov
- Department of Medical Microbiology, Faculty of Medicine, Medical University-Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria;
| |
Collapse
|
6
|
Varga Z, Bueno-Marí R, Risueño Iranzo J, Kurucz K, Tóth GE, Zana B, Zeghbib S, Görföl T, Jakab F, Kemenesi G. Accelerating targeted mosquito control efforts through mobile West Nile virus detection. Parasit Vectors 2024; 17:140. [PMID: 38500161 PMCID: PMC10949795 DOI: 10.1186/s13071-024-06231-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/03/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Different mosquito control strategies have been implemented to mitigate or prevent mosquito-related public health situations. Modern mosquito control largely relies on multiple approaches, including targeted, specific treatments. Given this, it is becoming increasingly important to supplement these activities with rapid and mobile diagnostic capacities for mosquito-borne diseases. We aimed to create and test the applicability of a rapid diagnostic system for West Nile virus that can be used under field conditions. METHODS In this pilot study, various types of adult mosquito traps were applied within the regular mosquito monitoring activity framework for mosquito control. Then, the captured specimens were used for the detection of West Nile virus RNA under field conditions with a portable qRT-PCR approach within 3-4 h. Then, positive samples were subjected to confirmatory RT-PCR or NGS sequencing in the laboratory to obtain genome information of the virus. We implemented phylogenetic analysis to characterize circulating strains. RESULTS A total of 356 mosquito individuals representing 7 species were processed in 54 pools, each containing up to 20 individuals. These pools were tested for the presence of West Nile virus, and two pools tested positive, containing specimens from the Culex pipiens and Anopheles atroparvus mosquito species. As a result of subsequent sequencing, we present the complete genome of West Nile virus and Bagaza virus. CONCLUSIONS The rapid identification of infected mosquitoes is the most important component of quick response adulticide or larvicide treatments to prevent human cases. The conceptual framework of real-time surveillance can be optimized for other pathogens and situations not only in relation to West Nile virus. We present an early warning system for mosquito-borne diseases and demonstrate its application to aid rapid-response mosquito control actions.
Collapse
Affiliation(s)
- Zsaklin Varga
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Rubén Bueno-Marí
- Department of Research and Development, Laboratorios Lokímica, Valencia, Spain
- Parasite & Health Research Group, Department of Pharmacy, Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - José Risueño Iranzo
- Department of Research and Development, Laboratorios Lokímica, Valencia, Spain
| | - Kornélia Kurucz
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Gábor Endre Tóth
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Brigitta Zana
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Safia Zeghbib
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Tamás Görföl
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary.
| |
Collapse
|
7
|
Ferraguti M, Magallanes S, Mora-Rubio C, Bravo-Barriga D, Marzal A, Hernandez-Caballero I, Aguilera-Sepúlveda P, Llorente F, Pérez-Ramírez E, Guerrero-Carvajal F, Jiménez-Clavero MÁ, Frontera E, Ortiz JA, de Lope F. Implications of migratory and exotic birds and the mosquito community on West Nile virus transmission. Infect Dis (Lond) 2024; 56:206-219. [PMID: 38160682 DOI: 10.1080/23744235.2023.2288614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Vector-borne diseases like West Nile virus (WNV) pose a global health challenge, with rising incidence and distribution. Culex mosquitoes are crucial WNV vectors. Avian species composition and bird community diversity, along with vector communities, influence WNV transmission patterns. However, limited knowledge exists on their impact in southwestern Spain, an area with active WNV circulation in wild birds, mosquitoes, and humans. METHODS To address this, we conducted a comprehensive study investigating the contributions of migratory and exotic bird species to WNV transmission and the influence of mosquito community composition. RESULTS Analysing 1194 serum samples from 44 avian species, we detected WNV antibodies in 32 samples from 11 species, four for the first time in Europe. Migratory birds had higher WNV exposure likelihood than native and exotic species, and higher phylogenetic diversity in bird communities correlated with lower exposure rates. Moreover, in 5859 female mosquitoes belonging to 12 species, we identified WNV competent vectors like Cx. pipiens s.l. and the Univittatus subgroup. Birds with WNV antibodies were positively associated with competent vector abundance, but negatively with overall mosquito species richness. CONCLUSIONS These findings highlight the complex interactions between bird species, their phylogenetics, and mosquito vectors in WNV transmission. Understanding these dynamics will help to implement effective disease control strategies in southwestern Spain.
Collapse
Affiliation(s)
- Martina Ferraguti
- Estación Biológica de Doñana (EBD), CSIC, Departamento de Biología de la Conservación y Cambio Global, Seville, Spain
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sergio Magallanes
- Estación Biológica de Doñana (EBD), CSIC, Departamento de Biología de la Conservación y Cambio Global, Seville, Spain
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carlos Mora-Rubio
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
| | - Daniel Bravo-Barriga
- Universidad de Córdoba, Departamento de Sanidad Animal, Grupo de Investigación en Zoonosis y Sanidad Animal (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Córdoba, Spain
- Universidad de Extremadura, Facultad de Veterinaria, Departamento de Sanidad Animal, Parasitología, Cáceres, Spain
| | - Alfonso Marzal
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
- Universidad Nacional de San Martín, Grupo de Investigaciones en Fauna Silvestre, Tarapoto, Perú
| | - Irene Hernandez-Caballero
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
| | | | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - Elisa Pérez-Ramírez
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | | | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - Eva Frontera
- Universidad Nacional de San Martín, Grupo de Investigaciones en Fauna Silvestre, Tarapoto, Perú
| | | | - Florentino de Lope
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
| |
Collapse
|
8
|
Magallanes S, Llorente F, Ruiz-López MJ, Martínez-de la Puente J, Soriguer R, Calderon J, Jímenez-Clavero MÁ, Aguilera-Sepúlveda P, Figuerola J. Long-term serological surveillance for West Nile and Usutu virus in horses in south-West Spain. One Health 2023; 17:100578. [PMID: 38024263 PMCID: PMC10665154 DOI: 10.1016/j.onehlt.2023.100578] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 11/26/2023] Open
Abstract
West Nile virus (WNV) is a re-emerging zoonotic pathogen with increasing incidence in Europe, producing a recent outbreak in 2020 in Spain with 77 human cases and eight fatalities. However, the factors explaining the observed changes in the incidence of WNV in Europe are not completely understood. Longitudinal monitoring of WNV in wild animals across Europe is a useful approach to understand the eco-epidemiology of WNV in the wild and the risk of spillover into humans. However, such studies are very scarce up to now. Here, we analysed the occurrence of WNV and Usutu virus (USUV) antibodies in 2102 samples collected between 2005 and 2020 from a population of feral horses in Doñana National Park. The prevalence of WNV antibodies varied between years, with a mean seroprevalence of 8.1% (range 0%-25%) and seasonally. Climate conditions including mean minimum annual temperatures and mean rainy days per year were positively correlated with WNV seroprevalence, while the annual rainfall was negatively. We also detected the highest incidence of seroconversions in 2020 coinciding with the human outbreak in southern Spain. Usutu virus-specific antibodies were detected in the horse population since 2011. The WNV outbreak in humans was preceded by a long period of increasing circulation of WNV among horses with a very high exposure in the year of the outbreak. These results highlight the utility of One Health approaches to better understand the transmission dynamics of zoonotics pathogens.
Collapse
Affiliation(s)
- Sergio Magallanes
- Department of Wetland Ecology (EBD-CSIC), Estación Biológica de Doñana, Avda. Américo Vespucio 26, E-41092 Sevilla, Spain
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, 28130, Valdeolmos, Madrid, Spain
| | - María José Ruiz-López
- Department of Wetland Ecology (EBD-CSIC), Estación Biológica de Doñana, Avda. Américo Vespucio 26, E-41092 Sevilla, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Spain
| | - Josué Martínez-de la Puente
- CIBER of Epidemiology and Public Health (CIBERESP), Spain
- Department of Parasitology, University of Granada, Granada E-18071, Spain
| | - Ramon Soriguer
- Department of Wetland Ecology (EBD-CSIC), Estación Biológica de Doñana, Avda. Américo Vespucio 26, E-41092 Sevilla, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Spain
| | - Juan Calderon
- Department of Wetland Ecology (EBD-CSIC), Estación Biológica de Doñana, Avda. Américo Vespucio 26, E-41092 Sevilla, Spain
| | - Miguel Ángel Jímenez-Clavero
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, 28130, Valdeolmos, Madrid, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Spain
| | | | - Jordi Figuerola
- Department of Wetland Ecology (EBD-CSIC), Estación Biológica de Doñana, Avda. Américo Vespucio 26, E-41092 Sevilla, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Spain
| |
Collapse
|
9
|
Llorente F, Gutiérrez-López R, Pérez-Ramirez E, Sánchez-Seco MP, Herrero L, Jiménez-Clavero MÁ, Vázquez A. Experimental infections in red-legged partridges reveal differences in host competence between West Nile and Usutu virus strains from Southern Spain. Front Cell Infect Microbiol 2023; 13:1163467. [PMID: 37396301 PMCID: PMC10308050 DOI: 10.3389/fcimb.2023.1163467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction West Nile virus (WNV) and Usutu virus (USUV) are emerging zoonotic arboviruses sharing the same life cycle with mosquitoes as vectors and wild birds as reservoir hosts. The main objective of this study was to characterize the pathogenicity and course of infection of two viral strains (WNV/08 and USUV/09) co-circulating in Southern Spain in a natural host, the red-legged partridge (Alectoris rufa), and to compare the results with those obtained with the reference strain WNV/NY99. Methods WNV inoculated birds were monitored for clinical and analytical parameters (viral load, viremia, and antibodies) for 15 days post-inoculation. Results and discussion Partridges inoculated with WNV/NY99 and WNV/08 strains showed clinical signs such as weight loss, ruffled feathers, and lethargy, which were not observed in USUV/09-inoculated individuals. Although statistically significant differences in mortality were not observed, partridges inoculated with WNV strains developed significantly higher viremia and viral loads in blood than those inoculated with USUV. In addition, the viral genome was detected in organs and feathers of WNV-inoculated partridges, while it was almost undetectable in USUV-inoculated ones. These experimental results indicate that red-legged partridges are susceptible to the assayed Spanish WNV with pathogenicity similar to that observed for the prototype WNV/NY99 strain. By contrast, the USUV/09 strain was not pathogenic for this bird species and elicited extremely low viremia levels, demonstrating that red-legged partridges are not a competent host for the transmission of this USUV strain.
Collapse
Affiliation(s)
- Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
| | - Rafael Gutiérrez-López
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
| | - Elisa Pérez-Ramirez
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
| | - María Paz Sánchez-Seco
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Laura Herrero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ana Vázquez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
10
|
Casades-Martí L, Cuadrado-Matías R, Peralbo-Moreno A, Baz-Flores S, Fierro Y, Ruiz-Fons F. Insights into the spatiotemporal dynamics of West Nile virus transmission in emerging scenarios. One Health 2023; 16:100557. [PMID: 37363231 PMCID: PMC10288089 DOI: 10.1016/j.onehlt.2023.100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 06/28/2023] Open
Abstract
The incidence of West Nile fever (WNF) is highly variable in emerging areas, making it difficult to identify risk periods. Using clinical case records has important biases in understanding the transmission dynamics of West Nile virus (WNV) because asymptomatic infections are frequent. However, estimating virus exposure in sentinel species could help achieve this goal at varying spatiotemporal scales. To identify the determinants of inter-annual variation in WNV transmission rates, we designed a 15-year longitudinal seroepidemiological study (2005-2020) in five environmentally diverse areas of southwestern Spain. We modeled individual annual area-dependent exposure risk based on potential environmental and host predictors using generalized linear mixed models. Further, we analyzed the weight of predictors on exposure probability by variance partitioning of the model components. The analysis of 2418 wild ungulate sera (1168 red deer - Cervus elaphus - and 1250 Eurasian wild boar - Sus scrofa) with a highly sensitive commercial blocking ELISA identified an average seroprevalence of 24.9% (95% confidence interval (CI): 23.2-26.7%). Antibody prevalence was slightly higher in wild boar (27.5%; CI: 25.1-30.1%) than in deer (22.2%; CI: 19.8-24.7%). We observed a spatial trend in exposure, with higher frequency in the southernmost areas and a slight, although area-dependent, increasing temporal trend. Host-related predictors were important drivers of exposure risk. The environmental predictor with the highest weight was annual cumulative precipitation, while temperature variations were also relevant but with less weight. We observed a coincidence of spatiotemporal changes in exposure with the notification of WNF outbreaks in horses and humans. That indicates the usefulness of wild ungulates as sentinels for WNV transmission and as models to understand its spatiotemporal dynamics. These results will allow the development of more accurate predictive models of spatiotemporal variations in transmission risk that can inform health authorities to take appropriate action.
Collapse
Affiliation(s)
- Laia Casades-Martí
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC–UCLM–JCCM, Ciudad Real, Spain
| | - Raúl Cuadrado-Matías
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC–UCLM–JCCM, Ciudad Real, Spain
| | - Alfonso Peralbo-Moreno
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC–UCLM–JCCM, Ciudad Real, Spain
| | - Sara Baz-Flores
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC–UCLM–JCCM, Ciudad Real, Spain
| | | | - Francisco Ruiz-Fons
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC–UCLM–JCCM, Ciudad Real, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Identification of Usutu Virus Africa 3 Lineage in a Survey of Mosquitoes and Birds from Urban Areas of Western Spain. Transbound Emerg Dis 2023. [DOI: 10.1155/2023/6893677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Usutu virus (USUV) is an emerging zoonotic arbovirus that has caused an increasing number of animal and human cases in Europe in recent years. Understanding the vector species and avian hosts involved in the USUV enzootic cycle in an area of active circulation is vital to anticipate potential outbreaks. Mosquitoes were captured in 2020, while wild birds were sampled in both 2020 and 2021 in Extremadura, southwestern Spain. The presence of USUV in the mosquito vectors was assessed by a real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay and confirmed by sequencing amplicons from two generic RT-PCR sets for flaviviruses. Sequences were analysed phylogenetically. Bird sera were screened for flavivirus antibodies with a blocking ELISA kit and subsequently tested for virus-specific antibodies with a micro-virus-neutralization test. Overall, 6,004 mosquitoes belonging to 13 species were captured, including some well-known flavivirus vectors (Culex pipiens, Cx. perexiguus, and Cx. univittatus). Of the 438 pools tested, USUV was detected in two pools of Cx. pipiens. Phylogenetic analysis using a fragment of the NS5 gene assigned the USUV detected the Africa 3 lineage. Out of 1,413 wild birds tested, USUV-specific antibodies were detected in 17 birds (1.2%, 10 males and 7 females) from eight species. The first detection of USUV Africa 3 lineage in mosquitoes from Spain, together with serologically positive resident wild birds in urban and rural areas, indicates active circulation and a possible risk of exposure for the human population, with necessity to establish specific surveillance plans.
Collapse
|
12
|
Zhou J, Xing Y, Zhou Z, Wang S. A comprehensive analysis of Usutu virus (USUV) genomes revealed lineage-specific codon usage patterns and host adaptations. Front Microbiol 2023; 13:967999. [PMID: 36713228 PMCID: PMC9878346 DOI: 10.3389/fmicb.2022.967999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
The Usutu virus (USUV) is an emerging arbovirus virus maintained in the environment of Afro-Eurasia via a bird-mosquito-bird enzootic cycle and sporadically infected other vertebrates. Despite primarily asymptomatic or mild symptoms, humans infected by USUV can develop severe neurological diseases such as meningoencephalitis. However, no detailed study has yet been conducted to investigate its evolution from the perspective of codon usage patterns. Codon usage choice of viruses reflects the genetic variations that enable them to reconcile their viability and fitness toward the external environment and new hosts. This study performed a comprehensive evolution and codon usage analysis of USUVs. Our reconstructed phylogenetic tree confirmed that the circulation viruses belong to eight distinct lineages, reaffirmed by principal component analysis based on codon usage patterns. We also found a relatively small codon usage bias and that natural selection, mutation pressure, dinucleotide abundance, and evolutionary processes collectively shaped the codon usage of the USUV, with natural selection predominating over the others. Additionally, a complex interaction of codon usage between the USUV and its host was observed. This process could have enabled USUV to adapt to various hosts and vectors, including humans. Therefore, the USUV may possess a potential risk of cross-species transmission and subsequent outbreaks. In this respect, further epidemiologic surveys, diversity monitoring, and pathogenetic research are warranted.
Collapse
|
13
|
Casades-Martí L, Holgado-Martín R, Aguilera-Sepúlveda P, Llorente F, Pérez-Ramírez E, Jiménez-Clavero MÁ, Ruiz-Fons F. Risk Factors for Exposure of Wild Birds to West Nile Virus in A Gradient of Wildlife-Livestock Interaction. Pathogens 2023; 12:pathogens12010083. [PMID: 36678431 PMCID: PMC9864363 DOI: 10.3390/pathogens12010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
West Nile virus (WNV) transmission rate is shaped by the interaction between virus reservoirs and vectors, which may be maximized in farm environments. Based on this hypothesis, we screened for WNV in wild birds in three scenarios with decreasing gradient of interaction with horses: (i) the farm (A1); (ii) the neighborhood (A2); and (iii) a wild area (A3). We captured wild birds and analyzed their sera for WNV antibodies by blocking ELISA and micro-virus neutralization test. Flavivirus infections were tested with generic and specific PCR protocols. We parameterized linear mixed models with predictors (bird abundance and diversity, vector abundance, vector host abundance, and weather quantities) to identify Flavivirus spp. and WNV exposure risk factors. We detected a low rate of Flavivirus infections by PCR (0.8%) and 6.9% of the birds were seropositive by ELISA. Exposure to Flavivirus spp. was higher in A1 (9%) than in A2 and A3 (5.6% and 5.8%, respectively). Bird diversity was the most relevant predictor of exposure risk and passerines dominated the on-farm bird community. Our results suggest that measures deterring the use of the farm by passerines should be implemented because the environmental favorability of continental Mediterranean environments for WNV is increasing and more outbreaks are expected.
Collapse
Affiliation(s)
- Laia Casades-Martí
- Health & Biotechnology (SaBio) Group, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, 13005 Ciudad Real, Spain
| | - Rocío Holgado-Martín
- Health & Biotechnology (SaBio) Group, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, 13005 Ciudad Real, Spain
| | | | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA), INIA-CSIC, 28130 Valdeolmos, Spain
| | - Elisa Pérez-Ramírez
- Centro de Investigación en Sanidad Animal (CISA), INIA-CSIC, 28130 Valdeolmos, Spain
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA), INIA-CSIC, 28130 Valdeolmos, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Ruiz-Fons
- Health & Biotechnology (SaBio) Group, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, 13005 Ciudad Real, Spain
- CIBERINFEC—CIBER de Enfermedades Infecciosas, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
14
|
García-Bocanegra I, Franco JJ, León CI, Barbero-Moyano J, García-Miña MV, Fernández-Molera V, Gómez MB, Cano-Terriza D, Gonzálvez M. High exposure of West Nile virus in equid and wild bird populations in Spain following the epidemic outbreak in 2020. Transbound Emerg Dis 2022; 69:3624-3636. [PMID: 36222172 PMCID: PMC10092718 DOI: 10.1111/tbed.14733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/07/2022] [Accepted: 10/04/2022] [Indexed: 02/07/2023]
Abstract
A cross-sectional study was conducted to assess the circulation and risk factors associated with West Nile virus (WNV) exposure in equine and wild bird populations following the largest epidemic outbreak ever reported in Spain. A total of 305 equids and 171 wild birds were sampled between November 2020 and June 2021. IgG antibodies against flaviviruses were detected by blocking enzyme-linked immunosorbent assay (bELISA) in 44.9% (109/243) and 87.1% (54/62) of unvaccinated and vaccinated equids, respectively. The individual seroprevalence in unvaccinated individuals (calculated on animals seropositive by both bELISA and virus microneutralization test [VNT]) was 38.3% (95%CI: 33.1-43.4). No IgM antibodies were detected in animals tested (0/243; 0.0%; 95%CI: 0.0-1.5) by capture-ELISA. The main risk factors associated with WNV exposure in equids were age (adult and geriatric), breed (crossbred) and the absence of a disinsection programme on the facilities. In wild birds, IgG antibodies against flaviviruses were found in 32.7% (56/171; 95%CI: 26.8-38.6) using bELISA, giving an individual WNV seroprevalence of 19.3% (95%CI: 14.3-24.3) after VNT. Seropositivity was found in 37.8% of the 37 species analysed. Species group (raptors), age (>1-year old) and size (large) were the main risk factors related to WNV seropositivity in wild birds. Our results indicate high exposure and widespread distribution of WNV in equid and wild bird populations in Spain after the epidemic outbreak in 2020. The present study highlights the need to continue and improve active surveillance programmes for the detection of WNV in Spain, particularly in those areas at greatest risk of virus circulation.
Collapse
Affiliation(s)
- Ignacio García-Bocanegra
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonosis and Emerging Diseases (ENZOEM), University of Cordoba, Cordoba, Spain.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan J Franco
- Immunology and Applied Genetics, S.A. (Eurofins-Ingenasa), Madrid, Spain
| | - Clara I León
- Agencia de Medio Ambiente y Agua de Andalucía (AMAYA), Junta de Andalucía, Sevilla, Spain
| | - Jesús Barbero-Moyano
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonosis and Emerging Diseases (ENZOEM), University of Cordoba, Cordoba, Spain
| | - María V García-Miña
- Consejería de Agricultura, Pesca, Agua y Desarrollo Rural, Junta de Andalucía, Sevilla, Spain
| | | | - María B Gómez
- Laboratorio Central de Veterinaria (LCV), Ministerio de Agricultura, Pesca y Alimentación, Algete, Madrid, Spain
| | - David Cano-Terriza
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonosis and Emerging Diseases (ENZOEM), University of Cordoba, Cordoba, Spain.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Moisés Gonzálvez
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonosis and Emerging Diseases (ENZOEM), University of Cordoba, Cordoba, Spain.,Department of Animal Health, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| |
Collapse
|
15
|
Figuerola J, Jiménez-Clavero MÁ, Ruíz-López MJ, Llorente F, Ruiz S, Hoefer A, Aguilera-Sepúlveda P, Peñuela JJ, García-Ruiz O, Herrero L, Soriguer RC, Delgado RF, Sánchez-Seco MP, la Puente JMD, Vázquez A. A One Health view of the West Nile virus outbreak in Andalusia (Spain) in 2020. Emerg Microbes Infect 2022; 11:2570-2578. [PMID: 36214518 PMCID: PMC9621199 DOI: 10.1080/22221751.2022.2134055] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reports of West Nile virus (WNV) associated disease in humans were scarce in Spain until summer 2020, when 77 cases were reported, eight fatal. Most cases occurred next to the Guadalquivir River in the Sevillian villages of Puebla del Río and Coria del Río. Detection of WNV disease in humans was preceded by a large increase in the abundance of Culex perexiguus in the neighbourhood of the villages where most human cases occurred. The first WNV infected mosquitoes were captured approximately one month before the detection of the first human cases. Overall, 33 positive pools of Cx. perexiguus and one pool of Culex pipiens were found. Serology of wild birds confirmed WNV circulation inside the affected villages, that transmission to humans also occurred in urban settings and suggests that virus circulation was geographically more widespread than disease cases in humans or horses may indicate. A high prevalence of antibodies was detected in blackbirds (Turdus merula) suggesting that this species played an important role in the amplification of WNV in urban areas. Culex perexiguus was the main vector of WNV among birds in natural and agricultural areas, while its role in urban areas needs to be investigated in more detail. Culex pipiens may have played some role as bridge vector of WNV between birds and humans once the enzootic transmission cycle driven by Cx. perexiguus occurred inside the villages. Surveillance of virus in mosquitoes has the potential to detect WNV well in advance of the first human cases.
Collapse
Affiliation(s)
- Jordi Figuerola
- Estación Biológica de Doñana - CSIC, Avda. Américo Vespucio 26, 41092 Sevilla, Spain.,CIBER de Epidemiología y Salud Publica (CIBERESP), Spain
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28130, Valdeolmos, Spain.,CIBER de Epidemiología y Salud Publica (CIBERESP), Spain
| | - María José Ruíz-López
- Estación Biológica de Doñana - CSIC, Avda. Américo Vespucio 26, 41092 Sevilla, Spain.,CIBER de Epidemiología y Salud Publica (CIBERESP), Spain
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28130, Valdeolmos, Spain
| | - Santiago Ruiz
- Servicio de Control de Mosquitos de la Diputación Provincial de Huelva, Ctra. Hospital Infanta Elena s/n, 21007 Huelva, Spain.,CIBER de Epidemiología y Salud Publica (CIBERESP), Spain
| | - Andreas Hoefer
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28222 Majadahonda, Spain.,European Public Health Microbiology Training Programme (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Pilar Aguilera-Sepúlveda
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28130, Valdeolmos, Spain
| | | | - Olaya García-Ruiz
- Estación Biológica de Doñana - CSIC, Avda. Américo Vespucio 26, 41092 Sevilla, Spain.,CIBER de Epidemiología y Salud Publica (CIBERESP), Spain
| | - Laura Herrero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28222 Majadahonda, Spain
| | - Ramón C Soriguer
- Estación Biológica de Doñana - CSIC, Avda. Américo Vespucio 26, 41092 Sevilla, Spain.,CIBER de Epidemiología y Salud Publica (CIBERESP), Spain
| | - Raúl Fernández Delgado
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28130, Valdeolmos, Spain
| | - Mari Paz Sánchez-Seco
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28222 Majadahonda, Spain.,CIBER de Enfermedades Infecciosas (CIBERINFEC), Spain
| | - Josué Martínez-de la Puente
- Departamento de Parasitología, Universidad de Granada, 18071 Granada, Spain.,CIBER de Epidemiología y Salud Publica (CIBERESP), Spain
| | - Ana Vázquez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28222 Majadahonda, Spain.,CIBER de Epidemiología y Salud Publica (CIBERESP), Spain
| |
Collapse
|
16
|
Spread of West Nile Virus and Usutu Virus in the German Bird Population, 2019–2020. Microorganisms 2022; 10:microorganisms10040807. [PMID: 35456857 PMCID: PMC9030481 DOI: 10.3390/microorganisms10040807] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 12/21/2022] Open
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are important flaviviruses circulating in Germany. While USUV was first reported more than 10 years ago, WNV has only reached the country in 2018. Wild birds are important amplifying hosts for both viruses. Therefore, we have been monitoring the bird population in different regions of Germany by a previously established network for many years. This report summarizes the results of molecular and/or serological methods of 2345 blood samples from birds of 22 different orders and over 2900 bird carcasses from 2019 and 2020. USUV RNA circulation was found in different regions of Germany, with emphasis on USUV lineages Europe 3 and Africa 3. Increased evidence of USUV lineage Europe 2 was detected in eastern Germany. WNV RNA was found only in birds from the eastern part of the country. The seroprevalence for USUV was between 3.11% and 7.20% in all three regions investigated, whereas the WNV seroprevalence spanned from 14.77% to 16.15% in eastern Germany, with a noticeable tendency for a westward and southward expansion in both years. Thus, wild bird monitoring for WNV and USUV can serve as an early warning system for a human exposure risk.
Collapse
|
17
|
Circulation of zoonotic flaviviruses in wild passerine birds in Western Spain. Vet Microbiol 2022; 268:109399. [PMID: 35344925 DOI: 10.1016/j.vetmic.2022.109399] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 02/07/2023]
Abstract
We explore the presence of zoonotic flaviviruses (West Nile virus (WNV) and Usutu virus (USUV)) neutralizing antibodies in rarely studied passerine bird species. We report, for the first time in Europe, WNV-specific antibodies in red avadavat and cetti's warbler, and USUV in yellow-crowned bishop. The evidence of WNV and USUV circulating in resident and migratory species has implications for both animal and public health. Future outbreaks in avian reservoir hosts may occur and passerines should be considered as priority target species in flavivirus surveillance programmes.
Collapse
|
18
|
Berneck BS, Rockstroh A, Barzon L, Sinigaglia A, Vocale C, Landini MP, Rabenau HF, Schmidt-Chanasit J, Ulbert S. Serological differentiation of West Nile virus and Usutu virus induced antibodies by envelope proteins with modified cross-reactive epitopes. Transbound Emerg Dis 2021; 69:2779-2787. [PMID: 34919790 DOI: 10.1111/tbed.14429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022]
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are mosquito-borne viruses belonging to the Japanese encephalitis virus serocomplex within the genus Flavivirus. Due to climate change and the expansion of mosquito vectors, flaviviruses are becoming endemic in increasing numbers of countries. WNV infections are reported with symptoms ranging from mild fever to severe neuro invasive disease. Until now, only a few USUV infections have been reported in humans, mostly with mild symptoms. The serological diagnosis and differentiation between flavivirus infections in general and between WNV and USUV in particular are challenging due the high degree of cross-reacting antibodies, especially of those directed against the conserved fusion loop (FL) domain of the envelope (E) protein. We have previously shown that E proteins containing four amino acid mutations in and near the FL strongly reduce the binding of cross-reactive antibodies leading to diagnostic technologies with improved specificities. Here, we expanded the technology to USUV and analyzed the differentiation of USUV and WNV induced antibodies in humans. IgG ELISAs modified by an additional competition step with the heterologous antigen resulted in overall specificities of 93.94% for WNV Equad and 92.75% for USUV Equad. IgM antibodies against WNV could be differentiated from USUV IgM in a direct comparison using both antigens. The data indicate the potential of the system to diagnose antigenically closely related flavivirus infections. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Beatrice Sarah Berneck
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, Leipzig, 04103, Germany
| | - Alexandra Rockstroh
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, Leipzig, 04103, Germany
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, Padova, 35121, Italy
| | - Alessandro Sinigaglia
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, Padova, 35121, Italy
| | - Caterina Vocale
- CRREM. Unità Operativa di Microbiologia, IRCCS Policlinico di S. Orsola, Via Massarenti 9, Bologna, 40138, Italy
| | - Maria Paola Landini
- Clinical Microbiology Unit, Regional Reference Centre for Microbiological Emergencies-CRREM, St. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| | - Holger F Rabenau
- Institute of Medical Virology, University Hospital Frankfurt, Paul-Ehrlich-Str. 40, Frankfurt, 60596, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, Hamburg, 20359, Germany
| | - Sebastian Ulbert
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, Leipzig, 04103, Germany
| |
Collapse
|
19
|
Napp S, Llorente F, Beck C, Jose-Cunilleras E, Soler M, Pailler-García L, Amaral R, Aguilera-Sepúlveda P, Pifarré M, Molina-López R, Obón E, Nicolás O, Lecollinet S, Jiménez-Clavero MÁ, Busquets N. Widespread Circulation of Flaviviruses in Horses and Birds in Northeastern Spain (Catalonia) between 2010 and 2019. Viruses 2021; 13:v13122404. [PMID: 34960673 PMCID: PMC8708358 DOI: 10.3390/v13122404] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022] Open
Abstract
The surveillance for West Nile virus (WNV) in Catalonia (northeastern Spain) has consistently detected flaviviruses not identified as WNV. With the aim of characterizing the flaviviruses circulating in Catalonia, serum samples from birds and horses collected between 2010 and 2019 and positive by panflavivirus competition ELISA (cELISA) were analyzed by microneutralization test (MNT) against different flaviviruses. A third of the samples tested were inconclusive by MNT, highlighting the limitations of current diagnostic techniques. Our results evidenced the widespread circulation of flaviviruses, in particular WNV, but also Usutu virus (USUV), and suggest that chicken and horses could serve as sentinels for both viruses. In several regions, WNV and USUV overlapped, but no significant geographical aggregation was observed. Bagaza virus (BAGV) was not detected in birds, while positivity to tick-borne encephalitis virus (TBEV) was sporadically detected in horses although no endemic foci were observed. So far, no human infections by WNV, USUV, or TBEV have been reported in Catalonia. However, these zoonotic flaviviruses need to be kept under surveillance, ideally within a One Health framework.
Collapse
Affiliation(s)
- Sebastian Napp
- IRTA, Animal Health Research Centre (CReSA IRTA-UAB), 08193 Bellaterra, Spain;
- Correspondence: (S.N.); (N.B.)
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA), Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28130 Valdeolmos, Spain; (F.L.); (P.A.-S.); (M.Á.J.-C.)
| | - Cécile Beck
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (C.B.); (R.A.); (S.L.)
| | - Eduard Jose-Cunilleras
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Servei Medicina Interna Equina, Fundació Hospital Clínic Veterinari (UAB), 08193 Bellaterra, Spain
| | - Mercè Soler
- Servei de Prevenció en Salut Animal, Departament d’Acció Climàtica, Alimentació i Agenda Rural (DACC), 08007 Barcelona, Spain;
| | - Lola Pailler-García
- IRTA, Animal Health Research Centre (CReSA IRTA-UAB), 08193 Bellaterra, Spain;
| | - Rayane Amaral
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (C.B.); (R.A.); (S.L.)
| | - Pilar Aguilera-Sepúlveda
- Centro de Investigación en Sanidad Animal (CISA), Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28130 Valdeolmos, Spain; (F.L.); (P.A.-S.); (M.Á.J.-C.)
| | - Maria Pifarré
- Centre de Fauna dels Aiguamolls de l’Empordà, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 17486 Castelló d’Empúries, Spain;
| | - Rafael Molina-López
- Centre de Fauna de Torreferrussa, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 08130 Santa Perpètua de Mogoda, Spain; (R.M.-L.); (E.O.)
| | - Elena Obón
- Centre de Fauna de Torreferrussa, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 08130 Santa Perpètua de Mogoda, Spain; (R.M.-L.); (E.O.)
| | - Olga Nicolás
- Centre de Fauna de Vallcalent, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 25199 Lleida, Spain;
- Parc Natural de l’Alt Pirineu, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 25595 Llavorsí, Spain
| | - Sylvie Lecollinet
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (C.B.); (R.A.); (S.L.)
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA), Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28130 Valdeolmos, Spain; (F.L.); (P.A.-S.); (M.Á.J.-C.)
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Núria Busquets
- IRTA, Animal Health Research Centre (CReSA IRTA-UAB), 08193 Bellaterra, Spain;
- Correspondence: (S.N.); (N.B.)
| |
Collapse
|
20
|
Seasonal Phenological Patterns and Flavivirus Vectorial Capacity of Medically Important Mosquito Species in a Wetland and an Urban Area of Attica, Greece. Trop Med Infect Dis 2021; 6:tropicalmed6040176. [PMID: 34698285 PMCID: PMC8544675 DOI: 10.3390/tropicalmed6040176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Seasonal patterns of mosquito population density and their vectorial capacity constitute major elements to understand the epidemiology of mosquito-borne diseases. Using adult mosquito traps, we compared the population dynamics of major mosquito species (Culex pipiens, Aedes albopictus, Anopheles spp.) in an urban and a wetland rural area of Attica Greece. Pools of the captured Cx. pipiens were analyzed to determine infection rates of the West Nile virus (WNV) and the Usutu virus (USUV). The data provided were collected under the frame of the surveillance program carried out in two regional units (RUs) of the Attica region (East Attica and South Sector of Attica), during the period 2017-2018. The entomological surveillance of adult mosquitoes was performed on a weekly basis using a network of BG-sentinel traps (BGs), baited with CO2 and BG-Lure, in selected, fixed sampling sites. A total of 46,726 adult mosquitoes were collected, with larger variety and number of species in East Attica (n = 37,810), followed by the South Sector of Attica (n = 8916). The collected mosquitoes were morphologically identified to species level and evaluated for their public health importance. Collected Cx. pipiens adults were pooled and tested for West Nile virus (WNV) and Usutu virus (USUV) presence by implementation of a targeted molecular methodology (real-time PCR). A total of 366 mosquito pools were analyzed for WNV and USUV, respectively, and 38 (10.4%) positive samples were recorded for WNV, while no positive pool was detected for USUV. The majority of positive samples for WNV were detected in the East Attica region, followed by the South Sector of Attica, respectively. The findings of the current study highlight the WNV circulation in the region of Attica and the concomitant risk for the country, rendering mosquito surveillance actions and integrated mosquito management programs as imperative public health interventions.
Collapse
|
21
|
Giglia G, Agliani G, Munnink BBO, Sikkema RS, Mandara MT, Lepri E, Kik M, Ijzer J, Rijks JM, Fast C, Koopmans MPG, Verheije MH, Gröne A, Reusken CBEM, van den Brand JMA. Pathology and Pathogenesis of Eurasian Blackbirds ( Turdus merula) Naturally Infected with Usutu Virus. Viruses 2021; 13:1481. [PMID: 34452347 PMCID: PMC8402641 DOI: 10.3390/v13081481] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 01/13/2023] Open
Abstract
The Usutu virus (USUV) is a mosquito-borne zoonotic flavivirus. Despite its continuous circulation in Europe, knowledge on the pathology, cellular and tissue tropism and pathogenetic potential of different circulating viral lineages is still fragmentary. Here, macroscopic and microscopic evaluations are performed in association with the study of cell and tissue tropism and comparison of lesion severity of two circulating virus lineages (Europe 3; Africa 3) in 160 Eurasian blackbirds (Turdus merula) in the Netherlands. Results confirm hepatosplenomegaly, coagulative necrosis and lymphoplasmacytic inflammation as major patterns of lesions and, for the first time, vasculitis as a novel virus-associated lesion. A USUV and Plasmodium spp. co-infection was commonly identified. The virus was associated with lesions by immunohistochemistry and was reported most commonly in endothelial cells and blood circulating and tissue mononucleated cells, suggesting them as a major route of entry and spread. A tropism for mononuclear phagocytes cells was further supported by viral labeling in multinucleated giant cells. The involvement of ganglionic neurons and epithelial cells of the gastrointestinal tract suggests a possible role of oral transmission, while the involvement of feather follicle shafts and bulbs suggests their use as a diagnostic sample for live bird testing. Finally, results suggest similar pathogenicity for the two circulating lineages.
Collapse
Affiliation(s)
- Giuseppe Giglia
- Division of Pathology, Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (G.G.); (G.A.); (M.K.); (J.I.); (M.H.V.); (A.G.)
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (M.T.M.); (E.L.)
| | - Gianfilippo Agliani
- Division of Pathology, Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (G.G.); (G.A.); (M.K.); (J.I.); (M.H.V.); (A.G.)
| | - Bas B. Oude Munnink
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (B.B.O.M.); (R.S.S.); (M.P.G.K.); (C.B.E.M.R.)
| | - Reina S. Sikkema
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (B.B.O.M.); (R.S.S.); (M.P.G.K.); (C.B.E.M.R.)
| | - Maria Teresa Mandara
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (M.T.M.); (E.L.)
| | - Elvio Lepri
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (M.T.M.); (E.L.)
| | - Marja Kik
- Division of Pathology, Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (G.G.); (G.A.); (M.K.); (J.I.); (M.H.V.); (A.G.)
- Dutch Wildlife Health Centre, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Jooske Ijzer
- Division of Pathology, Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (G.G.); (G.A.); (M.K.); (J.I.); (M.H.V.); (A.G.)
- Dutch Wildlife Health Centre, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Jolianne M. Rijks
- Dutch Wildlife Health Centre, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Christine Fast
- Institute of Novel and Emerging Infectious Disease, Friedrich-Loeffler Institut, D-17493 Isle of Riems, Germany;
| | - Marion P. G. Koopmans
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (B.B.O.M.); (R.S.S.); (M.P.G.K.); (C.B.E.M.R.)
| | - Monique H. Verheije
- Division of Pathology, Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (G.G.); (G.A.); (M.K.); (J.I.); (M.H.V.); (A.G.)
| | - Andrea Gröne
- Division of Pathology, Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (G.G.); (G.A.); (M.K.); (J.I.); (M.H.V.); (A.G.)
- Dutch Wildlife Health Centre, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Chantal B. E. M. Reusken
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (B.B.O.M.); (R.S.S.); (M.P.G.K.); (C.B.E.M.R.)
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| | - Judith M. A. van den Brand
- Division of Pathology, Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (G.G.); (G.A.); (M.K.); (J.I.); (M.H.V.); (A.G.)
- Dutch Wildlife Health Centre, Utrecht University, 3584 CL Utrecht, The Netherlands;
| |
Collapse
|
22
|
Previous Usutu Virus Exposure Partially Protects Magpies ( Pica pica) against West Nile Virus Disease But Does Not Prevent Horizontal Transmission. Viruses 2021; 13:v13071409. [PMID: 34372622 PMCID: PMC8310384 DOI: 10.3390/v13071409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
The mosquito-borne flaviviruses USUV and WNV are known to co-circulate in large parts of Europe. Both are a public health concern, and USUV has been the cause of epizootics in both wild and domestic birds, and neurological cases in humans in Europe. Here, we explore the susceptibility of magpies to experimental USUV infection, and how previous exposure to USUV would affect infection with WNV. None of the magpies exposed to USUV showed clinical signs, viremia, or detectable neutralizing antibodies. After challenge with a neurovirulent WNV strain, neither viremia, viral titer of WNV in vascular feathers, nor neutralizing antibody titers of previously USUV-exposed magpies differed significantly with respect to magpies that had not previously been exposed to USUV. However, 75% (6/8) of the USUV-exposed birds survived, while only 22.2% (2/9) of those not previously exposed to USUV survived. WNV antigen labeling by immunohistochemistry in tissues was less evident and more restricted in magpies exposed to USUV prior to challenge with WNV. Our data indicate that previous exposure to USUV partially protects magpies against a lethal challenge with WNV, while it does not prevent viremia and direct transmission, although the mechanism is unclear. These results are relevant for flavivirus ecology and contention.
Collapse
|
23
|
Marchi S, Montomoli E, Viviani S, Giannecchini S, Stincarelli MA, Lanave G, Camero M, Alessio C, Coluccio R, Trombetta CM. West Nile Virus Seroprevalence in the Italian Tuscany Region from 2016 to 2019. Pathogens 2021; 10:pathogens10070844. [PMID: 34357994 PMCID: PMC8308575 DOI: 10.3390/pathogens10070844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
Although in humans West Nile virus is mainly the cause of mild or sub-clinical infections, in some cases a neuroinvasive disease may occur predominantly in the elderly. In Italy, several cases of West Nile virus infection are reported every year. Tuscany was the first Italian region where the virus was identified; however, to date only two cases of infection have been reported in humans. This study aimed at evaluating the prevalence of antibodies against West Nile virus in the area of Siena Province to estimate the recent circulation of the virus. Human serum samples collected in Siena between 2016 and 2019 were tested for the presence of antibodies against West Nile virus by ELISA. ELISA positive samples were further evaluated using immunofluorescence, micro neutralization, and plaque reduction neutralization assays. In total, 1.9% (95% CI 1.2–3.1) and 1.4% (95% CI 0.8–2.4) of samples collected in 2016–2017 were positive by ELISA and immunofluorescence assay, respectively. Neutralizing antibodies were found in 0.7% (95% CI 0.3–1.5) of samples. Additionally, 0.9% (95% CI 0.4–1.7) and 0.65% (95% CI 0.3–1.45) of samples collected in 2018–2019 were positive by ELISA and immunofluorescence assay, respectively. The prevalence of neutralizing antibodies was 0.5% (95% CI 0.2–1.3). Although no human cases of West Nile infection were reported in the area between 2016 and 2019 and virus prevalence in the area of Siena Province was as low as less than 1%, the active asymptomatic circulation confirms the potential concern of this emergent virus for human health.
Collapse
Affiliation(s)
- Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (E.M.); (S.V.); (C.A.); (R.C.); (C.M.T.)
- Correspondence:
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (E.M.); (S.V.); (C.A.); (R.C.); (C.M.T.)
- VisMederi S.r.l., 53100 Siena, Italy
| | - Simonetta Viviani
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (E.M.); (S.V.); (C.A.); (R.C.); (C.M.T.)
| | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (S.G.); (M.A.S.)
| | - Maria A. Stincarelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (S.G.); (M.A.S.)
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy; (G.L.); (M.C.)
| | - Michele Camero
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy; (G.L.); (M.C.)
| | - Caterina Alessio
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (E.M.); (S.V.); (C.A.); (R.C.); (C.M.T.)
| | - Rosa Coluccio
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (E.M.); (S.V.); (C.A.); (R.C.); (C.M.T.)
- VisMederi S.r.l., 53100 Siena, Italy
| | - Claudia Maria Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (E.M.); (S.V.); (C.A.); (R.C.); (C.M.T.)
| |
Collapse
|
24
|
Ferraguti M, Martínez-de la Puente J, Figuerola J. Ecological Effects on the Dynamics of West Nile Virus and Avian Plasmodium: The Importance of Mosquito Communities and Landscape. Viruses 2021; 13:v13071208. [PMID: 34201673 PMCID: PMC8310121 DOI: 10.3390/v13071208] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/30/2023] Open
Abstract
Humans and wildlife are at risk from certain vector-borne diseases such as malaria, dengue, and West Nile and yellow fevers. Factors linked to global change, including habitat alteration, land-use intensification, the spread of alien species, and climate change, are operating on a global scale and affect both the incidence and distribution of many vector-borne diseases. Hence, understanding the drivers that regulate the transmission of pathogens in the wild is of great importance for ecological, evolutionary, health, and economic reasons. In this literature review, we discuss the ecological factors potentially affecting the transmission of two mosquito-borne pathogens circulating naturally between birds and mosquitoes, namely, West Nile virus (WNV) and the avian malaria parasites of the genus Plasmodium. Traditionally, the study of pathogen transmission has focused only on vectors or hosts and the interactions between them, while the role of landscape has largely been ignored. However, from an ecological point of view, it is essential not only to study the interaction between each of these organisms but also to understand the environmental scenarios in which these processes take place. We describe here some of the similarities and differences in the transmission of these two pathogens and how research into both systems may facilitate a greater understanding of the dynamics of vector-borne pathogens in the wild.
Collapse
Affiliation(s)
- Martina Ferraguti
- Department of Theoretical and Computational Ecology (TCE), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Correspondence: (M.F.); (J.M.-d.l.P.)
| | - Josué Martínez-de la Puente
- Department of Parasitology, University of Granada, E-18071 Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Spain
- Correspondence: (M.F.); (J.M.-d.l.P.)
| | - Jordi Figuerola
- Doñana Biological Station (EBD-CSIC), E-41092 Seville, Spain;
- CIBER of Epidemiology and Public Health (CIBERESP), Spain
| |
Collapse
|
25
|
Ferraguti M, Martínez-de la Puente J, Jiménez–Clavero MÁ, Llorente F, Roiz D, Ruiz S, Soriguer R, Figuerola J. A field test of the dilution effect hypothesis in four avian multi-host pathogens. PLoS Pathog 2021; 17:e1009637. [PMID: 34161394 PMCID: PMC8221496 DOI: 10.1371/journal.ppat.1009637] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/12/2021] [Indexed: 11/18/2022] Open
Abstract
The Dilution Effect Hypothesis (DEH) argues that greater biodiversity lowers the risk of disease and reduces the rates of pathogen transmission since more diverse communities harbour fewer competent hosts for any given pathogen, thereby reducing host exposure to the pathogen. DEH is expected to operate most intensely in vector-borne pathogens and when species-rich communities are not associated with increased host density. Overall, dilution will occur if greater species diversity leads to a lower contact rate between infected vectors and susceptible hosts, and between infected hosts and susceptible vectors. Field-based tests simultaneously analysing the prevalence of several multi-host pathogens in relation to host and vector diversity are required to validate DEH. We tested the relationship between the prevalence in house sparrows (Passer domesticus) of four vector-borne pathogens-three avian haemosporidians (including the avian malaria parasite Plasmodium and the malaria-like parasites Haemoproteus and Leucocytozoon) and West Nile virus (WNV)-and vertebrate diversity. Birds were sampled at 45 localities in SW Spain for which extensive data on vector (mosquitoes) and vertebrate communities exist. Vertebrate censuses were conducted to quantify avian and mammal density, species richness and evenness. Contrary to the predictions of DEH, WNV seroprevalence and haemosporidian prevalence were not negatively associated with either vertebrate species richness or evenness. Indeed, the opposite pattern was found, with positive relationships between avian species richness and WNV seroprevalence, and Leucocytozoon prevalence being detected. When vector (mosquito) richness and evenness were incorporated into the models, all the previous associations between WNV prevalence and the vertebrate community variables remained unchanged. No significant association was found for Plasmodium prevalence and vertebrate community variables in any of the models tested. Despite the studied system having several characteristics that should favour the dilution effect (i.e., vector-borne pathogens, an area where vector and host densities are unrelated, and where host richness is not associated with an increase in host density), none of the relationships between host species diversity and species richness, and pathogen prevalence supported DEH and, in fact, amplification was found for three of the four pathogens tested. Consequently, the range of pathogens and communities studied needs to be broadened if we are to understand the ecological factors that favour dilution and how often these conditions occur in nature.
Collapse
Affiliation(s)
- Martina Ferraguti
- Department of Wetland Ecology, Doñana Biological Station (EBD–CSIC), Seville, Spain
| | - Josué Martínez-de la Puente
- Department of Wetland Ecology, Doñana Biological Station (EBD–CSIC), Seville, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Miguel Ángel Jiménez–Clavero
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA–CISA), Valdeolmos, Madrid, Spain
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA–CISA), Valdeolmos, Madrid, Spain
| | - David Roiz
- Department of Wetland Ecology, Doñana Biological Station (EBD–CSIC), Seville, Spain
| | - Santiago Ruiz
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Diputación de Huelva, Área de Medio Ambiente, Servicio de Control de Mosquitos, Huelva, Spain
| | - Ramón Soriguer
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Ethology & Biodiversity Conservation, Doñana Biological Station (EBD–CSIC), Seville, Spain
| | - Jordi Figuerola
- Department of Wetland Ecology, Doñana Biological Station (EBD–CSIC), Seville, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- * E-mail:
| |
Collapse
|
26
|
Bravo-Barriga D, Aguilera-Sepúlveda P, Guerrero-Carvajal F, Llorente F, Reina D, Pérez-Martín JE, Jiménez-Clavero MÁ, Frontera E. West Nile and Usutu virus infections in wild birds admitted to rehabilitation centres in Extremadura, western Spain, 2017-2019. Vet Microbiol 2021; 255:109020. [PMID: 33677369 DOI: 10.1016/j.vetmic.2021.109020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
West Nile virus (WNV) is an emerging flavivirus transmitted generally by mosquitoes of Culex genus. It is maintained in an enzootic life cycle where birds act as reservoir hosts. Humans and horses are also susceptible to infection, and occasionally, they suffer from neurological complications. However, they do not transmit the virus to other vectors, behaving as dead-end hosts. Sporadic WNV outbreaks observed in horses and wild birds from Extremadura (western Spain) during 2016 and 2017 seasons prompted to carry out this survey in wild birds, focused on specimens coming from two wildlife rehabilitation centres. Between October 2017 and December 2019, samples from 391 wild birds, belonging to 56 different species were collected and analysed in search of evidence of WNV infection. The analysis of serum samples for WNV-specific antibodies by ELISA, whose specificity was subsequently confirmed by virus-neutralisation test (VNT) showed positive results in 18.23 % birds belonging to 18 different species. Pelecaniformes (33.33 %), Accipitriformes (25.77 %) and Strigiformes (22.92 %) orders had the higher seroprevalences. Remarkably, WNV-specific antibodies were found in a black stork for the first time in Europe. Analysis by real time RT-PCR in symptomatic birds confirmed the presence of WNV lineage 1 RNA in griffon vulture and little owls. Specificity analysis of ELISA positive and doubtful sera was performed by differential VNT titration against WNV and two other cross-reacting avian flaviviruses found in Spain: Usutu virus (USUV) and Bagaza virus (BAGV). Only four samples showed USUV-specific antibodies (1.04 %) corresponding to three species: Eurasian eagle-owl, griffon vulture and great bustard (first detection in Europe) whereas no samples were found reactive to BAGV. Differential VNT yielded undetermined flavivirus result in 16 samples (4.17 %). This is the first study carried out on wild birds from Extremadura (western Spain). It highlights the widespread circulation of WNV in the region and its co-circulation with USUV.
Collapse
Affiliation(s)
- Daniel Bravo-Barriga
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| | - Pilar Aguilera-Sepúlveda
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain.
| | | | - Francisco Llorente
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain.
| | - David Reina
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| | - J Enrique Pérez-Martín
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| | - Miguel Ángel Jiménez-Clavero
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain; Centro de Investigación Biomédica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.
| | - Eva Frontera
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| |
Collapse
|
27
|
Tavakkoli H, Khosravi A, Sharifi I, Salari Z, Salarkia E, Kheirandish R, Dehghantalebi K, Jajarmi M, Mosallanejad SS, Dabiri S, Keyhani A. Partridge and embryonated partridge egg as new preclinical models for candidiasis. Sci Rep 2021; 11:2072. [PMID: 33483560 PMCID: PMC7822824 DOI: 10.1038/s41598-021-81592-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 01/06/2021] [Indexed: 12/20/2022] Open
Abstract
Candida albicans (C. albicans) is the most common cause of candidiasis in humans and animals. This study was established to a new experimental infection model for systemic candidiasis using partridge and embryonated partridge egg. First, we tested the induction of systemic candidiasis in partridge and embryonated partridge egg. Finally, interaction between virulence factors of C. albicans and Bcl-2 family members was predicted. We observed that embryonic infection causes a decrease in survival time and at later embryonic days (11–12th), embryos showed lesions. Morphometric analysis of the extra-embryonic membrane (EEM) vasculature showed that vascular apoptotic effect of C. albicans was revealed by a significant reduction in capillary area. In immunohistochemistry assay, low expression of Bcl-2 and increased expression of Bax confirmed apoptosis. The gene expression of Bax and Bcl-2 was also altered in fungi-exposed EEM. Ourin silico simulation has shown an accurate interaction between aspartic proteinase, polyamine oxidase, Bcl-2 and BAX. We observed that the disease was associated with adverse consequences, which were similar to human candidiasis. Acquired results support the idea that partridge and embryonated partridge egg can be utilized as appropriate preclinical models to investigate the pathological effects of candidiasis.
Collapse
Affiliation(s)
- Hadi Tavakkoli
- Department of Clinical Science, School of Veterinary Medicine, Shahid Bahonar University of Kerman, 22 Bahman Boulevard, Pajouhesh Square, Kerman, 7616914111, Iran.
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, 22 Bahman Boulevard, Pajouhesh Square, Kerman, 7616914115, Iran.
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, 22 Bahman Boulevard, Pajouhesh Square, Kerman, 7616914115, Iran
| | - Zohreh Salari
- Obstetrics and Gynecology Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, 22 Bahman Boulevard, Pajouhesh Square, Kerman, 7616914115, Iran
| | - Reza Kheirandish
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Kazem Dehghantalebi
- Department of Clinical Science, School of Veterinary Medicine, Shahid Bahonar University of Kerman, 22 Bahman Boulevard, Pajouhesh Square, Kerman, 7616914111, Iran
| | - Maziar Jajarmi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Seyedeh Saedeh Mosallanejad
- Afzalipour School of Medicine and Biochemistry Department, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Afzalipour School of Medicine and Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, 22 Bahman Boulevard, Pajouhesh Square, Kerman, 7616914115, Iran
| |
Collapse
|
28
|
Evaluation of West Nile Virus Diagnostic Capacities in Veterinary Laboratories of the Mediterranean and Black Sea Regions. Pathogens 2020; 9:pathogens9121038. [PMID: 33322276 PMCID: PMC7763240 DOI: 10.3390/pathogens9121038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 01/18/2023] Open
Abstract
The increasing incidence of West Nile virus (WNV) in the Euro-Mediterranean area warrants the implementation of effective surveillance programs in animals. A crucial step in the fight against the disease is the evaluation of the capacity of the veterinary labs to accurately detect the infection in animal populations. In this context, the animal virology network of the MediLabSecure project organized an external quality assessment (EQA) to evaluate the WNV molecular and serological diagnostic capacities of beneficiary veterinary labs. Laboratories from 17 Mediterranean and Black Sea countries participated. The results of the triplex real time RT-PCR for simultaneous detection and differentiation of WNV lineage 1 (L1), lineage 2 (L2) and Usutu virus (USUV) were highly satisfactory, especially for L1 and L2, with detection rates of 97.9% and 100%, respectively. For USUV, 75% of the labs reported correct results. More limitations were observed for the generic detection of flaviviruses using conventional reverse-transcription polymerase chain reaction (RT-PCR), since only 46.1% reported correct results in the whole panel. As regards the serological panel, the results were excellent for the generic detection of WNV antibodies. More variability was observed for the specific detection of IgM antibodies with a higher percentage of incorrect results mainly in samples with low titers. This EQA provides a good overview of the WNV (and USUV) diagnostic performance of the involved veterinary labs and demonstrates that the implemented training program was successful in upgrading their diagnostic capacities.
Collapse
|
29
|
Guerrero-Carvajal F, Bravo-Barriga D, Martín-Cuervo M, Aguilera-Sepúlveda P, Ferraguti M, Jiménez-Clavero MÁ, Llorente F, Alonso JM, Frontera E. Serological evidence of co-circulation of West Nile and Usutu viruses in equids from western Spain. Transbound Emerg Dis 2020; 68:1432-1444. [PMID: 32853452 DOI: 10.1111/tbed.13810] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022]
Abstract
West Nile virus (WNV) is a mosquito-borne emerging virus in Europe with capacity to cause neurological complications such as encephalitis or meningoencephalitis in humans, birds or equids. In Spain, WNV is actively circulating in mosquitoes, birds and horses in different regions, but never has been deeply studied in Extremadura. Therefore, the aim of this study was to evaluate the seroprevalence of WNV in equids of those areas and to analyse the risk factors associated with exposure to the virus. A total of 199 out of 725 equids presented antibodies against WNV by competition ELISA (27.45%), while 22 were doubtful (3.03%). Anti-WNV IgM antibodies were detected in 16 equids (2.21%), and 3 animals were doubtful (0.41%). All ELISA-reactive positive/doubtful sera (N = 226) were further tested by micro-virus neutralization test (VNT), and a total of 143 horses were confirmed as positive for WNV, obtaining a seroprevalence of 19.72% in equids of western Spain. In addition, specific antibodies against USUV were confirmed in 11 equids. In 24 equids, a specific flavivirus species (detected by ELISA test) could not be determined. The generalized linear mixed-effects models showed that the significant risk factors associated with individual WNV infection in equids were the age (adults) and hair coat colour (light), whereas in USUV infections, it was the breed (pure). Data demonstrated that WNV and USUV are circulating in regions of western Spain. Given the high WNV seroprevalence found in equids from the studied areas, it is important to improve the surveillance programmes of public health to detect undiagnosed human cases and to establish a vaccination programme in equid herds in these regions.
Collapse
Affiliation(s)
| | - Daniel Bravo-Barriga
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain
| | - María Martín-Cuervo
- Animal Medicine Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain
| | - Pilar Aguilera-Sepúlveda
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain
| | - Martina Ferraguti
- Anatomy, Cellular Biology and Zoology Department, Science Faculty, University of Extremadura (UEx), Badajoz, Spain
| | - Miguel Ángel Jiménez-Clavero
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain.,Centro de Investigación Biomédica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Francisco Llorente
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain
| | - Juan Manuel Alonso
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain
| | - Eva Frontera
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain
| |
Collapse
|
30
|
Ferraguti M, Heesterbeek H, Martínez-de la Puente J, Jiménez-Clavero MÁ, Vázquez A, Ruiz S, Llorente F, Roiz D, Vernooij H, Soriguer R, Figuerola J. The role of different Culex mosquito species in the transmission of West Nile virus and avian malaria parasites in Mediterranean areas. Transbound Emerg Dis 2020; 68:920-930. [PMID: 32748497 DOI: 10.1111/tbed.13760] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/07/2020] [Accepted: 07/26/2020] [Indexed: 12/23/2022]
Abstract
Vector-borne diseases, especially those transmitted by mosquitoes, have severe impacts on public health and economy. West Nile virus (WNV) and avian malaria parasites of the genus Plasmodium are mosquito-borne pathogens that may produce severe disease and illness in humans and birds, respectively, and circulate in an endemic form in southern Europe. Here, we used field-collected data to identify the impact of Culex pipiens, Cx. perexiguus and Cx. modestus, on the circulation of both WNV and Plasmodium in Andalusia (SW Spain) using mathematical modelling of the basic reproduction number (R0 ). Models were calibrated with field-collected data on WNV seroprevalence and Plasmodium infection in wild house sparrows, presence of WNV and Plasmodium in mosquito pools, and mosquito blood-feeding patterns. This approach allowed us to determine the contribution of each vector species to pathogen amplification. Overall, 0.7% and 29.6% of house sparrows were positive to WNV antibodies and Plasmodium infection, respectively. In addition, the prevalence of Plasmodium was higher in Cx. pipiens (2.0%), followed by Cx. perexiguus (1.8%) and Cx. modestus (0.7%). Three pools of Cx. perexiguus were positive to WVN. Models identified Cx. perexiguus as the most important species contributing to the amplification of WNV in southern Spain. For Plasmodium models, R0 values were higher when Cx. pipiens was present in the population, either alone or in combination with the other mosquito species. These results suggest that the transmission of these vector-borne pathogens depends on different Culex species, and consequently, their transmission niches will present different spatial and temporal patterns. For WNV, targeted surveillance and control of Cx. perexiguus populations appear as the most effective measure to reduce WNV amplification. Also, preventing Culex populations near human settlements, or reducing the abundance of these species, are potential strategies to reduce WNV spillover into human populations in southern Spain.
Collapse
Affiliation(s)
| | - Hans Heesterbeek
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Josué Martínez-de la Puente
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain.,Centro de Investigacion Biomedica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigacion Biomedica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.,Centro de Investigación en Sanidad Animal - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Valdeolmos, Spain
| | - Ana Vázquez
- Centro de Investigacion Biomedica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.,Laboratorio de Arbovirus y Enfermedades Víricas Importadas, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Santiago Ruiz
- Centro de Investigacion Biomedica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.,Servicio de Control de Mosquitos, Área de Medio Ambiente, Huelva, Spain
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Valdeolmos, Spain
| | - David Roiz
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Hans Vernooij
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ramón Soriguer
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain.,Centro de Investigacion Biomedica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain.,Centro de Investigacion Biomedica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
31
|
Camino E, Schmid S, Weber F, Pozo P, de Juan L, König M, Cruz-Lopez F. Detection of antibodies against tick-borne encephalitis flaviviruses in breeding and sport horses from Spain. Ticks Tick Borne Dis 2020; 11:101487. [PMID: 32723662 DOI: 10.1016/j.ttbdis.2020.101487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/01/2022]
Abstract
Tick-borne encephalitis virus (TBEV) and louping-ill virus (LIV) are two closely related zoonotic flaviviruses leading to neurological diseases and belonging to the tick-borne encephalitis (TBE) serocomplex. Both viruses are transmitted by the same ixodid tick vector, Ixodes ricinus. Due to global warming affecting vector biology and pathogen transmission, the viruses pose an emerging threat for public health in Europe and Asia. These flaviviruses share some hosts, like sheep, goats and humans, although the main hosts for LIV and TBEV are sheep and small rodents, respectively. Whereas LIV has been detected in Spanish sheep and goat herds, circulating antibodies against TBEV have only been reported in dogs and horses from particular regions in this country. The limited available information about the prevalence of these viruses in Spain led us to investigate the serological evidence of TBE flaviviruses in horses from Spain. Serum neutralization tests (SNT) were performed using sera from 495 breeding and sport horses collected during two periods (2011-2013 and 2015-2016). A seroprevalence of 3.1 % (95 % CI 1.5-4.6) was found and cross-reactivity with West Nile virus was excluded in the positive samples. Sport horses showed a significantly higher TBE serocomplex seropositivity compared to breeding horses. An increased seroprevalence was observed in the second sampling period (2015-2016). Our results demonstrate for the first time the presence of antibodies against TBE flaviviruses in horses residing in mainland Spain; further epidemiological surveys are necessary in order to understand and monitor the active transmission of TBE flaviviruses in this country and rule out the presence of other flaviviruses co-circulating in Spain.
Collapse
Affiliation(s)
- E Camino
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain; Animal Health Department, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - S Schmid
- Institute of Virology. Justus-Liebig-University, Giessen, Germany
| | - F Weber
- Institute of Virology. Justus-Liebig-University, Giessen, Germany
| | - P Pozo
- MAEVA SERVET, S.L., Alameda del Valle, Spain
| | - L de Juan
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain; Animal Health Department, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - M König
- Institute of Virology. Justus-Liebig-University, Giessen, Germany
| | - F Cruz-Lopez
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
32
|
Bournez L, Umhang G, Faure E, Boucher JM, Boué F, Jourdain E, Sarasa M, Llorente F, Jiménez-Clavero MA, Moutailler S, Lacour SA, Lecollinet S, Beck C. Exposure of Wild Ungulates to the Usutu and Tick-Borne Encephalitis Viruses in France in 2009-2014: Evidence of Undetected Flavivirus Circulation a Decade Ago. Viruses 2019; 12:E10. [PMID: 31861683 PMCID: PMC7019733 DOI: 10.3390/v12010010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/30/2022] Open
Abstract
Abstract: Flaviviruses have become increasingly important pathogens in Europe over the past few decades. A better understanding of the spatiotemporal distribution of flaviviruses in France is needed to better define risk areas and to gain knowledge of the dynamics of virus transmission cycles. Serum samples from 1014 wild boar and 758 roe deer from 16 departments (administrative units) in France collected from 2009 to 2014 were screened for flavivirus antibodies using a competitive ELISA (cELISA) technique. Serum samples found to be positive or doubtful by cELISA were then tested for antibodies directed against West Nile virus (WNV), Usutu virus (USUV), Bagaza virus (BAGV), and tick-borne encephalitis/Louping ill viruses (TBEV/LIV) by microsphere immunoassays (except BAGV) and micro-neutralization tests. USUV antibodies were detected only in southeastern and southwestern areas. TBEV/LIV antibodies were detected in serum samples from eastern, southwestern and northern departments. The results indicate continuous circulation of USUV in southern France from 2009 to 2014, which was unnoticed by the French monitoring system for bird mortality. The findings also confirm wider distribution of TBEV in the eastern part of the country than of human clinical cases. However, further studies are needed to determine the tick-borne flavivirus responsible for the seroconversion in southwestern and northern France.
Collapse
Affiliation(s)
- Laure Bournez
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Gérald Umhang
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Eva Faure
- National Hunters Federation, 92130 Issy-les-Moulineaux, France; (E.F.); (M.S.)
| | - Jean-Marc Boucher
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Franck Boué
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Elsa Jourdain
- Université Clermont Auvergne, INRAE, VetAgro Sup, Unité mixte de recherche Epidémiologie des maladies animales et zoonotiques (UMR EPIA), 63122 Saint-Genès-Champanelle, France;
| | - Mathieu Sarasa
- National Hunters Federation, 92130 Issy-les-Moulineaux, France; (E.F.); (M.S.)
- Biologie et Ecologie des Organismes et Populations Sauvages (BEOPS), 1 Esplanade Compans Caffarelli, 31000 Toulouse, France
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), 28130 Valdeolmos, Spain; (F.L.); (M.A.J.-C.)
| | - Miguel A. Jiménez-Clavero
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), 28130 Valdeolmos, Spain; (F.L.); (M.A.J.-C.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Sara Moutailler
- Unité mixte de recherche Biologie moléculaire et Immunologie Parasitaire (UMR BIPAR), ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort 94700, France;
| | - Sandrine A. Lacour
- Unité mixte de recherche (UMR) Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (S.A.L.); (S.L.); (C.B.)
| | - Sylvie Lecollinet
- Unité mixte de recherche (UMR) Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (S.A.L.); (S.L.); (C.B.)
| | - Cécile Beck
- Unité mixte de recherche (UMR) Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (S.A.L.); (S.L.); (C.B.)
| |
Collapse
|
33
|
Gill CM, Kapadia RK, Beckham JD, Piquet AL, Tyler KL, Pastula DM. Usutu virus disease: a potential problem for North America? J Neurovirol 2019; 26:149-154. [PMID: 31858483 DOI: 10.1007/s13365-019-00818-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/07/2019] [Accepted: 11/18/2019] [Indexed: 11/27/2022]
Abstract
Usutu virus is an emerging mosquito-borne flavivirus initially identified in South Africa in 1959 that is now circulating throughout parts of Africa, Europe, and the Middle East. It is closely related to West Nile virus, and has similar vectors, amplifying bird hosts, and epidemiology. Usutu virus infection can occur in humans and may be asymptomatic or cause systemic (e.g., fever, rash, and hepatitis) or neuroinvasive (e.g., meningitis and encephalitis) disease. Given few reported cases, the full clinical spectrum is not known. No anti-viral treatment is available, but it can be largely prevented by avoiding mosquito bites. Because of similar mosquitoes, birds, and climate to Europe, the potential for introduction to North America is possible.
Collapse
Affiliation(s)
- Christine M Gill
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Mail Stop B182, Research Complex 2, 12700 East 19th Ave., Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ronak K Kapadia
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Mail Stop B182, Research Complex 2, 12700 East 19th Ave., Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - J David Beckham
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Mail Stop B182, Research Complex 2, 12700 East 19th Ave., Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Amanda L Piquet
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Mail Stop B182, Research Complex 2, 12700 East 19th Ave., Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kenneth L Tyler
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Mail Stop B182, Research Complex 2, 12700 East 19th Ave., Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Immunology-Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniel M Pastula
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Mail Stop B182, Research Complex 2, 12700 East 19th Ave., Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA.
| |
Collapse
|
34
|
Usefulness of Eurasian Magpies ( Pica pica) for West Nile virus Surveillance in Non-Endemic and Endemic Situations. Viruses 2019; 11:v11080716. [PMID: 31387316 PMCID: PMC6722797 DOI: 10.3390/v11080716] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 11/17/2022] Open
Abstract
: In September 2017, passive surveillance allowed the detection of West Nile virus (WNV) lineage 2 for the first time in northern Spain in a northern goshawk (Accipiter gentilis). However, a cross sectional study carried out in Eurasian magpies (Pica pica) in a nearby area evidenced that WNV had been circulating two months earlier. Therefore, active surveillance in Eurasian magpies proved its effectiveness for the early detection of WNV in a non-endemic area. Further surveys in 2018 and the beginning of 2019 using young magpies (i.e., born after 2017) showed the repeated circulation of WNV in the same region in the following transmission season. Therefore, active surveillance in Eurasian magpies as well proved to be useful for the detection of WNV circulation in areas that may be considered as endemic. In this manuscript we present the results of those studies and discuss reasons that make the Eurasian magpies an ideal species for the surveillance of WNV, both in endemic and non-endemic areas.
Collapse
|
35
|
Usutu Virus: An Arbovirus on the Rise. Viruses 2019; 11:v11070640. [PMID: 31336826 PMCID: PMC6669749 DOI: 10.3390/v11070640] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/23/2022] Open
Abstract
The Usutu virus (USUV) is a flavivirus that is drawing increasing attention because of its potential for emergence. First isolated in Africa, it was introduced into Europe where it caused significant outbreaks in birds, such as in Austria in 2001. Since then, its geographical distribution has rapidly expanded, with increased circulation, especially in the last few years. Similar to West Nile virus (WNV), the USUV enzootic transmission cycle involves Culex mosquitoes as vectors, and birds as amplifying reservoir hosts, with humans and other mammals likely being dead-end hosts. A similarity in the ecology of these two viruses, which co-circulate in several European countries, highlights USUV’s potential to become an important human pathogen. While USUV has had a severe impact on the blackbird population, the number of human cases remains low, with most infections being asymptomatic. However, some rare cases of neurological disease have been described, both in healthy and immuno-compromised patients. Here, we will discuss the transmission dynamics and the current state of USUV circulation in Europe.
Collapse
|